Skip to main content

Advertisement

Log in

Emissions of selected brominated flame retardants from consumer materials: the effects of content, temperature, and timescale

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The ubiquitous presence of brominated flame retardants (BFRs) in indoor air, dust, and even in human tissue could be attributed to their emissions from BFR-containing products. Nevertheless, the emission behavior of BFRs, especially novel BFRs from consumer materials, to the indoor environment has still not been well understood. To evaluate the effects of chemical content, temperature, and time on the emissions of BFRs, we used a batch of small glass chambers to conduct emission tests on carpet, computer casings, sound insulation, circuit boards, decorative laminate, and PVC floors at temperatures from 20 to 80 °C, as well as different emission times of up to 35 days. Seven BFRs were extracted from the tested materials with contents ranging from 50 to 35,803 μg g−1, and four BFRs were detected with emission rates between 5.9 and 418 pg g−1 h−1 at room temperature (20 °C); 1,2,5,6,9,10-hexabromocyclododecane (HBCD) was considered to be the dominant compound, which was found in and could be emitted from all of the tested materials. Emission rates are significantly and positively correlated with both the contents of tested materials and the elevated temperature. These results indicate that BFR-containing products have the potential to be a major source of indoor contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdallah MAE, Harrad S, Covaci A (2008) Hexabromocyclododecanes and tetrabromobisphenol-a in indoor air and dust in Birmingham, UK: implications for human exposure. Environ Sci Technol 42:6855–6861

    Article  CAS  Google Scholar 

  • Afshari A, Gunnarsen L, Clausen PA, Hansen V (2004) Emission of phthalates from PVC and other materials. Indoor Air 14:120–128

    Article  CAS  Google Scholar 

  • Besis A, Samara C (2012) Polybrominated diphenyl ethers (PBDEs) in the indoor and outdoor environments—a review on occurrence and human exposure. Environ Pollut 169:217–229

    Article  CAS  Google Scholar 

  • Birnbaum LS, Staskal DF (2004) Brominated flame retardants: cause for concern? Environ Health Perspect 112:9–17

    Article  CAS  Google Scholar 

  • Carlsson H, Ulrika Nilsson A, Östman C (2000) Video display units: an emission source of the contact allergenic flame retardant triphenyl phosphate in the indoor environment. Environ Sci Technol 34:3885–3889

    Article  CAS  Google Scholar 

  • Covaci A, Harrad S, Abdallah MA, Ali N, Law RJ, Herzke D (2011) Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ Int 37:532–556

    Article  CAS  Google Scholar 

  • de Wit CA (2002) An overview of brominated flame retardants in the environment. Chemosphere 46:583–624

    Article  Google Scholar 

  • de Wit CA, Herzke D, Vorkamp K (2010) Brominated flame retardants in the Arctic environment—trends and new candidates. Sci Total Environ 408:2885–2918

    Article  CAS  Google Scholar 

  • Ezechiáš M, Covino S, Cajthaml T (2014) Ecotoxicity and biodegradability of new brominated flame retardants: a review. Ecotoxicol Environ Saf 110:153–167

    Article  CAS  Google Scholar 

  • Fan X, Kubwabo C, Rasmussen PE, Wu F (2016) Non-PBDE halogenated flame retardants in Canadian indoor house dust: sampling, analysis, and occurrence. Environ Sci Pollut Res 23:7998–8007

    Article  CAS  Google Scholar 

  • Fujii M, Shinohara N, Lim A, Otake T, Kumagai K, Yanagisawa Y (2003) A study on emission of phthalate esters from plastic materials using a passive flux sampler. Atmos Environ 37:5495–5504

    Article  CAS  Google Scholar 

  • Geens T, Ali N, Roosens L, Neels H, Covaci A (2010) Analytical characteristics of several new brominated flame retardants. Talanta 81:1865–1869

    Article  CAS  Google Scholar 

  • He RW, Li YZ, Xiang P, Li C, Zhou C, Zhang S, Cui XY, Ma LQ (2016) Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: bioaccessibility and risk assessment. Chemosphere 150:528–535

    Article  CAS  Google Scholar 

  • He RW, Li YZ, Xiang P, Li C, Cui XY, Ma LQ (2018) Impact of particle size on distribution and human exposure of flame retardants in indoor dust. Environ Res 162:166–172

    Article  CAS  Google Scholar 

  • Kajiwara N, Sueoka M, Ohiwa T, Takigami H (2009) Determination of flame-retardant hexabromocyclododecane diastereomers in textiles. Chemosphere 74:1485–1489

    Article  CAS  Google Scholar 

  • Kajiwara N, Takigami H (2013) Emission behavior of hexabromocyclododecanes and polybrominated diphenyl ethers from flame-retardant-treated textiles. Environ Sci Process Impacts 15:1957–1963

