Skip to main content
Log in

Is pesticide sorption by constructed wetland sediments governed by water level and water dynamics?

  • Environmental and human health issues related to pesticides: from usage and environmental fate to impact
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Constructed wetlands (CWs) are used to reduce the pesticide inputs from tile drainage or run-off to surface water. Their effectiveness appears variable and remains to be better characterized and understood. The aim of this study was to assess the influences of two hydraulic parameters (i.e., dynamics and water level) on the sorption process occurring in CWs. Then, two solid/liquid ratios were studied (1/1 and 1/5) to mimic the water level variation in the field, and two agitation speeds were used (none and gentle agitation) to simulate different water dynamics (stagnation and flow pass, respectively). Sorption kinetics and isotherms were obtained for four pesticides with contrasting properties. The pesticide adsorption coefficients were classified as follows: boscalid (BSC) > cyproconazole (CYP) > isoproturon (IPU) ∼ dimethachlor (DMT) at any ratio or agitation, in agreement with their water solubilities and K ow values. The effect of the solid/liquid ratio was evidenced for all conditions. Indeed, the adsorption equilibrium time was reached more quickly for the 1/1 ratio (24–72 h) than for the 1/5 ratio (96–120 h). In addition, the adsorption coefficients (K f ads) were larger for the 1/1 ratio (1.8–11.2 L kg−1) than for the 1/5 ratio (1.0–5.9 L kg−1). The agitation effect was more evidenced for the 1/5 ratio and for the more hydrophobic molecules, such as BSC and CYP, for which adsorption equilibrium time was never reached with agitation (>120 h), while it was reached at 96 h without agitation. Moreover, the K f ads values were larger with agitation than without agitation for BSC and CYP, whereas they were similar for the two agitations for IPU and DMT. Our results demonstrated that the hydrodynamic function of CWs could influence pesticide sorption with variable effects according to the molecular properties and consequently influence the mitigation effect of CWs throughout the year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AFNOR (2003) Soil quality—Determination of particle size distribution of soil particles—pipette method. NF X:31–107, 20 p (in French)

  • Alvord H, Kadlec R (1995) Atrazine fate and transport in the Des Plaines Wetlands. Ecol Model 90:97–107. doi:10.1016/0304-3800(95)00150-6

    Article  Google Scholar 

  • Barriuso E, Laird DA, Koskinen WC, Dowdy RH (1994) Atrazine desorption from smectites. Soil Sci Soc Am J 58:1632–1638. doi:10.2136/sssaj1994.03615995005800060008x

    Article  CAS  Google Scholar 

  • Bobé A, Coste CM, Cooper J-F (1997) Factors influencing the adsorption of fipronil on soils. J Agric Food Chem 45:4861–4865. doi:10.1021/jf970362z

    Article  Google Scholar 

  • Bockris, JO’M and Reddy AKN (1977) Modern electrochemistry, Vol. 2, Plenum Press, New York.

  • Boesten JJ (1990) Influence of solid/liquid ratio on the experimental error of sorption coefficients in pesticide/soil systems. Pestic Sci 30:31–41. doi:10.1002/ps.2780300105

    Article  CAS  Google Scholar 

  • Boivin A, Cherrier R, Schiavon M (2005) A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils. Chemosphere 61:668–676. doi:10.1016/j.chemosphere.2005.03.024

    Article  CAS  Google Scholar 

  • Boutron O, Margoum C, Chovelon J-M, et al (2011) Effect of the submergence, the bed form geometry, and the speed of the surface water flow on the mitigation of pesticides in agricultural ditches: MITIGATION OF PESTICIDES IN AGRICULTURAL DITCHES. Water Resour Res 47:n/a-n/a. doi: 10.1029/2011WR010378

  • Bromilow R, De Carvalho R, Evans A, Nicholls P (2006) Behavior of pesticides in sediment/water systems in outdoor mesocosms. J Environ Sci Health B 41:1–16. doi:10.1080/03601230500234844

    Article  CAS  Google Scholar 

  • Calvet, R, Barriuso E, Bedos C, Benoit P, Charnay M-P (2005) Coquet Y. Transportation phenomena. In Pesticides in soil: agronomic and environmental consequences. Lieu de publication : Éditions France Agricole p. 335–339 (in French)

  • Cooke CM, Shaw G, Collins CD (2004) Determination of solid–liquid partition coefficients (Kd) for the herbicides isoproturon and trifluralin in five UK agricultural soils. Environ Pollut 132:541–552. doi:10.1016/j.envpol.2004.04.027

