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We revisit a singular value decomposition (SVD) algorithm given in Chen et al. (Psychometrika
84:124–146, 2019b) for exploratory item factor analysis (IFA). This algorithmestimates amultidimensional
IFA model by SVD and was used to obtain a starting point for joint maximum likelihood estimation in
Chen et al. (2019b). Thanks to the analytic and computational properties of SVD, this algorithm guarantees
a unique solution and has computational advantage over other exploratory IFA methods. Its computational
advantage becomes significant when the numbers of respondents, items, and factors are all large. This
algorithm can be viewed as a generalization of principal component analysis to binary data. In this note,
we provide the statistical underpinning of the algorithm. In particular, we show its statistical consistency
under the same double asymptotic setting as in Chen et al. (2019b).We also demonstrate how this algorithm
provides a scree plot for investigating the number of factors and provide its asymptotic theory. Further
extensions of the algorithm are discussed. Finally, simulation studies suggest that the algorithm has good
finite sample performance.

Key words: exploratory item factor analysis, IFA, singular value decomposition, double asymptotics,
generalized PCA for binary data.

1. Background

Exploratory IFA (Bock et al. 1988) has been widely used for analyzing item-level data in
social and behavioral sciences (Bartholomew et al. 2008).We consider a standard exploratory IFA
setting for binary item response data. Let Yi j ∈ {0, 1} be a random variable, denoting individual
i’s response to item j , where i = 1, . . . , N , and j = 1, . . . , J . Moreover, IFA assumes that an
individual i’s responses are driven by K latent factors, denoted by θ i = (θi1, . . . , θi K )�. We
consider a general family of multidimensional IFA models (Reckase 2009), which assumes that

Pr(Yi j = 1|θ i ) = f (d j + a�
j θ i ), (1)

where a j = (a j1, . . . , a jK )� is typically known as the loading parameters, d j is an intercept
parameter, and f : R �→ (0, 1) is a pre-specified monotone increasing function which guarantees
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(1) to be a valid probability. Using the terminology from generalized linear models, f is called
the inverse link function. Note that (1) includes the widely used multidimensional two-parameter
logistic (M2PL) model and multidimensional normal ogive model as special cases, for which
f (x) = exp(x)/(1 + exp(x)) and f (x) = ∫ x

−∞ exp(−t2/2)/(2π)dt , respectively. Moreover, we
assume local independence; that is, Yi1,…, Yi J are conditionally independent given θ i . Finally,
θ i , i = 1, . . . , N , are independent and identically distributed, following an unknown distribution
F .

Amajor focus of exploratory IFA is to estimate the loadingmatrix A = (a jk)J×K , which helps
to understand the latent structure underlying the set of items. It is worth noting that the loading
matrix can only be recovered up to an oblique rotation (Browne 2001).1 That is, model (1) will
remain unchanged, with a rotated loading vector ã j = O�a j and θ̃ i = O−1θ i , where O is an
K × K invertible matrix that is also known as an oblique rotation. Recognizing the rotational
indeterminacy issue, exploratory IFA typically proceeds in two steps. In the first step, an estimate
Â is obtained, using an arbitrary way to fix the rotation. Then in the second step, analytic rotational
methods are applied to Â to obtain a more sparse loading matrix for better interpretability.

An analytic rotation finds a rotation matrix O such that ÂO minimizes a certain “complexity
function,” where a lower value of the complexity function indicates more sparsity in the loading
matrix (see Browne 2001, for a review of analytic rotations). It implicitly assumes that the true
loading matrix has a sparse pattern; i.e., each item is only directly associated with a small number
of factors.

In this note, we focus on the first step of exploratory IFA. In particular, we study an estimator
given in Chen et al. (2019b) that is based on SVD. Compared to other estimators, this estimator is
computationally much faster and does not suffer from convergence issues. It was used to obtain a
starting point for a constrained joint maximum likelihood estimator (CJMLE). Simulation studies
showed that the convergence of CJMLE can be improved by using the SVD-based estimator as a
starting point. Moreover, this SVD-based estimator itself is reasonably accurate when both N and
J are large. Thus, it can be used not only as a starting point for the CJMLE, but also as a quick and
high-quality solution to large-scale exploratory IFA problems. In what follows, we investigate the
statistical properties of this estimator.

2. Main Results

SVD-Based Estimator We restate this SVD-based algorithm below.2

Algorithm 1. (SVD-based estimator for exploratory IFA)

1. Input response Y = (yi j )N×J , the number of factors K , inverse link function f , and
truncation parameter εN ,J > 0.

