Skip to main content

Advertisement

Log in

Spatial and temporal variations of PM2.5 mass closure and inorganic PM2.5 in the Southeastern U.S.

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Fine particulate matter (i.e., PM2.5) has gained extensive attention owing to its adverse effects. The impacts of PM2.5 may vary in time and space due to the spatiotemporal variations of PM2.5 number size distribution and chemical compositions. This research analyzed the latest PM2.5 chemical compositions measurements with an aim to better understand the dynamic changes of PM2.5 in response to emission reductions due to the new regulations. The particulate measurements from the Southeastern Aerosol Research and Characterization (SEARCH) network between 2001 and 2016 were analyzed for the spatiotemporal variations of PM2.5 and inorganic PM2.5 (iPM2.5 = SO42− + NH4+ + NO3) chemical compositions in the Southeastern United States (U.S.). It was discovered that PM2.5 and iPM2.5 mass concentrations exhibited significant downward trends in 2001–2016. Both PM2.5 and iPM2.5 mass concentrations were higher at urban and inland sites than rural/suburban and coastal sites. The higher iPM2.5 concentrations at agricultural sites were attributed to the influences of ammonia (NH3) emissions from animal feeding operations (AFOs). The iPM2.5 was the dominant contributor to PM2.5 in 2001–2016 at the coastal sites, whereas organic carbon matter (OCM) was the major contributor to PM2.5 after 2011 at the inland sites. Our data analysis suggests that significant decrease of PM2.5 concentrations is attributed to the reductions in nitrogen oxides (NOx) and sulfur dioxide (SO2) emissions in 2001–2016. Findings from this research provide insights into the development of effective PM2.5 control strategies and assessment of air pollutants exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdeen Z, Qasrawi R, Heo J, Wu B, Shpund J, Vanger A, Sharf G, Moise T, Brenner S, Nassar K, Saleh R, Al-Mahasneh QM, Sarnat JA, Schauer JJ (2014) Spatial and temporal variation in fine particulate matter mass and chemical composition: the Middle East consortium for aerosol research study. Sci World J 2014:1–16

    Article  CAS  Google Scholar 

  • Ansari AS, Pandis SN (1998) Response of inorganic PM to precursor concentrations. Environ Sci Technol 32(18):2706–2714

    Article  CAS  Google Scholar 

  • Bell ML, Dominici F, Ebisu K, Zeger SL, Samet JM (2007) Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Environ Health Perspect 115(7):989–995

    Article  CAS  Google Scholar 

  • Blanchard CL, Hidy GM (2003) Effects of changes in sulfate, ammonia, and nitric acid on particulate nitrate concentrations in the Southeastern United States. J Air Waste Manage Assoc 53(3):283–290

    Article  CAS  Google Scholar 

  • Blanchard CL, Hidy GM (2005) Effects of SO2 and NOx emission reductions on PM2.5 mass concentrations in the Southeastern United States. J Air Waste Manage Assoc 55(3):265–272

    Article  CAS  Google Scholar 

  • Blanchard CL, Tanenbaum S, Hidy GM (2007) Effects of sulfur dioxide and oxides of nitrogen emission reductions on fine particulate matter mass concentrations: regional comparisons. J Air Waste Manage Assoc 57(11):1337–1350

    Article  CAS  Google Scholar 

  • Blanchard CL, Tanenbaum S, Hidy GM (2012) Source contributions to atmospheric gases and particulate matter in the southeastern United States. Environ Sci Technol 46:5479–5488

    Article  CAS  Google Scholar 

  • Blanchard CL, Hidy GM, Tanenbaum S, Edgerton ES, Hartsell BE (2013a) The Southeastern Aerosol Research and Characterization (SEARCH) study: temporal trends in gas and PM concentrations and composition, 1999–2010. J Air Waste Manage Assoc 63(3):247–259

