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Abstract
Purpose Sleep-disordered breathing (SDB) is associated
with increased risk for cardiovascular morbidity and mor-
tality and for sleepiness-related accidents, but >75 % of the
patients remain undiagnosed. We sought to determine the
diagnostic accuracy of ECG-based detection of SDB when
used for population-based screening.
Methods All male workers, mostly truck drivers, of a trans-
port company (n0165; age, 43±12 years) underwent stan-
dard attended overnight polysomnography. Cyclic variation
of heart rate (CVHR), a characteristic pattern of heart rate
associated with SDB, was detected from single-lead ECG
signals during the polysomnography by a newly developed
automated algorithm of autocorrelated wave detection with
adaptive threshold (ACAT).

Results Among 165 subjects, the apnea–hypopnea index
(AHI) was ≥5 in 62 (38 %), ≥15 in 26 (16 %), and ≥30 in
16 (10 %). The number of CVHR per hour (CVHR index)
closely correlated with AHI [r00.868 (95 % CI, 0.825–
0.901)]. The areas under the receiver operating characteris-
tic curves for detecting subjects with AHI ≥5, ≥15, and ≥30
were 0.796 (95 % CI, 0.727–0.855), 0.974 (0.937–0.993),
and 0.997 (0.971–0.999), respectively. With a predeter-
mined criterion of CVHR index ≥15, subjects with AHI
≥15 were identified with 88 % sensitivity and 97 % speci-
ficity (likelihood ratios for positive and negative test, 30.7
and 0.12). The classification performance was retained
in subgroups of subjects with obesity, hypertension, dia-
betes mellitus, dyslipidemia, and decreased autonomic
function.
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Conclusions The CVHR obtained by the ACAT algorithm
may provide a useful marker for screening for moderate-to-
severe SDB among apparently healthy male workers.

Keywords Apnea–hypopnea index . Cyclicvariationofheart
rate . Electrocardiogram . Sleep apnea . Sleep-disordered
breathing . Population

Introduction

Sleep-disordered breathing (SDB) is a contemporary chal-
lenge to health and well-being [1–3]. Studies have demon-
strated that SDB increases the risk of hypertension [4],
coronary artery disease [5, 6], stroke [7], diabetes [8], chronic
kidney disease [9], depression [10], cognitive impairment,
diminished quality of life [11], and motor vehicle crashes
[12]. Despite these facts and the availability of effective treat-
ments, at least 75 % of the patients with SDB remain undiag-
nosed [13]. Establishing efficient medical and public health
system for SDB screening is therefore an urgent concern.

ECG seems potentially the most practical tool for screening
for SDB. Episodes of SDB are accompanied by a characteris-
tic pattern of heart rate, known as cyclic variation of heart rate
(CVHR) [14], which consists of bradycardia during apnea
followed by rapid return with its cessation. Earlier studies
have reported several ECG-based algorithms for detecting
CVHR that demonstrate good classification performance be-
tween SDB patients and normal subjects [15–18]. These
studies, however, were based on observations either in small
test data [15, 16] or in subjects referred for polysomnography
with suspected SDB [18–20]. The classification performance
depends on pretest probability [21] and comorbidities that are
known to affect CVHR [14, 22].

In the present study, we therefore sought to determine the
diagnostic accuracy of ECG-based SDB detection in
population-based screening. We used a newly developed
automated algorithm of autocorrelated wave detection with
adaptive threshold (ACAT) for detecting CVHR [19]. This
algorithm has been reported to identify patients with
moderate-to-severe SDB with 83 % sensitivity and 88 %
specificity among 862 patients referred for diagnostic poly-
somnography [19]. We performed overnight polysomnogra-
phy in all male workers in a transport company and
examined the classification performance of the algorithm.

Methods

Participants

All male workers of a transport company were eligible for
inclusion in this study. Most of them were involved in

driving trucks for long distances. All male workers gave
their written informed consent to participate in this study.
Consequently, we performed a complete survey of all male
workers (n0165) of this company. All subjects were racially
Japanese.