2. Apply the singular value decomposition to Y and obtain Y = ∑J
j=1 σ ju jv�

j , where
σ1 ≥ · · · ≥ σJ ≥ 0 are the singular values, and u j s and v j s are left and right singular
vectors, respectively.

3. Let X = (xi j )N×J = ∑K̃
k=1 σkukv�

k , where K̃ = max
{
K + 1, argmax

k
{σk ≥

1.01
√
N }}.

1We only discuss oblique rotation here, as our general exploratory IFA model does not require the factors to be
uncorrelated. If the factors are further required to be uncorrelated, then the loading matrix can be recovered up to an
orthogonal rotation, for which the rotation matrix O is an orthogonal matrix (e.g., Kaiser 1958).

2The original algorithm was described in the supplementary material of Chen et al. (2019b). The algorithm here is a
slightly modified version. The major modification is in Step 3 of the algorithm that requires at least K + 1 singular values
to be retained. This modification can improve the finite-sample performance of the algorithm; see Remark 4 for more
discussions. The other modifications are mainly to simplify the exposition of the algorithm.
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4. Let X̂ = (x̂i j )N×J be defined as

x̂i j =

⎧
⎪⎨

⎪⎩

εN ,J , if xi j < εN ,J ,

xi j , if εN ,J ≤ xi j ≤ 1 − εN ,J ,

1 − εN ,J , if xi j > 1 − εN ,J .

5. Let M̃ = (m̃i j )N×J , where m̃i j = f −1(x̂i j ).
6. Let d̂ = (d̂1, . . . , d̂J ), where d̂ j = (

∑N
i=1 m̃i j )/N.

7. Apply singular value decomposition to M̂ = (m̃i j − d̂ j )N×J to have M̂ =
∑J

j=1 σ̂ j û j v̂�
j , where σ̂1 ≥ · · · ≥ σ̂J ≥ 0 are the singular values, and û j s and v̂ j s are

the left and right singular vectors, respectively.
8. Output Â = 1√

N
(σ̂1v̂1, . . . , σ̂K v̂K ), �̂ = √

N (û1, . . . , ûK ).

Remark 1. SVD is a powerful tool for the factorization of rectangular matrices that has been
widely used in multivariate statistics for the dimension reduction in data (Wall et al. 2003).
Thanks to the mathematical properties of SVD, the estimator given by Algorithm 1 is analytic
that does not suffer from convergence issues. On the other hand, as the objective functions of the
CJMLE and the marginal maximum likelihood estimator (MMLE; Bock and Aitkin 1981) are
nonconvex, there is no guarantee for finding their global optima. In addition, this SVD approach
is also much faster than the other estimators, including the CJMLE and MMLE. In particular,
the computation of the MMLE based on the vanilla expectation maximization algorithm is not
affordable when the latent dimension K is of a moderate size (e.g., K ≥ 5). Even the stochastic
algorithms for theMMLE (Cai 2010a; 2010b; Zhang et al. 2020) and the alternating minimization
algorithm for the CJMLE (Chen et al. 2019b; 2019c) are much slower than the SVD algorithm,
as these algorithms typically need a large number of iterations to converge. A speed comparison
is provided in the simulation study between the SVD method and the CJMLE.

Remark 2. Algorithm 1 can be viewed as a generalization of PCA to binary data. PCA is an
SVD-based algorithm (e.g., Chapter 14, Friedman et al. 2001) that is fast and commonly used
for exploratory linear factor analysis. Unfortunately, PCA cannot be applied to exploratory IFA,
due to the nonlinear link function in IFA models. Unlike PCA which applies SVD only once,
Algorithm 1 applies SVD twice. The first application of SVD and the inverse transformation
(Steps 2–5) denoise and linearize the data. Then, the second application of SVD (Steps 6–7) is
essentially doing PCA to the linearized data.

Remark 3. Similar as the CJMLE (Chen et al. 2019b; 2019c), this SVD-based estimator does
not require the latent distribution F to be known or to take a parametric form as is required in
the MMLE approach. Moreover, exploratory IFA based on tetrachoric/polychoric correlations
(Muthén 1984; Lee et al. 1990; Lee et al. 1992; Jöreskog 1994) or composite-likelihood-based
estimator (Katsikatsou et al. 2012) requires F to be multivariate normal, with the former approach
further requiring the inverse link f to be probit. In this sense, the SVD-based estimator and the
CJMLE require less model assumptions than the other estimators. As a price, their consistency
requires stronger conditions, specifically, a double asymptotic regimewhere both N and J diverge.