    Article  CAS  Google Scholar 

  • Kemmlein S, Hahn O, Jann O (2003) Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials. Atmos Environ 37:5485–5493

    Article  CAS  Google Scholar 

  • Law RJ, Covaci A, Harrad S, Herzke D, Abdallah MA, Fernie K, Toms LM, Takigami H (2014) Levels and trends of PBDEs and HBCDs in the global environment: status at the end of 2012. Environ Int 65:147–158

    Article  CAS  Google Scholar 

  • Liagkouridis I, Cequier E, Lazarov B, Cousins AP, Thomsen C, Stranger M (2016) Relationships between estimated flame retardant emissions and levels in indoor air and house dust. Indoor Air 27:650

    Article  CAS  Google Scholar 

  • Liagkouridis I, Cousins IT, Cousins AP (2014) Emissions and fate of brominated flame retardants in the indoor environment: a critical review of modelling approaches. Sci Total Environ 491–492:87–99

    Article  CAS  Google Scholar 

  • Liang S, Xu F, Tang W, Zhang Z, Zhang W, Liu L (2016) Brominated flame retardants in the hair and serum samples from an e-waste recycling area in southeastern China: the possibility of using hair for biomonitoring. Environ Sci Pollut Res 23:1–9

    Article  CAS  Google Scholar 

  • Liang W, Yang S, Yang X (2015) Long-term formaldehyde emissions from medium-density fiberboard in a full-scale experimental room: emission characteristics and the effects of temperature and humidity. Environ Sci Technol 49:10349–10356

    Article  CAS  Google Scholar 

  • Lilienthal H, Verwer CM, Lt VDV, Piersma AH, Vos JG (2008) Exposure to tetrabromobisphenol A (TBBPA) in Wistar rats: neurobehavioral effects in offspring from a one-generation reproduction study. Toxicology 246:45–54

    Article  CAS  Google Scholar 

  • Li B, Sun SJ, Huo CY, Li WL, Zhu NZ, Qi H (2016) Occurrence and fate of PBDEs and novel brominated flame retardants in a wastewater treatment plant in Harbin, China. Environ Sci Pollut Res 23:19246–19256

    Article  CAS  Google Scholar 

  • Newton S, Sellström U, de WCA (2015) Emerging flame retardants, PBDEs, and HBCDDs in indoor and outdoor media in Stockholm, Sweden. Environ Sci Technol 49:2912–2920

    Article  CAS  Google Scholar 

  • Qi H, Li WL, Liu LY, Zhang ZF, Zhu NZ, Song WW, Ma WL, Li YF (2014) Levels, distribution and human exposure of new non-BDE brominated flame retardants in the indoor dust of China. Environ Pollut 195C:1–8

    Article  CAS  Google Scholar 

  • Rauert C, Harrad S (2015) Mass transfer of PBDEs from plastic TV casing to indoor dust via three migration pathways—a test chamber investigation. Sci Total Environ 536:568–574

    Article  CAS  Google Scholar 

  • Rauert C, Harrad S, Stranger M, Lazarov B (2014a) Test chamber investigation of the volatilisation from source materials of brominated flame retardants and their subsequent deposition to indoor dust. Indoor Air 25:393–404

    Article  CAS  Google Scholar 

  • Rauert C, Lazarov B, Harrad S, Covaci A, Stranger M (2014b) A review of chamber experiments for determining specific emission rates and investigating migration pathways of flame retardants. Atmos Environ 82:44–55

    Article  CAS  Google Scholar 

  • Rüdel H, Müller J, Quack M, Klein R (2012) Monitoring of hexabromocyclododecane diastereomers in fish from European freshwaters and estuaries. Environ Sci Pollut Res 19:772–783

    Article  CAS  Google Scholar 

  • Stapleton HM, Dodder NG, Offenberg JH, Schantz MM, Wise SA (2005) Polybrominated diphenyl ethers in house dust and clothes dryer lint. Environ Sci Technol 39:925–931

    Article  CAS  Google Scholar 

  • Stapleton HM, Klosterhaus S, Eagle S, Fuh J, Meeker JD, Blum A, Webster TF (2009) Detection of organophosphate flame retardants in furniture foam and U.S. house dust. Environ Sci Technol 43:7490–7495

    Article  CAS  Google Scholar 

  • Stapleton HM, Klosterhaus S, Keller A, Ferguson PL, Bergen SV, Cooper E, Webster TF, Blum A (2011a) Identification of flame retardants in polyurethane foam collected from baby products. Environ Sci Technol 45:5323–5331

    Article  CAS  Google Scholar 

  • Stubbings WA, Harrad S (2014) Extent and mechanisms of brominated flame retardant emissions from waste soft furnishings and fabrics: a critical review. Environ Int 71:164–175

    Article  CAS  Google Scholar 

  • Sun J, Zhang A, Li F, Wang J, Liu W (2013) Levels and distribution of dechlorane plus and related compounds in surficial sediments of the Qian tang river in eastern China: the results of urbanization and tide. Sci Total Environ 443:194–199