Protocol

The protocol of this study was approved by the Human
Ethics Committee of Shinshu University School of Medicine
(No. 658, January 4, 2006). Between February 2006 and
August 2007, subjects underwent polysomnography as well
as a medical checkup for medical history, physical examina-
tion, blood sampling, and daytime sleepiness by the Epworth
Sleepiness Scale.

Sleep study

Standard overnight attended polysomnography was per-
formed in a university laboratory starting at 20:00 h, and
the data were collected from 21:00 h to 06:00 h the next
morning. The bed was covered with a sheet-form respiratory
movement sensor for the purpose of another study [23]. The
polysomnogram was recorded with a digital polygraph
(Alice III; Chest Co. Ltd., Tokyo, Japan). We used the
standard polysomnographic montages consisting of C4-A2,
C3-A1, O2-A1, and O1-A2 electroencephalograms, left and
right electrooculograms, a submental electromyogram, a
nasal pressure cannula, oronasal airflows, left and right tibial
electromyograms, thoracoabdominal inductance plethysmo-
grams, pulse oximetric arterial blood oxygen saturation
(SpO2), a neck microphone, body position sensors, and a
modified lead II ECG.

The sleep stages and respiratory events were scored
according to the AASM Manual for the Scoring of Sleep
and Associated Events [24]. The average hourly frequency
of apneic and hypopneic episodes was defined as apnea–
hypopnea index (AHI). Total sleep time (TST) was used as
the denominator in the calculation of AHI. Subjects with
AHI between 5 and 15 were defined as mild SDB, those
with AHI between 15 and 30 as moderate SDB, and those
with AHI ≥30 as severe SDB.

Detection of CVHR

The modified lead II ECG signal (sampling frequency,
100 Hz) for the entire length of each polysomnogram was
extracted. All QRS complexes were identified and labeled
as normal (sinus rhythm), ventricular ectopic, supraventric-
ular ectopic, and artifact, and R–R interval time series were
generated using only normal-to-normal intervals. The detec-
tion of CVHR was performed by a technician who was blind
to both subject characteristics and other polysomnographic
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findings. Using the automated ACAT algorithm [19], CVHR
was detected as the cyclic occurrence of autocorrelated
waves (Fig. 1). See Appendix for the detail of the ACAT
algorithm.

We calculated CVHR index as the average number of
CVHRs (dips meeting the criteria) per hour of time in bed
(TIB). We used CVHR index ≥15 that had been determined
by a previous study [19] as the criterion for identifying
patients with moderate-to-severe SDB. We also calculated
standard deviation of normal-to-normal R–R intervals
(SDNN) as an index of cardiac autonomic function and
defined subjects with a SDNN <75 ms (mean minus 1 SD)
as having decreased autonomic function.

Statistical analysis

The correlation and agreement between the CVHR index
and AHI were evaluated by Pearson’s product moment
correlation coefficient and the limits of agreement of Bland
and Altman [25], respectively. The classification perfor-
mance of the CVHR index was evaluated by receiver oper-
ating characteristic (ROC) curve analysis. The difference in

the performance was evaluated by comparing the areas
under the curve (AUC) by the method of Hanley and
McNeil [26]. The guideline of the American College of
Chest Physicians and other related academic societies [27]
recommends the use of likelihood ratios (LRs) for assessing
the utility of diagnostic alternatives to polysomnography; it
also offers multiple threshold approaches, one for best re-
ducing the probability (false negative rate) and the other for
best increasing the probability (true positive rate), allowing
a gray zone, where the result of screening test is accepted as
indeterminate. Accordingly, we calculated LRs for positive
test (LR+) and negative test (LR−) to evaluate the classifi-
cation performance and also performed interval LR analysis
to determine the thresholds for increasing and reducing the
post-test probabilities. We assessed the changes in disease
probability with the levels of LR as follows: <0.05, very
large reduction; 0.05–0.1, large reduction; 0.1–0.2, modest
reduction; 0.21–5.0, little change; 5.1–10.0, modest in-
crease; 10.1–20.0, large increase; and >20.0, very large
increase. Data are presented as mean ± SD (range) when
appropriate. We defined a P value <0.05 as statistically
significant.