Remark 4. Steps 2–4 of the algorithm essentially follow the same procedure of Chatterjee (2015)
for matrix estimation. We thus refer the readers to Chatterjee (2015) for the details. A small
difference is that we require K̃ ≥ K + 1 in Step 3 of the algorithm. This modification does
not affect the asymptotic behavior of the estimator. However, it can improve the finite-sample
performance when N and J are not large enough. Intuitively, we need K̃ to be at least K + 1, in
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order to recover the matrix (d j + a�
j θ i )N×J which is of rank K + 1. The constant 1.01 in Step

3 of the algorithm follows Theorem 1.1 of Chatterjee (2015), which makes use of the fact that
Var(Yi j ) ≤ 1/4. This constant can be replaced by any fixed constant in the open interval (1, 1.5),
without affecting its consistency given in Theorem 1. We set it to be 1.01, because according to
Theorem 1.1 of Chatterjee (2015) this constant should be chosen close to 1 for better accuracy.

Remark 5. The truncation step (Step 4) is necessary, as it guarantees the existence of a solution.
This is because, even though xi j in Step 3 is approximating the true probability Pr(Yi j = 1), it is
not guaranteed to be in the interval (0, 1). As a consequence, f −1(xi j ) may not be well defined.
The pre-specified truncation parameter εN ,J > 0 determines the truncation level. As shown in
the sequel, the choice of εN ,J affects the statistical consistency of the proposed algorithm. Under
certain circumstances, we will need the truncation parameter εN ,J to decay to zero as N and
J grow to infinity, which is why we attach subscripts N and J to the truncation parameter. In
practice, the performance of the proposed method tends to be insensitive to the choice of εN ,J

when it is chosen sufficiently small, which is justified theoretically by Propositions 1 and 2, under
two specific settings. In the numerical analysis of this paper, we use εN ,J = 10−4 as a default
value.

Statistical Consistency In what follows, we establish the theoretical consistency of this method. In
particular, we show that this SVD-based algorithm is consistent under similar asymptotic setting
and notion of consistency as in Chen et al. (2019b) and Chen et al. (2019c). The proofs of our
theoretical results are given in the supplementary material. More precisely, we consider a loss
function on the recovery of the true loading matrix A∗ = (a∗

jk)J×K up to an oblique rotation

LN ,J (A
∗, Â) = min

O∈RK×K

{
‖A∗ − ÂO‖2F

J K

}

, (2)

where the subscripts N and J are used to emphasize that the loss function depends on the sample

size N and the number of items J , and ‖X‖F =
√∑

i
∑

j x
2
i j denotes the Frobenius norm of a

matrix X = (xi j ). Under mild technical conditions and a double asymptotic setting where both N
and J grow to infinity,we show that the loss function LN ,J (A∗, Â) converges to zero in probability.
The regularity conditions and the consistency result are formally described in Theorem 1, with two
special cases discussed in the sequel. Similar double asymptotic settings have been considered in
psychometric research, including the analyses of unidimensional IRT models (Haberman 1977;
2004) and diagnostic classification models (Chiu et al. 2016). The following regularity conditions
are needed for our main result in Theorem 1. As will be discussed in the sequel, these conditions
are mild.

A1. There exists a constant C such that
√

(d∗
j )

2 + ‖a∗
j‖2 ≤ C , for j = 1, . . . , J , where d∗

j

and a∗
j are the true item parameters.

A2. The true person parameters θ∗
1, . . . , θ

∗
N are independent and identically distributed

(i.i.d.) following a distribution F which has mean 0 and positive definite covariance
matrix �.

A3. The inverse link function f is strictly monotone increasing, continuously differentiable,
and Lipschitz continuous with Lipschitz constant L . We further assume that

lim
x→−∞ f (x) = 0, and lim

x→∞ f (x) = 1.
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A4. There exists a constant C1, such that the K th singular value of A∗, denoted by σK (A∗),
satisfies σK (A∗) ≥ C1

√
J for all J .

A5. The sample size N is no less than the number of items J , i.e., N ≥ J .

Theorem 1. Suppose that conditions A1–A5 are satisfied. Further suppose that εN ,J ≤ 1
5 and

satisfies

Pr
(‖θ∗

1‖ ≥ h(2εN ,J )/C
) = o(N−1), (3)

(h(2εN ,J ))
K+1
K+3

(εN ,J g(εN ,J ))2
= o(J

1
K+3 ), (4)

where

h(y) = max{| f −1(y)|, | f −1(1 − y)|}, y ∈ (0, 0.5), (5)

g(y) = inf{ f ′(x) : x ∈ [ f −1(y), f −1(1 − y)]}, y ∈ (0, 0.5). (6)

Then, the estimate Â given by Algorithm 1 satisfies LN ,J (A∗, Â)
pr→ 0, as N , J → ∞.