    Article  CAS  Google Scholar 

  • Sun J, Xu Y, Zhou H, Zhang A, Qi H (2018a) Levels, occurrence and human exposure to novel brominated flame retardants (NBFRs) and dechlorane plus (DP) in dust from different indoor environments in HangZhou, China. Sci Total Environ 631-632:1212–1220

    Article  CAS  Google Scholar 

  • Sun J, Chen Q, Qian Z, Zheng Y, Yu S, Zhang A (2018b) Plant uptake and metabolism of 2,4-dibromophenol in carrot: in vitro enzymatic direct conjugation. J Agric Food Chem 66:4328–4335

    Article  CAS  Google Scholar 

  • Sun J, Wang Q, Zhuang S, Zhang A (2016) Occurrence of polybrominated diphenyl ethers in indoor air and dust in Hangzhou, China: level, role of electric appliances, and human exposure. Environ Pollut 218:942–949

    Article  CAS  Google Scholar 

  • Takigami H, Suzuki G, Hirai Y, Sakai S (2008) Transfer of brominated flame retardants from components into dust inside television cabinets. Chemosphere 73:161–169

    Article  CAS  Google Scholar 

  • Tang B, Zeng YH, Luo XJ, Zheng XB, Mai BX (2015) Bioaccumulative characteristics of tetrabromobisphenol A and hexabromocyclododecanes in multi-tissues of prey and predator fish from an e-waste site, South China. Environ Sci Pollut Res 22:12011–12017

    Article  CAS  Google Scholar 

  • Thomsen C, Stigum H, Frøshaug M, Broadwell SL, Becher G, Eggesbø M (2010) Determinants of brominated flame retardants in breast milk from a large scale Norwegian study. Environ Int 36:68–74

    Article  CAS  Google Scholar 

  • Ven LTMVD, Kuil TVD, Verhoef A, Verwer CM, Lilienthal H, Leonards PEG, Schauer U, Cantón RF, Litens S, Jong FHD (2008) Endocrine effects of tetrabromobisphenol-A (TBBPA) in Wistar rats as tested in a one-generation reproduction study and a subacute toxicity study. Toxicology 245:76

    Article  CAS  Google Scholar 

  • Viberg H, Fredriksson A, Eriksson P (2004) Neonatal exposure to the brominated flame-retardant, 2,2',4,4',5-pentabromodiphenyl ether, decreases cholinergic nicotinic receptors in hippocampus and affects spontaneous behaviour in the adult mouse. Environ Toxicol Pharmacol 17:61–65

    Article  CAS  Google Scholar 

  • Weschler CJ, Nazaroff WW (2008) Semivolatile organic compounds in indoor environments. Atmos Environ 42:9018–9040

    Article  CAS  Google Scholar 

  • Wu JP, Guan YT, Zhang Y, Luo XJ, Zhi H, Chen SJ, Mai BX (2011) Several current-use, non-PBDE brominated flame retardants are highly bioaccumulative: evidence from field determined bioaccumulation factors. Environ Int 37:210–215

    Article  CAS  Google Scholar 

  • Xu F, Liu Y, Wang J, Zhang G, Zhang W, Liu L (2015) Characterization of heavy metals and brominated flame retardants in the indoor and outdoor dust of e-waste workshops: implication for on-site human exposure. Environ Sci Pollut Res Int 22:5469–5480

    Article  CAS  Google Scholar 

  • Zhang X, Diamond ML, Ibarra C, Harrad S (2009) Multimedia modeling of polybrominated diphenyl ether emissions and fate indoors. Environ Sci Technol 43:2845–2850

    Article  CAS  Google Scholar 

  • Zhang X, Diamond ML, Robson M, Harrad S (2011) Sources, emissions, and fate of polybrominated diphenyl ethers and polychlorinated biphenyls indoors in Toronto, Canada. Environ Sci Technol 45:3268–3274

    Article  CAS  Google Scholar 

  • Zhou T, Ross DG, Devito MJ, Crofton KM (2001) Effects of short-term in vivo exposure to polybrominated diphenyl ethers on thyroid hormones and hepatic enzyme activities in weanling rats. Toxicol Sci 61:76–82

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (21577127, 21307111), the Natural Science Foundation of Zhejiang Province (LY17B070006, LY13B070009), and the State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (No. QAK201715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anping Zhang.

Additional information

Responsible editor: Constantini Samara

Electronic supplementary material

ESM 1

(DOC 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Chen, Q., Han, Y. et al. Emissions of selected brominated flame retardants from consumer materials: the effects of content, temperature, and timescale. Environ Sci Pollut Res 25, 24201–24209 (2018). https://doi.org/10.1007/s11356-018-2494-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2494-0

Keywords

Navigation