a

b

Fig. 1 a A strip of
polysomnographic data with
the markers of cyclic variation
of heart rate (CVHR) detected
by the autocorrelated wave
detection with adaptive
threshold (ACAT) algorithm in
a representative subject with
sleep-disordered breathing
(SDB). The temporal positions
of detected CVHR are indicated
with short vertical bars. b
Closer view of the data in
the open box in (a). The ACAT
algorithm detected the nadirs of
cyclic dips in interbeat intervals
that accompany apnea–hypo-
pnea events. RRI interbeat in-
terval measure as R–R interval
of ECG, Resp respiration by
oronasal airflow, SpO2 pulse
oximetric arterial blood oxygen
saturation
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Results

Table 1 summarizes the characteristics of the subjects.
They included 57 (35 %) patients with hypertension, 13
(8 %) with diabetes mellitus, and 83 (50 %) with
dyslipidemia. The polysomnography revealed that the
sleep efficiency was 78±13 % and that the median
(interquartile rage) of AHI was 3.1 (0.9–8.6). Out of
165 subjects, 62 (38 %) had AHI ≥5, including 36
(22 %) with mild, 10 (6 %) with moderate, and 16
(10 %) with severe SDB.

The ECG in all 165 subjects showed sinus rhythm. The
ratio of analyzable R–R intervals to the recording length was
94±9 % (44–100 %). Although this ratio was <70 % only in
four subjects due to recording noises, these subjects were
also included in the analysis (intension-to-diagnose policy).
Both the AHI and the CVHR index were <15 in all of these

subjects but one, in whom the ratio of analyzable R–R
intervals was only 44 % and the CVHR index and AHI
were 17.6 and 35.8, respectively.

Figure 2 shows the relationship and agreement between
the CVHR index and AHI. The CVHR index was correlated
with AHI [r00.868 (95 % CI, 0.825–0.901)]. The Bland and
Altman plot showed upper and lower limits of agreement of
13.1 and –16.1, respectively, with a tendency of increasing
difference with increasing AHI. The ROC curve analysis for
identification of patients with moderate-to-severe SDB
showed an AUC of 0.974 (SE, 0.0142; P <0.0001) and by
the criterion of CVHR index ≥15, the patients were detected
at 88 % sensitivity and 97 % specificity (Table 2). A good
classification performance was also observed in detecting
severe SDB [AUC (SE), 0.997 (0.003), P<0.0001] with the
optimal cutoff criterion of CVHR index ≥17, although the
performance in detecting mild SDB was modest (Table 2
and Fig. 3).

Table 1 Characteristics of the study subjects

N 165

Age, years 43±12 (18–69)

Height, cm 170±6 (155–186)

Weight, kg 68±11 (49–112)

BMI, kg/m2 24±3 (16–37)

BMI ≥25 kg/m2 50 (30 %)

BMI ≥35 kg/m2 1 (1 %)

Systolic blood pressure, mmHg 126±18 (96–186)

Diastolic blood pressure, mmHg 81±12 (56–118)

ESS score 5±4 (0–19)

ESS score >11 11 (7 %)

ESS score >16 3 (2 %)

Comorbidity

Hypertension, n (%) 57 (35 %)

Diabetes mellitus, n (%) 13 (8 %)

Dyslipidemia, n (%) 83 (50 %)

Polysomnographic features

TIB, min 623±87 (276–770)

TST, min 485±104 (125–683)

Rapid-eye-movement period, min 82±35 (8–180)

Sleep efficiency, % 78±13 (27–98)

AHI (TIB), events/h 8±13 (0–63)

AHI (TST), events/h 9±14 (0–67)