Remark 6. We remark that the notion of consistency for the estimation of the loading matrix is
weaker than that in the traditional sense, since the loss function (2) is an average of the entrywise
losses when J grows. Let Õ minimize the right-hand side of (2), and let Ã := (ã jk)J×K =
ÂÕ . Then, (2) converges to 0 means that for any ε > 0, (

∑J
j=1

∑K
k=1 1{|a∗

jk−ã jk |>ε})/J K also
converges to 0. That is, the proportion of inaccurately estimated loading parameters converges to
zero in probability under the optimal rotation. Due to the double asymptotic setting, our theoretical
result only suggests the sensible use of the SVD-based algorithm when the sample size N and the
number of items J are both large.

Remark 7. It has been well understood that PCA can consistently estimate a linear factor model
under a similar double asymptotic setting (Stock andWatson 2002), which provides the theoretical
justification for the use of PCA in exploratory linear factor analysis. Theorem 1 can be viewed as
a similar result for exploratory item factor analysis.

Remark 8. We provide some discussions on the regularity conditions required in Theorem 1.
Assumption A1 requires that the parameters of each item, including the intercept and slope
parameters, should not be too large. That is, the presence of an extreme item is likely to distort
the analysis. Assumption A2 is a very standard assumption in exploratory IFA. It is more flexible
than many exploratory IFA settings, as it does not require the distribution F to be multivariate
normal.

Assumption A3 is satisfied by the logistic and probit link functions, two most commonly
used link functions in exploratory IFA, but it excludes, for example, the multidimensional version
of the three-parameter logistic model, as a special case. Assumption A4 requires that there is
sufficient variability in the items. The same assumption is also required in Chen et al. (2019b)
and Chen et al. (2019c). In fact, this assumption is satisfied with probability tending to one, when
the true loadings a∗

j are i.i.d. samples from a K -variate distribution whose covariance matrix is
non-degenerate. Finally, assumption A5 is practically reasonable, as in large-scale measurement,
the sample size is usually larger than the number of items. Since people and items are almost
mathematically symmetric in the IFA model, similar asymptotic results can be derived when
J ≥ N .
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Remark 9. We further provide some intuitions on the reason why the algorithm works. Steps 2–4
essentially follow the same procedure of Chatterjee (2015) for matrix estimation. The procedure
guarantees the loss

∑
i, j ( f (d

∗
j + (a∗

j )
�θ∗

i ) − x̂i j )2/(N J ) to be smallwith high probability, where
d∗
j and a∗

j denote the true item-specific parameters and θ∗
i denotes the true person parameters

sampled from distribution F . Further with conditions A1 and A3, Steps 5 and 6 guarantee the
average loss

∑N
i=1

∑J
j=1((a

∗
j )

�θ∗
i − â�

j θ̂ i )
2/(N J ) to be small with high probability. Finally,

under conditions A2 and A4, the famous Davis–Kahan–Wedin theorem from matrix perturbation
theory (see e.g., Stewart and Sun 1990; O’Rourke et al. 2018) guarantees that LN ,J (A∗, Â) is
small with high probability.

Remark 10. Equations (3) and (4) are requirements on the truncation parameter εN ,J , which
depends on both the tail of distribution F and the properties of the inverse link function. Roughly
speaking, Equation (3) is saying that εN ,J cannot be too large. This is because, given F and f ,
the probability in (3) is increasing in εN ,J . Requiring the probability being o(N−1) implies that
εN ,J cannot be large. This requirement is intuitive, because M̃ can be a poor approximation to
M∗ = (m∗

i j )N×J := (d∗
j + (a∗

j )
�θ∗

i )N×J , when many entries of M∗ are larger than h(εN ,J ). The
function h(·) transforms the truncation on xi j to a truncation on m̃i j . Using h(2εN ,J ) instead of
h(εN ,J ) is for technical reasons.

Equation (4) requires that εN ,J cannot be too small, as the left-hand side of (4) is decreasing
in εN ,J . This requirement is also intuitive. Note that |m̃i j | ≤ h(εN ,J ), where h(εN ,J ) is decreasing
in εN ,J . Therefore, a sufficiently large choice of εN ,J avoids the approximation error ‖M̃−M∗‖F
being too large when there exist some extreme estimates m̃i j . Function g(·) measures the local
flatness of the inverse link f . The true matrix M∗ is more difficult to estimate when g(εN ,J ) is
smaller. This is because |m̃i j − m∗

i j | can be large, even when |x̂i j − f (m∗
i j )| is small, due to the

local flatness of the inverse link function.