    Article  CAS  Google Scholar 

  • Blanchard CL, Hidy GM, Tanenbaum S, Edgerton ES, Hartsell BE (2013b) The Southeastern Aerosol Research and Characterization (SEARCH) study: spatial variations and chemical climatology, 1999–2010. J Air Waste Manage Assoc 63(3):260–275

    Article  CAS  Google Scholar 

  • Blanchard CL, Hidy GM, Shaw S, Baumann K, Edgerton ES (2016) Effects of emission reductions on organic aerosol in the southeastern United States. Atmos Chem Phys 16:215–238

    Article  CAS  Google Scholar 

  • Brewer PF, Adlhoch JP (2005) Trends in speciated fine particulate matter and visibility across monitoring networks in the southeastern United States. J Air Waste Manage Assoc 55(11):1663–1674

    Article  CAS  Google Scholar 

  • Brewer PF, Moore T (2009) Source contributions to visibility impairment in the southeastern and western United States. J Air Waste Manage Assoc 59(9):1070–1081

    Article  CAS  Google Scholar 

  • Cheng B (2018) Dynamics of rural and urban atmospheric chemical conditions and inorganic aerosols. Dissertation, North Carolina State University

  • Cheng B, Wang-Li L (2019) Spatial and temporal variations of PM2.5 in North Carolina. Aerosol Air Qual Res 19(4):698–710

    Article  CAS  Google Scholar 

  • Chow JC, Lowenthal DH, Chen LWA, Wang X, Watson JG (2015) Mass reconstruction methods for PM2.5: a review. Air Qual Atmos Health 8:243–263

    Article  CAS  Google Scholar 

  • Cohen MA, Ryan PB (1989) Observations less than the analytical limit of detection: a new approach. JAPCA 39(3):328–329

    Article  CAS  Google Scholar 

  • Dillner AM, Green M, Schichtel B, Malm B, Rice J, Frank N, Chow J, Watson J, White W, Pitchford M (2012) Rationale and recommendations for sampling artifact correction for PM2.5 organic carbon, Available at https://www3.epa.gov/ttn/naaqs/standards/pm/data/20120614Frank.pdf. Accessed on 2 Aug 2018

  • Dingenen RV, Raes F, Putaud JP, Baltensperger U, Charron A, Facchini MC, Decesari S, Fuzzi S, Gehrig R, Hansson HC, Harrison RM, Huglin C, Jones AM, Laj P, Lorbeer G, Maenhaut W, Palmgren F, Querol X, Rodriguez S, Schneider J, Brink H, Tunved P, Torseth K, Wehner B, Weingartner E, Wiedensohler A, Wahlin P (2004) A European aerosol phenomenology—1: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ 38:2561–2577

    Article  CAS  Google Scholar 

  • Edgerton ES, Hartsell BE, Saylor RD, Jansen JJ, Hansen DA, Hidy GM (2005) The Southeastern Aerosol Research and Characterization study: part II. Filter-based measurements of fine and coarse particulate matter mass and composition. J Air Waste Manage Assoc 55:1527–1542

    Article  CAS  Google Scholar 

  • El-Zanan HS, Zielinska B, Mazzoleni LR, Hansen DA (2009) Analytical determination of the aerosol organic mass-to-organic carbon ratio. J Air Waste Manage Assoc 59(1):58–69

    Article  CAS  Google Scholar 

  • Frank NH (2006) Retained nitrate, hydrated sulfates, and carbonaceous mass in federal reference method fine particulate matter for six eastern U.S. cities. J Air Waste Manage Assoc 56(4):500–511

    Article  CAS  Google Scholar 

  • Franklin M, Koutrakis P, Schwartz J (2008) The role of particle composition on the association between PM2.5 and mortality. Epidemiology 19(5):680–689

    Article  Google Scholar 

  • Hand JJ, Schichtel BA, Malm WC, Copeland S, Molenar JV, Frank N (2014) Widespread reductions in haze across the United States from the early 1990s through 2011. Atmos Environ 94:671–679