Maximum O2 desaturation, % 9±6 (0–35)

SDNN, ms 105±32 (44–179)

Data are shown as number (%) for categorical variables and mean ± SD
(range) for continuous variables

AHI apnea–hypopnea index, BMI body mass index, ESS Epworth
Sleepiness Scale, SDNN standard deviation of normal-to-normal R–R
interval, TIB time in bed, TST total sleep time

a

b

Fig. 2 Scatter graphs with the regression line (a) and Bland and
Altman plot (b) for the relationships between the CVHR index and
apnea–hypopnea index (AHI). In (b), the horizontal solid line and
dashed lines indicate the mean difference and the upper and lower
limits of agreement (mean ± 1.96 SD), respectively
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Table 3 shows the results of interval LR analysis. There
was a very large reduction in the probability of severe SDB
(AHI ≥30), when CVHR index was <15; a very large
increase in the probability of SDB (AHI ≥5) and a large
increase in that of moderate-to-severe SDB (AHI ≥15),
when CVHR index was ≥15; and a very large increase in
the probability of moderate-to-severe SDB (AHI ≥30), when
CVHR index was ≥30.

Age, comorbidities, and autonomic function had no sub-
stantial impact on the classification performance in detect-
ing moderate-to-severe SDB by the criterion of CVHR
index ≥15 (Table 4). The AUC of the ROC curve did not
differ significantly between subjects grouped by older age
(≥52 years, the 75th percentile value) or by the presence of
obesity (BMI ≥25 kg/m2), hypertension, diabetes mellitus,
dyslipidemia, and decreased cardiac autonomic function.

Discussion

This is the first population-based study to report the diag-
nostic accuracy of automated ECG-based detection of SDB.
In a survey of all male workers of a transport company, the
ACAT algorithm identified moderate-to-severe SDB
patients with 88 % sensitivity and 97 % specificity with a
predetermined criterion of CVHR index ≥15. Also, interval
LR analysis revealed that CVHR index <15 is a useful
criterion for reducing the probability of severe SDB (AHI
≥ 30), CVHR index ≥15 is for increasing the probability of
SDB (AHI ≥ 5), and CVHR index ≥30 is for increasing the
probability of moderate-to-severe SDB (AHI ≥ 15). The
accuracy was retained in the subgroups divided by age,
obesity, hypertension, diabetes mellitus, dyslipidemia, and
decreased autonomic function. These observations indicate
that the automated ECG-based detection of CVHR during
sleep may be used as a screening tool for moderate-to-severe
SDB among male workers.

This study has several strengths as a diagnostic study
[28]. First, we could performed a survey of all male workers
in a company and obtain both the index test (CVHR index)
and the reference standard (AHI by a standard overnight
attended polysomnography) from all subjects. The observa-
tions were of complete samples from a population of male
workers. Second, because both CVHR index and AHI were
evaluated simultaneously, there was neither time lag nor
treatment effects between the index test and the reference
standard. Third, the majority of the subjects consisted of
long-distance truck drivers, a representative population in
whom the screening for SDB is of particular importance
[12]. Finally, we estimated the variability of diagnostic
accuracy between subgroups divided by age, obesity, and
the diseases commonly observed among SDB patients [3].

The ACAT algorithm may perform excellently in com-
parison to other ECG-based algorithms for SDB detection.

Table 2 Classification performance of the CVHR index for identifying patients with different severity of SDB

n ROC curve AUC (SE) CVHR index criterion Sensitivity Specificity PPV NPV LR+ LR−

AHI ≥5 62 0.796 (0.0414)*a ≥12c 60 % 96 % 90 % 80 % 15.4 0.42

AHI ≥15 26 0.974 (0.0142)* ≥14c 92 % 96 % 83 % 99 % 25.7 0.08

– – ≥15b 88 % 97 % 85 % 98 % 30.7 0.12

AHI ≥30 16 0.997 (0.003)* ≥17c 100 % 96 % 72 % 100 % 24.8 0.00

AUC area under the curve, CVHR cyclic variation of heart rate, LR + likelihood ratio for positive test, LR − likelihood ratio for negative test, NPA
negative predictive value, PPV positive predictive value, ROC receiver operating characteristic