Remark 11. We take a stochastic design for the true person parameters and a fixed design for the
true item parameters, following the convention of item factor analysis (e.g., Bartholomew et al.
2008). It is worth pointing out that whether taking a stochastic or fixed design is not essential
under our double asymptotic regime. For example, the consistent result of Theorem 1 still holds,
if we can replace condition A2 by a corresponding fixed design as in Chen et al. (2019b).

Following the discussion on εN ,J in Remark 10, we consider two concrete settings under
which the requirement on εN ,J becomes more specific. These results are given in Propositions 1
and 2.

Proposition 1. Suppose that F has a compact support. More precisely, there exists a constant
C0, satisfying

Pr(‖θ∗
1‖ ≥ C0) = 0,

under the law of F. If we fix εN ,J to be a constant ε independent of N and J , satisfying

0 < ε ≤ 1

2
min

{

1 − f

(

C
√
C2
0 + 1

)

, f

(

−C
√
C2
0 + 1

)

,
2

5

}

, (7)

then (3) and (4) are satisfied. This choice of εN ,J , together with the regularity conditions in
Theorem 1, guarantees LN ,J (A∗, Â) to converge to zero in probability.



364 PSYCHOMETRIKA

Proposition 2. Consider exploratory IFA based on the M2PL model, where F is a multivariate
sub-Gaussian distribution3 and f is the logistic link. Suppose that there exists a constant β ≥ 1
such that

J ≤ N ≤ Jβ. (8)

Then,
(3) and (4) hold, for any εN ,J taking the form

εN ,J = γ0 J
−γ1 , (9)

where γ0 and γ1 are any constants satisfying γ0 > 0 and γ1 ∈ (0, (4(K + 3))−1). The choice of
εN ,J following (9), together with the regularity conditions in Theorem 1, guarantees LN ,J (A∗, Â)

to converge to zero in probability.

According to the result of Proposition 1, it suffices to choose εN ,J as a sufficiently small
positive constant, when F has a bounded support. Under the setting of Proposition 2, to ensure
consistency, one has to let εN ,J decay to zero at an appropriate rate. Note that even in the second
setting where the support of F is unbounded, εN ,J is almost like a constant, as it decays to zero
very slowly when J grows. These results suggest that we may choose εN ,J to be a sufficiently
small constant in practice.
On the Choice of K In the previous discussion, the number of factors K is assumed to be known.
In practice, however, this information is often unknown and an important task in exploratory IFA
is to determine the number of factors based on data. When conducting exploratory linear factor
analysis, one typically gains the first idea by examining the scree plot from principal component
analysis. Thanks to the connection between Algorithm 1 and PCA as discussed in Remark 2, a
similar scree plot is available from the current method.

The scree plot is produced as follows. We first run Algorithm 1, but replace the unknown K
in Step 1 of the algorithm by a reasonably large number K †. Then, a scree plot can be obtained by
plotting σ̂k in a descending order, for σ̂ks produced by Step 7 of Algorithm 1. Figure 1 shows such
a scree plot, for which the data are generated from a five-factor model (K = 5) with J = 200
and N = 4000, and the input number of factors is set to be K † = 10 in Step 1 of the algorithm.
Unsurprisingly, an obvious gap is observed between σ̂5 and σ̂6. In fact, when data follow an IFA
model, such a gap in the singular values is guaranteed to exist asymptotically, no matter what the
input dimension is. In practice, the latent dimension K can be chosen by identifying the singular
value gap from the scree plot.

Theorem 2. Under the same conditions as Theorem 1 and when the input dimension K † in
Algorithm 1 is set fixed (i.e., independent of N and J) but not necessarily equal to the true
number of factors, there exists a constant δ > 0 such that for the true number of factors K ,

lim
N ,J→∞Pr

(
σ̂K√
N J

> δ

)

= 1, and
σ̂K+1√
N J

pr→ 0,

as N and J grow to infinity simultaneously.

3We say the distribution of a K-variate random vector θ is sub-Gaussian, if there exist constants b1, b2 > 0 such that

for any u ∈ R
K , ‖u‖ = 1 and t > 0, Pr(|u�θ | > t) ≤ b1e

−b2t
2
. In particular, the multivariate normal distribution is

sub-Gaussian.
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Figure 1.
A scree plot for choosing the number of factors. The y-axis shows the standardized singular values σ̂k/

√
N J , where σ̂ks

are obtained from Step 7 of Algorithm 1. The data are simulated from an IFAmodel with K = 5, J = 200, and N = 4000.
The input dimension is set to be 10 in Algorithm 1. A singular value gap can be found between the 5th and 6th singular
values

Remark 12. As shown in the proof, the input dimension K † does not affect the asymptotics, as
long as it does not grow with N and J . However, for relatively small N and J , X obtained in
Step 3 of the algorithm may not reserve enough information when the input dimension is smaller
than K + 1, which may lead to an underestimation of the number of factors. Thus, in practical
applications, we recommend to choose the input dimension to be slightly larger than themaximum
number of factors one suspects to exist in the data.