    Article  CAS  Google Scholar 

  • Hansen DA, Edgerton ES, Hartsell BE, Jansen JJ, Kandasamy N, Hidy GM, Blanchard CL (2003) The Southeastern Aerosol Research and Characterization Study: part 1–overview. J Air Waste Manage Assoc 53:1460–1471

    Article  CAS  Google Scholar 

  • Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38:513–543

    Article  CAS  Google Scholar 

  • Hidy GM, Blanchar CL, Baumann K, Edgerton E, Tanenbaum S, Shaw S, Knipping E, Tombach I, Jansen J, Walters J (2014) Chemical climatology of the southeastern United States, 1999–2013. Atmos Chem Phys 14:11893–11914

    Article  CAS  Google Scholar 

  • Hildemann LM, Russell AG, Cass GR (1984) Ammonia and nitric acid concentration in equilibrium with atmospheric aerosols: experiment vs. theory. Atmos Environ 18(9):1737–1750

    Article  CAS  Google Scholar 

  • Holt J, Selin NE, Solomon S (2015) Changes in inorganic fine particulate matter sensitivities to precursors due to large-scale US emissions reductions. Environ Sci Technol 49(8):4834–4841

    Article  CAS  Google Scholar 

  • IPCC (2013) Climate change: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 5th edition

  • Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367

    Article  CAS  Google Scholar 

  • Landis MS, Lewis CW, Stevens RK, Keeler GJ, Dvonch JT, Tremblay RT (2007) Ft. McHenry tunnel study: source profiles and mercury emissions from diesel and gasoline powered vehicles. Atmos Environ 41:8711–8724

    Article  CAS  Google Scholar 

  • Li J, Han X, Li X, Yang J, Li X (2018) Spatiotemporal patterns of ground monitored PM2.5 concentrations in China in recent years. Int J Environ Res Public Health 15(114):1–15

    Article  CAS  Google Scholar 

  • Liu Z, Gao W, Yu Y, Hu B, Xin J, Sun Y, Wang L, Wang G, Bi X, Zhang G, Xu H, Cong Z, He J, Xu J, Wang Y (2018) Characteristics of PM2.5 mass concentrations and chemical species in urban and background areas of China: emerging results from CARE-China network. Atmos Chem Phys 18:8849–8871

    Article  CAS  Google Scholar 

  • Olszyna KJ, Bairai ST, Tanner RL (2005) Effect of ambient NH3 levels on PM2.5 compositions in the Great Smoky Mountains National Park. Atmos Environ 39(25):4593–4606

    Article  CAS  Google Scholar 

  • Paulot F, Jacob DJ (2014) Hidden cost of U.S. agricultural exports: particulate matter from ammonia emissions. Environ Sci Technol 48(2):903–908

    Article  CAS  Google Scholar 

  • Pope CA III, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56:709–742

    Article  CAS  Google Scholar 

  • Putaud JP, Raes F, Dingenen RV, Bruggemann E, Facchini MC, Decesari S, Fuzzi S, Gehrig R, Huglin C, Laj P, Lorbeer G, Maenhaut W, Mihalopoulos N, Muller K, Querol X, Rodriguez S, Schneider J, Spindler G, Brink H, Torseth K, Wiedensohler A (2004) A European aerosol phenomenology—2:chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ 38:2579–2595

    Article  CAS  Google Scholar 

  • Putaud JP, Dingenen RV, Alastuey A, Bauer H, Birmili W, Cyrys J, Flentje H, Fuzzi S, Gehrig R, Hansson HC, Harrison RM, Herrmann H, Hitzenberger R, Hüglin C, Jones AM, Kasper-Giebl A, Kiss G, Kousa A, Kuhlbusch TAJ, Löschau G, Maenhaut W, Molnar A, Moreno T, Pekkanen J, Perrino C, Pitz M, Puxbaum H, Querol X, Rodriguez S, Salma I, Schwarz J, Smolik J, Schneider J, Spindler G, Brink H, Tursic J, Viana M, Wiedensohler A, Raes F (2010) A European aerosol phenomenology–3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos Environ 44(2010):1308–1320