  • Cox L, Hermosin MC, Cornejo J (1993) Adsorption of methomyl by soils of Southern Spain and soil components. Chemosphere 27:837–849. doi:10.1016/0045-6535(93)90015-W

    Article  CAS  Google Scholar 

  • Dollinger J, Dagès C, Voltz M (2015) Glyphosate sorption to soils and sediments predicted by pedotransfer functions. Environ Chem Lett 13:293–307. doi:10.1007/s10311-015-0515-5

    Article  CAS  Google Scholar 

  • El Arfaoui A, Sayen S, Paris M et al (2012) Is organic matter alone sufficient to predict isoproturon sorption in calcareous soils? Sci Total Environ 432:251–256. doi:10.1016/j.scitotenv.2012.05.066

    Article  CAS  Google Scholar 

  • Farenhorst A, McQueen DAR, Saiyed I et al (2009) Variations in soil properties and herbicide sorption coefficients with depth in relation to PRZM (pesticide root zone model) calculations. Geoderma 150:267–277. doi:10.1016/j.geoderma.2009.02.002

    Article  CAS  Google Scholar 

  • Fernández-Bayo JD, Nogales R, Romero E (2008) Evaluation of the sorption process for imidacloprid and diuron in eight agricultural soils from southern Europe using various kinetic models. J Agric Food Chem 56:5266–5272. doi:10.1021/jf8004349

    Article  CAS  Google Scholar 

  • Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London. doi:10.1002/bbpc.19820861019

    Article  Google Scholar 

  • Gregoire C, Elsaesser D, Huguenot D et al (2009) Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Environ Chem Lett 7:205–231. doi:10.1007/s10311-008-0167-9

    Article  CAS  Google Scholar 

  • Grover R, Hance RJ (1970) Effect of ratio of soil to water on adsorption of linuron and atrazine. Soil Sci 109:136–138

    Article  CAS  Google Scholar 

  • Haarstad K, Braskerud BC (2005) Pesticide retention in the watershed and in a small constructed wetland treating diffuse pollution. Water Sci Technol 51:143–150. doi:10.1080/03067310500247470

    Article  CAS  Google Scholar 

  • ISO 10390 (2005) Soil quality—determination of pH. 7 p

  • ISO 10693 (1995) Soil quality—determination of carbonate content—volumetric method 7 p

  • ISO 10694, (1995) Soil quality—determination of organic and total carbon after dry combustion (elementary analysis) 7 p

  • ISO 13878 (1998) Soil quality—determination of total nitrogen content by dry combustion ("elemental analysis") 5 p

  • ISO 22036 (2008) Soil quality—determination of trace elements in extracts of soil by inductively coupled plasma—atomic emission spectrometry (ICP - AES) 34 p.

  • ISO 23470 (2007) Soil quality—determination of effective cation exchange capacity (CEC) and exchangeable cations using a hexamminecobalt trichloride solution 16 p.

  • Kah M, Brown CD (2007) Changes in pesticide adsorption with time at high soil to solution ratios. Chemosphere 68:1335–1343. doi:10.1016/j.chemosphere.2007.01.024

    Article  CAS  Google Scholar 

  • Langeron J, Blondel A, Sayen S et al (2014) Molecular properties affecting the adsorption coefficient of pesticides from various chemical families. Environ Sci Pollut Res 21:9727–9741. doi:10.1007/s11356-014-2916-6

    Article  CAS  Google Scholar 

  • Lewis KA, Tzilivakis J, Warner D, Green A (2016) An international database for pesticide risk assessments and management. Hum Ecol Risk Assess: Int J 22(4):1050–1064. doi:10.1080/10807039.2015.1133242

    Article  CAS  Google Scholar 

  • Maillard E, Imfeld G (2014) Pesticide mass budget in a stormwater wetland. Environ SciTechnol 48:8603–8611. doi:10.1021/es500586x

    Article  CAS  Google Scholar 

  • Margoum C (2003) Contribution to the study of the fate of phytosanitary products when flowing in ditches: physicochemical and hydrodynamic characterization. University Joseph Fourier. 282 p, Doctoral thesis. Environnment and Health. Grenoble (in French)

  • Margoum C, Malessard C, Gouy V (2006) Investigation of various physicochemical and environmental parameter influence on pesticide sorption to ditch bed substratum by means of experimental design. Chemosphere 63:1835–1841. doi:10.1016/j.chemosphere.2005.10.032

    Article  CAS  Google Scholar 

  • Miller JC, Miller JN (1988) Statistics for analytical chemistry. Wiley, New York. doi:10.1039/AN9881301351