Statistical Efficiency We further point out that a price is paid for the computational advantage of
the SVD-based estimator. To elaborate on this point, we compare it with the CJMLE (Chen et al.
2019b; 2019c). The CJMLE treats both item parameters and latent factors as fixed parameters and
maximizes a joint likelihood function with respect to all the fixed parameters. The SVD-based
estimator is statistically less efficient than the CJMLE, in the sense that the SVD-based estimator
converges to the true parameters in a much slower rate. To make this comparison, we consider the
same setting as in Proposition 1. The following proposition establishes the convergence rate for
‖X∗ − X̂‖2F/N J, which determines the convergence of Â. Here, X∗ = ( f (d∗

j + a∗
j (θ

∗
i )

�))N×J

is the true item response probability matrix.

Proposition 3. Suppose that the same assumptions as in Proposition 1 hold and choose εN ,J as
in Proposition 1. Then, we have

1

N J
‖X∗ − X̂‖2F = Op(J

− 1
K+2 ). (10)

On the other hand, as shown in Chen et al. (2019c), the CJMLE achieves the optimal rate (in
minimax sense) for estimating X∗, that is, ‖X∗ − X̂ JML‖2F/(N J ) = Op(J−1), where X̂ JML

denotes the CJMLE. This result suggests that the SVD-based estimator converges in a much
slower rate than the CJMLE.

3. Extensions

Dealing with Missing DataWith slight modification, Algorithm 1 can handle item response data
with missing values. We use matrix W = (wi j )N×J to indicate the data nonmissingness, where
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wi j = 1 indicates the response Yi j is not missing and wi j = 0 otherwise. The modified algorithm
is described as follows.

Algorithm 2. (SVD-based estimator for exploratory IFA with missing data)

1. Input nonmissing indicator W = (wi j )N×J , nonmissing responses {yi j : wi j = 1, i =
1, . . . , N , j = 1, . . . , J }, the number of factors K , inverse link function f , and trunca-
tion parameter εN ,J > 0.

2. Compute p̂ = (
∑N

i=1
∑J

j=1 wi j )/(N J ) as the proportion of observed responses.
3. For each i and j , let zi j = yi j , if wi j = 1, and zi j = 0 if wi j = 0.
4. Apply the singular value decomposition to Z to obtain Z = ∑J

j=1 σ ju jv�
j , where

σ1 ≥ · · · ≥ σJ ≥ 0 are the singular values and u j s and v j s are left and right singular
vectors, respectively.

5. Let

X = (xi j )N×J = 1

p̂

K̃∑

k=1

σkukv�
k ,

where K̃ = max
{
K + 1, argmax

k
{σk ≥ 1.01

√
N ( p̂ + 3 p̂(1 − p̂))}}.

6. Let X̂ = (x̂i j )N×J be defined as

x̂i j =

⎧
⎪⎨

⎪⎩

εN ,J , if xi j < εN ,J ,

xi j , if εN ,J ≤ xi j ≤ 1 − εN ,J ,

1 − εN ,J , if xi j > 1 − εN ,J .

7. Let M̃ = (m̃i j )N×J , where m̃i j = f −1(x̂i j ).
8. Let d̂ = (d̂1, . . . , d̂J ), where d̂ j = (

∑N
i=1 m̃i j )/N.

9. Apply singular value decomposition to M̂ = (m̃i j − d̂ j )N×J to have M̂ =
∑J

j=1 σ̂ j û j v̂�
j , where σ̂1 ≥ · · · ≥ σ̂J ≥ 0 are the singular values and û j s and v̂ j

are the left and right singular vectors, respectively.
10. Output Â = 1√

N
(σ̂1v̂1, . . . , σ̂K v̂K ), �̂ = √

N (û1, . . . , ûK ).

Remark 13. It is easy to see that p̂ = 1 when there is no missing data. In that case, Algorithm 2
becomes exactly the same as Algorithm 1. Steps 2–5 essentially follow the same procedure
of Chatterjee (2015) for matrix completion, and the rest of the steps are the same as those in
Algorithm 1. Specifically, missing data are first imputed by zero in Step 3 of the algorithm. The
bias brought by the simple imputation procedure is corrected in Step 5, by multiplying the factor
1/ p̂. Similar toAlgorithm 1, the choice of K̃ in Step 5 is determined by the procedure of Chatterjee
(2015) with a small modification which guarantees K̃ ≥ K + 1.