*P<0.0001 (against AUC00.5)
a Significantly lower than AUCs for AHI ≥15 and AHI ≥30
b Predetermined criterion of CVHR index for detecting moderate-to-severe SDB [19]
c Cutoff threshold determined in the present study as the value corresponding to the highest average of sensitivity and specificity

Fig. 3 Receiver operating characteristic (ROC) curves of the CVHR
index to identify patients with different severity of SDB
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Several earlier studies [15–17] have used the Physionet
Sleep Apnea–ECG database (http://www.physionet.org/
physiobank/database/apnea-ecg/) to examine the perfor-
mance of the algorithms and reported an accuracy of 90–
100 %. This database consists of 70 ECG samples including
42 patients with AHI ≥15 and 23 normal subjects (AHI < 5).
The ACAT algorithm also showed a good performance
[AUC, 0.979 (95 % CI, 0.912–0.998); 90 % sensitivity
and 100 % specificity] for this database [19]. Although only
a few studies have examined the performance of the algo-
rithms in clinical settings, they have reported modest diag-
nostic accuracies [18, 20, 29]. In a study of 150 patients
referred to a university hospital for clinically suspected
SDB, Roche et al. [18] reported that an algorithm that used
the relative power of the very low frequency component
detected patients with AHI ≥15 with an AUC of 0.70, a
sensitivity of 64 %, and a specificity of 69 %. The ACAT
algorithm, however, has been reported to detect patients
with AHI ≥15 with an AUC of 0.913, a sensitivity of 83 %,

and specificity of 88 % in a study of 887 consecutive patients
referred for diagnostic polysomnography [19].

The advantage of the ACAT algorithm may be derived
from its feature of an adaptive threshold. By visual inspec-
tion of R–R intervals, Guilleminault et al. [14] reported that
the CVHR was not observed in patients with denervated
transplanted heart or with severe autonomic neuropathy and
that it was blunted in those with moderate autonomic neu-
ropathy and with Shy–Drager syndrome. They also ob-
served in subjects with normal autonomic function that the
bradycardic component of the CVHR showed a progressive
reduction with increasing doses of intravenous atropine.
Cardiac vagal activity decreases with aging [30] and is
reduced in patients with diabetes mellitus [31] and dyslipi-
demia [32]. These conditions are commonly associated with
SDB [4, 8, 33] and have been reported to increase the failure
of CVHR detection [22]. The adaptive threshold of the
ACAT algorithm may help maintain the good classification
performance even in these subjects.

Table 3 Interval likelihood ratio of the CVHR index for identifying patients with different severity of SDB

CVHR index Pretest probability

<10 (n0110) 10–15 (n029) 15–30 (n015) ≥30 (n011)

AHI ≥5 0.39 (19 %) 1.78 (52 %) ∞ (100 %) ∞ (100 %) 38 %

AHI ≥15 0.10 (2 %) 0.40 (7 %) 14.7 (73 %) ∞ (100 %) 16 %

AHI ≥30 0.00 (0 %) 0.00 (0 %) 4.66 (33 %) ∞ (100 %) 10 %

Data are LR (post-test probability, %)

CVHR cyclic variation of heart rate, LR likelihood ratio

Table 4 Effects of age and comorbidities on the classification performance of the CVHR index (cutoff, ≥15)

Subgroup n AHI ≥15 n (%) ROC curve AUC (SE) Sensitivity Specificity PPV NPV LR+ LR−