    Article  CAS  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Sci 294:2119–2124

    Article  CAS  Google Scholar 

  • Reid JS, Koppmann R, Eck TF, Eleuterio DP (2005) A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos Chem Phys 5:799–825

    Article  CAS  Google Scholar 

  • Saylor RD, Edgerton ES, Hartsell BE, Baumann K, Hansen DA (2010) Continuous gaseous and total ammonia measurements from the southeastern aerosol research and characterization (SEARCH) study. Atmos Environ 44:4994–5004

    Article  CAS  Google Scholar 

  • Schwartz J, Dockery DW, Neas LM (1996) Is daily mortality associated specifically with fine particles? J Air Waste Manage Assoc 46:927–939

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change. Wiley

  • Snider G, Weagle CL, Murdymootoo KK, Ring A, Ritchie Y, Stone E, Martin RV (2016) Variation in global chemical composition of PM2.5: emerging results from SPARTAN. Atmos Chem Phys 16(15):9629–9653

    Article  CAS  Google Scholar 

  • Turpin BJ, Lim HJ (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35(1):602–610

    Article  CAS  Google Scholar 

  • USEPA (2000) Guidance for data quality assessment. Available at https://www.epa.gov/sites/production/files/2015-06/documents/g9-final.pdf. Accessed 18 Mar 2018

  • USEPA (2018a) NAAQS table. Available at https://www.epa.gov/criteria-air-pollutants/naaqs-table. Accessed on 18 Mar 2018

  • USEPA (2018b) Clean Air Interstate Rule. Available at https://www.tceq.texas.gov/airquality/sip/caircamr.html. Accessed on 18 Mar 2018

  • USEPA (2018c) Cross-State Air Pollution Rule. Available at https://www.epa.gov/csapr. Accessed on 18 Mar 2018

  • Walker JT, Robarge WP, Shendrikar A, Kimball H (2006) Inorganic PM2.5 at a U.S. agricultural site. Environ Pollut 139(2):258–271

    Article  CAS  Google Scholar 

  • Wang-Li L (2015) Insights to the formation of secondary inorgarnic PM2.5: current knowledge and future needs. Int J Agric Biol Eng 8(2):1–13

    Google Scholar 

  • Weber R, Bergin M, Kiang CS, Chameides W, Orsini D, St JJ, Chang M, Bergin M, Carrico C, Lee YN, Dasgupta P, Slanina J, Turpin B, Edgerton E, Hering S, Allen G, Solomon P (2003) Short-term temporal variation in PM2.5 mass and chemical composition during the Atlanta Supersite experiment, 1999. J Air Waste Manage Assoc 53(1):84–91

    Article  CAS  Google Scholar 

  • Xie Y, Zhao B, Zhang L, Luo R (2015) Spatiotemporal variations of PM2.5 and PM10 concentrations between 31 Chinese cities and their relationships with SO2, NO2, CO and O3. Particuology 20(2015):141–149

    Article  CAS  Google Scholar 

  • Xing YF, Xu YH, Shi MH, Lian YX (2016) The impact of PM2.5 on the human respiratory system. J Thorac Dis 8(1):E69–E74

    Google Scholar 

Download references

Acknowledgments

Great thanks to Eric Edgerton from ARA, Inc. for providing the SEARCH network data.

Funding

This project was financially supported in part by the NSF Award No. CBET-1804720.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingjuan Wang-Li.

Additional information

Responsible editor: Gerhard Lammel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5858 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, B., Wang-Li, L., Meskhidze, N. et al. Spatial and temporal variations of PM2.5 mass closure and inorganic PM2.5 in the Southeastern U.S.. Environ Sci Pollut Res 26, 33181–33191 (2019). https://doi.org/10.1007/s11356-019-06437-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06437-8

Keywords

Navigation