In fact, when the entries of the item response matrix are missing completely at random, using
a similar proof, one can show that Â given by Algorithm 2 is still consistent, under some mild
condition on the missing data mechanism and the same conditions as in Theorem 1. Specifically,
the following condition is needed, in addition to conditions A1–A5.

A6. The wi j s are independent and identically distributed from a Bernoulli distribution with
Pr(wi j = 1) = p, where 0 < p ≤ 1 is a constant which does not depend on N and J .
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Under conditions A1–A6, the following proposition holds that guarantees the consistency of
the proposed SVD estimator.

Proposition 4. Under the same conditions as Theorem 1 plus condition A6, the estimate Â given

by Algorithm 2 satisfies LN ,J (A∗, Â)
pr→ 0, as N , J → ∞.

Dealing with Ordinal Data In exploratory IFA, ordinal data are also commonly encountered,
due to the wide use of Likert-scale items. With slight modification, the SVD method can also be
used to analyze ordinal data. This is achieved by applying Algorithm 1 to multiple dichotomized
versions of data.

More precisely, consider data Y = (Yi j )N×J , where Yi j ∈ {0, 1, . . . , T }. We consider a
general family of graded response-type models:

Pr(Yi j ≥ t |θ i ) = f (d jt + a�
j θ i ), (11)

where d jt is an item- and category-specific intercept parameter, and the rest of the notations are
the same as that of model (1). Note that the linear combination of the factors a�

j θ i does not depend
on the response category and appears in all the submodels Pr(Yi j ≥ t |θ i ) for t = 1, . . . , T . When
f (x) = exp(x)/(1 + exp(x)) takes the logistic form, model (11) becomes the multidimensional
graded response model (Muraki and Carlson 1995).

Model (11) is closely related to the generalmodel (1) for binary data. In fact, ifwe dichotomize
data at response category t , i.e., Y (t)

i j = 1{Yi j≥t}, then binary data Y (t)
i j follows model (1) with

the same loading parameters. Therefore, the loading matrix A can be estimated by applying
Algorithm 1 to dichotomized data Y (t) = (1{yi j≥t})N×J , for some t = 1, . . . , T . The estimation
accuracymay be further improved by aggregating the results frommultiple dichotomized versions
of data. This aggregation method is summarized by Algorithm 3.

Algorithm 3. (SVD-based estimator for exploratory IFA with ordinal data)

1. Input response Y = (yi j )N×J , the number of categories T , the number of factors K ,
inverse link function f , and truncation parameter εN ,J > 0.

2. For t = 1, . . . , T , apply Algorithm 1 to dichotomized data Y (t) = (1{yi j≥t})N×J and

obtain M̂ (t) from Step 7 of Algorithm 1.
3. Let M̂ = (

∑T
t=1 M̂

(t))/T . Apply singular value decomposition to M̂ and obtain M̂ =
∑J

j=1 σ̂ j û j v̂�
j , where σ̂1 ≥ · · · ≥ σ̂J ≥ 0 are the singular values and û j s and v̂ j are

left and right singular vectors, respectively.
4. Output Â = 1√

N
(σ̂1v̂1, . . . , σ̂K v̂K ), �̂ = √

N (û1, . . . , ûK ).

4. Simulation

Simulation SettingWe consider K = 4 and 8, J = 200, 400, 600, 800, 1000, and 1200, and N =
20J . For each combination of N , J , and K , two different latent distributions F are considered,
one is a K -variate standard normal distribution, and the other is a K -variate normal distribution
N (0, (σi j )K×K ), where σi j = 1 if i = j and σi j = 0.3 if i = j . The inverse link f is chosen to
be logistic, i.e., f (x) = exp(x)/(1 + exp(x)). This leads to 24 different simulation settings, for
all possible combinations of N , J , K , and F .

For each simulation setting, 100 independent replications are generated, with the item param-
eters keeping fixed across replications. When J = 200 and given K , the item parameters are
generated as follows.
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Figure 2.
Simulation results when K = 4 and the true factors are independent. Panel a shows the number of items J in x-axis
versus the loss (2) in y-axis, and Panel b shows the number of items J in x-axis versus the computation time (in seconds)
in y-axis. For each metric and each method, we show the median, 25% quantile, and 75% quantile based on the 100
independent replications

1. d∗
1 ,…, d∗

200 are i.i.d. from a uniform distribution over interval [−1, 1].
2. a∗

1,…, a∗
200 are i.i.d., with a∗

j = (a†j1q j1, . . . , a
†
j K q jK )�. Here, a†jks are i.i.d. from a

uniform distribution over interval [1, 2], and q j = (q j1, . . . , q jK )� are i.i.d. from a
uniform distribution over QK . Specifically,

Q4 =
{

(q1, . . . , q4)
� : qk ∈ {0, 1},

4∑

k=1

qk ≥ 1, and
4∑

k=1

qk ≤ 3

}

,

and

Q8 =
{

(q1, . . . , q8)
� : qk ∈ {0, 1},

8∑

k=1

qk ≥ 1, and
8∑

k=1

qk ≤ 3

}

.