Age <52 years 124 12 (10 %) 0.963 (0.0225)* 83 % 97 % 77 % 98 % 31.1 0.17

Age ≥52 years 41 14 (34 %) 0.995 (0.0064)* 93 % 93 % 93 % 93 % 12.5 0.08

BMI <25 kg/m2 115 9 (8 %) 0.968 (0.0266)* 89 % 98 % 80 % 99 % 47.1 0.11

BMI ≥25 kg/m2 50 17 (34 %) 0.970 (0.0223)* 898 % 97 % 94 % 94 % 29.1 0.12

Hypertension (−) 108 7 (6 %) 0.996 (0.0040)* 100 % 99 % 88 % 100 % 101.0 0.00

Hypertension (+) 57 19 (33 %) 0.939 (0.0369)* 89 % 95 % 88 % 93 % 167.0 0.11

Diabetes (−) 152 20 (13 %) 0.952 (0.0567)* 95 % 96 % 79 % 99 % 25.8 0.05

Diabetes (+) 13 6 (46 %) 0.952 (0.0567)* 83 % 100 % 100 % 88 % ∞ 0.17

Dyslipidemia (−) 82 5 (6 %) 0.990 (0.0095)* 80 % 99 % 80 % 99 % 61.6 0.20

Dyslipidemia (+) 83 21 (25 %) 0.970 (0.0191)* 90 % 97 % 91 % 97 % 28.0 0.10

SDNN ≥75 ms 139 20 (14 %) 0.982 (0.0144)* 95 % 97 % 83 % 99 % 28.3 0.05

SDNN <75 ms 26 6 (23 %) 0.958 (0.0368)* 83 % 95 % 83 % 95 % 16.7 0.18

Abbreviations are explained in the footnote to Table 2

*P<0.0001 (against AUC00.5)
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The ACATalgorithm requires only R–R interval time series
data. The most promising application of this algorithm seems
to be screening for sleep apnea by Holter ECG. According to
the Survey of Medical Care Activities in Public Health Insur-
ance conducted by the Japanese Ministry of Health, Labor and
Welfare in 2008, at least 1,270,000 Holter ECG examinations
are performed each year in Japan alone. Holter ECG is used as
a routine examination in most clinical facilities; in many of
them, digitized Holter ECG data are stored in re-analyzable
forms. Also, Holter ECG scanners used for analyzing recorded
ECG signals unexceptionally measure beat-to-beat R–R inter-
vals as a fundamental function. Thus, the data that are neces-
sary for the ACAT algorithm can be obtained at small
additional cost. Furthermore, the cardiovascular patients, the
most likely subjects of Holter ECG examination, are also the
high-risk population of SDB [3]. The installation of ACAT
algorithm into Holter ECG scanners may provide useful
screening tool for sleep apnea in these patients.

The present study has several limitations. First, the stud-
ied population consisted of only male workers. Thus, the
performance of the ACAT algorithm in other populations is
unclear, although our previous observation in subjects re-
ferred for polysomnography indicated that the classification
performance was maintained even in 155 female subjects
and in 145 subjects aged ≥65 years [19]. Second, we studied
the ECG signal extracted from polysomnographic record-
ings obtained in a laboratory. The performance may be
affected by the recording environment. It is not clear if our
findings can be directly extended to ambulatory ECG
recorded during daily life. Third, we used TIB as the de-
nominator for calculating CVHR index, while we used TST
as the denominator for AHI. This might have affected the
association between CVHR and AHI. Their correlation
coefficients were comparable, however, even when TIB
was used for calculating AHI (r00.87 vs. 0.86). Fourth,
we did not evaluate the effects of medications because we
were unable to have consent from the subjects to access their
clinical medical recordings. We performed, however, a full
health checkup of the subjects and observed that the classi-
fication performance was retained even in the subjects with
hypertension, diabetes mellitus, dyslipidemia, and decreased
autonomic function. Fifth, it should be noted that the CVHR
index may not be used for estimating AHI. Although the
CVHR index correlated with AHI, the Bland and Altman
plot showed increasing disagreement with increasing AHI.
Also, the optimal cutoff criterion of CVHR index for iden-
tifying patients with an AHI ≥30 was ≥17. These results
suggest that the CVHR index, if used as a quantitative
index, would underestimate the AHI in patients with severe
SDB. The CVHR index should not be used for AHI estima-
tion; it should be used only for per-subject screening tool for
moderate-to-severe SDB. Finally, to confirm the cost-

effectiveness of ECG screening for sleep apnea, comparisons
with other portable monitors such as those with oximetry are
necessary in future studies.