    Article  Google Scholar 

  • Moeys J, Bergheaud V, Coquet Y (2011) Pedotransfer functions for isoproturon sorption on soils and vadose zone materials. Pest Manag Sci 67:1309–1319. doi:10.1002/ps.2187

    Article  CAS  Google Scholar 

  • Moore MT, Bennett ER, Cooper CM et al (2001) Transport and fate of atrazine and lambda-cyhalothrin in an agricultural drainage ditch in the Mississippi Delta, USA. Agric Ecosyst Environ 87:309–314. doi:10.1016/S0167-8809(01)00148-7

    Article  CAS  Google Scholar 

  • Mukherjee S, Weihermüller L, Tappe W et al (2016) Sorption–desorption behaviour of bentazone, boscalid and pyrimethanil in biochar and digestate based soil mixtures for biopurification systems. Sci Total Environ 559:63–73. doi:10.1016/j.scitotenv.2016.03.145

    Article  CAS  Google Scholar 

  • Passeport E, Benoit P, Bergheaud V et al (2011) Selected pesticides adsorption and desorption in substrates from artificial wetland and forest buffer. Environ Toxicol Chem 30:1669–1676. doi:10.1002/etc.554

    Article  CAS  Google Scholar 

  • Reichenberger S, Bach M, Skitschak A, Frede H-G (2007) Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; a review. Sci Total Environ 384:1–35. doi:10.1016/j.scitotenv.2007.04.046

    Article  CAS  Google Scholar 

  • SOeS (2015) Pesticides in water, http://www.statistiques.developpement-durable.gouv.fr/lessentiel/ar/246/0/respect-normes-pesticides-cours-deau.html. Accessed 20 May 2016. (in French)

  • Sui Y, Thompson ML (2000) Phosphorus sorption, desorption, and buffering capacity in a biosolids-amended mollisol. Soil Sci Soc Am J 64:164–169. doi:10.2136/sssaj2000.641164x

    Article  CAS  Google Scholar 

  • Tournebize J, Vincent B, Chaumont C et al (2011) Ecological services of artificial wetland for pesticide mitigation socio-technical adaptation for watershed management through TRUSTEA project feedback. Procedia Environ Sci 9:183–190. doi:10.1016/j.proenv.2011.11.028

    Article  CAS  Google Scholar 

  • Vallée R, Dousset S, Billet D, Benoit M (2014) Sorption of selected pesticides on soils, sediment and straw from a constructed agricultural drainage ditch or pond. Environ Sci Pollut Res 21:4895–4905. doi: 10.1007/s11356-013-1840-5

  • Vallée R, Dousset S, Billet D (2015a) Water residence time and pesticide removal in pilot-scale wetlands. Ecol Eng 85:76–84. doi:10.1016/j.ecoleng.2015.09.040

    Article  Google Scholar 

  • Vallée R, Dousset S, Schott F-X et al (2015b) Do constructed wetlands in grass strips reduce water contamination from drained fields? Environ Pollut 207:365–373. doi:10.1016/j.envpol.2015.09.027

    Article  CAS  Google Scholar 

  • Vymazal J, Březinová T (2015) The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environ Int 75:11–20. doi:10.1016/j.envint.2014.10.026

    Article  CAS  Google Scholar 

  • Walker A, Jurado-Exposito M (1998) Adsorption of isoproturon, diuron and metsulfuron-methyl in two soils at high soil:solution ratios. Weed Res 38:229–238. doi:10.1046/j.1365-3180.1998.00087

    Article  CAS  Google Scholar 

  • Ying G-G, Williams B (2000) Laboratory study on the interaction between herbicides and sediments in water systems. Environ Pollut 107:399–405

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research received financial support from the Agence de l’Eau Rhin Meuse, the BRGM, the University of Lorraine, the Fonds européens de développement regional (FEDER) and the Zone Atelier du Bassin de la Moselle. The authors thank the Agence de l’Eau Rhin Meuse and the BRGM for the fellowship. The authors also thank A. Razafitianamaharavo (LIEC, Nancy) for her helpful laboratory work and the farmers and R. Cherrier and F.X. Schott (Chambre Régional d’Agriculture du Grand Est) for field access.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Gaullier.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(PDF 2082 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaullier, C., Dousset, S., Billet, D. et al. Is pesticide sorption by constructed wetland sediments governed by water level and water dynamics?. Environ Sci Pollut Res 25, 14324–14335 (2018). https://doi.org/10.1007/s11356-017-9123-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9123-1

Keywords

Navigation