The q j s lead to sparse loading vectors.

When J > 200, we set the item parameters by repeating multiple times the parameters under
J = 200 and the same K . For example, when J = 400, we set parameters for items 1–200 and
those for items 201–400 to be the same as the parameters generated under the setting J = 200.
Results Each simulated dataset is analyzed using the SVD-based estimator, with the truncation
parameter εN ,J set to be 10−4. The performance of the SVD-based estimator is compared with
that of the CJMLE.4 The results are shown in Figs. 2, 3, 4, and 5.

The loss for the SVD-based estimator decreases when N and J simultaneously grow, under
all settings. Reasonable accuracy can be achieved when N and J are reasonably large, in which
case the SVD-based estimator may be directly used for data analysis. For example, under the
setting that K = 4 and F is multivariate standard normal, the loss function is already around

4The CJMLE is implemented using R package mirtjml (Zhang et al. 2018). All the computation is conducted on a
single Intel�Gold 6130 core.
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Figure 3.
Simulation results when K = 4 and the true factors are correlated. The two panels show the same metrics as in Fig. 2
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Figure 4.
Simulation results when K = 8 and the true factors are independent. The two panels show the same metrics as in Fig. 2

0.006 when J is 200. It suggests that the average entrywise error is around 0.08. In addition, the
loss for the SVD-based estimator tends to be smaller when the factors are independent than that
when they are correlated, for the same N , J , and K . This is because, the signal in the data is
weaker in the latter case, due to the redundant information in correlated factors.

Moreover, we compare the performance of the two estimators. The CJMLE is always more
accurate than the SVD-based estimator. This is consistent with the asymptotic theory that the
CJMLE is statistically more efficient. However, if we compare the computation time of the two
approaches, the SVD-based estimator is substantially faster. Under the most time-consuming
setting where J = 1200, K = 8 and the factors are correlated, the SVD approach only takes
about 60 seconds, while the CJMLE takes about 17 minutes. Note that as shown in Chen et al.
(2019b), CJMLE is already substantially faster than the marginal maximum likelihood estimator.
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Figure 5.
Simulation results when K = 8 and the true factors are correlated. The two panels show the same metrics as in Fig. 2

Given its reasonable accuracy and computational advantage, the SVD-based estimator may be a
good alternative to the CJMLE and the MMLE in large-scale exploratory IFA problems.

5. Concluding Remarks

As shown in this note, the proposed SVD-based algorithm is statistically consistent and has
goodfinite sample performance in large-scale exploratory IFAproblems.Although not statistically
most efficient, the algorithm has its unique strengths over other exploratory IFA methods. In
particular, it is computationallymuch faster. In addition, it guarantees a unique solution,whilemost
of the other estimators can suffer from convergence issues for involving nonconvex optimization,
including the CJMLE and MMLE.

Given its computational advantages and good finite sample performance, the SVD-based
estimator can be used, not only as a starting point for other estimators to improve their numerical
convergence, but also as an alternative estimator for data analysis. Specifically, in large-scale
exploratory IFA applications, we suggest to start data exploration with the SVD-based estimator.
Using this estimator, we can quickly gain some understanding about the number of factors under-
lying the data, and the loading structures of IFA models assuming different numbers of factors.
Such initial knowledge helps us to focus on a smaller set of latent dimension K . For these latent
dimensions, we tend to further investigate their loading structures by the CJMLE, using the corre-
sponding SVD solutions as starting points. When sample and item sizes are relatively smaller, the
traditional methods may bemore suitable, such as theMMLE and the composite-likelihood-based
estimator.

One limitation of the SVD-based estimator is that it is not easy tomake statistical inference on
the estimated loading matrix, such as constructing a confidence interval for an estimated loading
parameter. This type of inference problem is not an issue for estimators based on the marginal
likelihood, for which the asymptotic regime let N diverge and keep J fixed. However, it is a
general challenge for both the SVD-based estimator and the CJMLE, whose consistency relies
on a double asymptotic regime and the notion of consistency is weaker than that in the traditional
sense. In recent years, this type of inference problems has received much attention in statistics
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(Chen et al. 2019a; Xia and Yuan 2019). However, to the best of our knowledge, no results have
been obtained under an IFA model. We leave this problem for future investigation.
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