Conclusions

We observed that analysis of CVHR from ECG by the
automated algorithm of ACAT identified patients with
moderate-to-severe SDB in a survey of all male workers in
a transport company. Our observations suggest that auto-
mated ECG detection of CVHR may be a useful screening
tool for moderate-to-severe SDB among male workers.

CVHR
Temporal positions

Dip detection
Width, 10-120 s

depth/width > 0.7 ms/s

Polynomial fitting
2nd-order polynomial

with 20-s moving window

Upper and lower envelopes
95 and 5 percentile points

within 130-s moving window
width of envelope = 

upper envelope –lower envelope

Time series of R-R interval
Interpolated N-N interval

Relative depth criteria
Depth/(width of envelope) > 0.4

Similarity criteria
Morphological correlation between

5 consecutive dips, r > 0.4

Cyclicity criteria
Evenness of cycle length between 4
consecutive dips, triangle index > 0.8

Cycle length criteria
Cycle length, 25-130 s

Non-CVHR

No

No

No

No

Yes

Yes

Yes

Yes

Fig. 4 Algorithm of autocorrelated wave detection with adaptive
threshold (ACAT). The algorithm detects the temporal positions of
cyclic variation of heart rate (CVHR) in the interbeat interval time
series as the cyclic and autocorrelated dips that meet four specific
criteria (modified from Fig. 1 in Ref. [19])
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Appendix

Automated algorithm of autocorrelated wave detection with
adaptive threshold (ACAT) for detecting cyclic variation of
heart rate (CVHR) [19]

The ACAT algorithm is a time-domain method that uses
only interbeat interval data. The algorithm detects the
CVHR as cyclic and autocorrelated dips in interbeat interval
time series and determines the temporal position of the
individual dips comprising the CVHR (Figs. 4 and 5). The
processes of the ACAT algorithm were as follows: Interbeat
interval time series were smoothed by second-order polyno-
mial fitting, and all dips in the smoothed trend with widths
between 10 and 120 s and depth-to-width ratios of >0.7 ms/s
were detected. Also, the upper and lower envelopes of the
interbeat interval variations were calculated as the 95th and
5th percentile points, respectively, within a sifting window
with a width of 130 s. Then, the dips that met the following
criteria were considered CVHR: (1) a relative dip depth
>40 % of the envelope range at that point (adaptive thresh-
old), (2) interdip intervals (cycle length) between 25 and
130 s, (3) a waveform similar to those of the two preceding
and two subsequent dips with a mean morphological corre-
lation coefficients >0.4 (autocorrelated wave), and (4) three
cycle lengths between four consecutive dips that meet the
following equivalence criteria:

3� 2 l1=sð Þ 3� 2 l2=sð Þ 3� 2 l3=sð Þ > 0:8;

a

b

c

d

e

Fig. 5 Schema showing the
processes for detecting CVHR
by the ACAT algorithm.
a Original R–R interval
(thin solid line), second-order
polynomial fitting line
(heavy solid line), and the upper
and lower envelopes of the
fitting line (dashed lines).
b The depth of dips relative
to the instantaneous width of
envelopes. c The morphological
comparisons of each dip
(shaded box) with the two
preceding and two subsequent
dips (open boxes). d Mean
morphological correlation
coefficients. e Temporal
positions of dips detected
as CVHR

250 Sleep Breath (2013) 17:243–251



where l1, l2, and l3 are three consecutive cycle lengths
and s 0 (l1+ l2+ l3)/3. The number of dips comprising
the CVHR is counted and the mean number of the dips
per hour of time in bed is calculated as the CVHR index.
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