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Abstract

Introduction Past studies on plant metabolomes have

highlighted the influence of growing environments and

varietal differences in variation of levels of metabolites yet

there remains continued interest in evaluating the effect of

genetic modification (GM).

Objectives Here we test the hypothesis that metabolomics

differences in grain from maize hybrids derived from a

series of GM (NK603, herbicide tolerance) inbreds and

corresponding negative segregants can arise from residual

genetic variation associated with backcrossing and that the

effect of insertion of the GM trait is negligible.

Methods Four NK603-positive and negative segregant

inbred males were crossed with two different females (testers).

The resultant hybrids, as well as conventional comparator

hybrids, were then grown at three replicated field sites in

Illinois, Minnesota, and Nebraska during the 2013 season.

Metabolomics data acquisition using gas chromatography–

time of flight-mass spectrometry (GC–TOF-MS) allowed the

measurement of 367 unique metabolite features in harvested

grain, of which 153 were identified with small molecule

standards. Multivariate analyses of these data included multi-

block principal component analysis and ANOVA-simultane-

ous component analysis. Univariate analyses of all 153 iden-

tified metabolites was conducted based on significance testing

(a = 0.05), effect size evaluation (assessing magnitudes of

differences), and variance component analysis.

Results Results demonstrated that the largest effects on

metabolomic variation were associated with different

growing locations and the female tester. They further

demonstrated that differences observed between GM and

non-GM comparators, even in stringent tests utilizing near-

isogenic positive and negative segregants, can simply

reflect minor genomic differences associated with con-

ventional back-crossing practices.

Conclusion The effect of GM on metabolomics variation

was determined to be negligible and supports that there is no

scientific rationale for prioritizing GM as a source of variation.
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1 Introduction

Modern agricultural biotechnology provides an efficient and

effective way to improve crop varieties and to enable sus-

tainable food production. The benefits conferred by geneti-

cally modified (GM) crops have led to their widespread

adoption globally, and in 2014, GM crops were planted by a

total of 18 million farmers across 28 countries (James 2014).

An important consideration in the development of new

crop varieties is continued nutritional quality and safety in

the food chain. New biotechnology-derived traits in GM

crops are currently evaluated in safety assessments that

follow internationally recognized guidelines and that are

accepted by regulatory agencies world-wide (OECD 2006;

Codex 2009). These assessments include detailed molec-

ular characterization of a new GM variety to ensure inte-

gration of the intended DNA sequence as well as

measurement of levels of expressed products. One of the

major principles behind current assessments is the concept

of substantial equivalence where a conventional variety is

used as a comparator for evaluating the phenotypic and

nutrient compositional characteristics of the new product.

The selected conventional comparator typically shares a

similar genetic background to the new product (i.e. is near-

isogenic), but does not express the new biotechnology-

derived trait. Comparative assessments have demonstrated

substantial equivalence between GM crops and their near-

isogenic conventional counterparts and that GM has little,

if any, effect on pre-existing crop characteristics other than

the introduction of intended benefits associated with the

new desired traits. Past assessments have thus provided an

assurance of safety that has extended over two decades of

GM commercialization (EU 2010; Herman and Price 2013;

Prado et al. 2014). A recent review of crop composition

studies observed that ‘‘over the past 20 years, the U.S.

FDA found all of the 148 transgenic events that they

evaluated to be substantially equivalent to their conven-

tional counterparts, as have the Japanese regulators for 189

submissions.’’ prompting the authors (Herman and Price

2013) to conclude that ‘‘compositional equivalence studies

uniquely required for GM crops may no longer be justified

on the basis of scientific uncertainty.’’

The consistent demonstration of safety for commercial

GM products stems both from the low potential of the

technology to induce meaningful unintended genetic chan-

ges (see Ladics et al. 2015; Schnell et al. 2015, for compre-

hensive reviews) that would impact a phenotypic trait, as

well as the strict quality guidelines in the selection and

development of new biotechnology-derived traits and com-

mercial products (Privalle et al. 2013; Prado et al. 2014).

With respect to crop composition, it is now well-estab-

lished that conventional breeding, varietal differences, and

differences in growing location are much greater sources of

compositional variation than GM (Berman et al. 2011;

Harrigan et al. 2010; Harrigan and Harrison, 2012; Zhou

et al. 2011). It was very recently reported that even ‘‘in-

cidental’’ but well-established features of conventional

plant breeding such as residual genetic variation from

conventional back-crossing in maize can be more associ-

ated with compositional variation than GM (Venkatesh

et al. 2015b). The study on which these conclusions were

based included assessment of a diverse range of GM traits

(herbicide tolerance, insect protection, and drought toler-

ance) expressed in multiple genetically distinct maize

hybrids. The influence of residual genetic variation was

further observed even in stringent tests involving GM and

non-GM comparators derived from paired positive and

negative segregants (Venkatesh et al. 2015b).

Repeated findings of compositional equivalence

between GM and non-GM crops, and the greater impact on

compositional variation of other factors such as those

associated with conventional breeding and growing envi-

ronment, have not precluded advocacy for expanding

analytical requirements for GM assessments (e.g. Davies

2010). The ability of metabolomics to measure a wide

range of small molecule metabolites (Goodacre et al. 2004)

has prompted suggestions that it may aid in identifying

potential unintended differences between GM and non-GM

crops that could be attributed to trait insertion (Rischer and

Oksman-Caldentey 2006). However, consistent with results

from composition studies, metabolomics research has

simply reinforced the conclusion that GM trait insertion

does not have any meaningful effect on crop metabolite

profiles (Ricroch et al. 2011; Ricroch 2013). For example,

metabolomic studies conducted on maize grain have,

overall, highlighted the dominant effects of conventional

germplasm and growing location on metabolite profiles

relative to the negligible effect of GM insertion (Asiago

et al. 2012; Baniasadi et al. 2014; Frank et al. 2012; Röhlig

et al. 2009; Skogerson et al. 2010).

We hypothesized that, as with crop composition, ‘‘in-

cidental’’ features of conventional plant breeding, such as

residual genetic variation from back-crossing in maize,

would be associated with greater metabolomics variation

than GM (Venkatesh et al. 2015a, b). The purpose of the

current study was therefore, (i) to compare the metabo-

lomic profiles of grain from maize hybrids derived from

paired GM trait-positive and their corresponding trait-

negative segregant inbreds, and (ii) to evaluate any

observed differences in the context of residual genetic

variation associated with the near-isogenic inbreds devel-

oped from the same recurrent parent (RP) during succes-

sive backcrossing. The experimental design allows a

systematic assessment of the influence of residual genetic
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variation associated with back-crossing on metabolomic

variation.

In this study, four NK603-positive and negative segregant

inbred males were crossed with two different females (tes-

ters). The resultant hybrids, as well as conventional com-

parator hybrids,were grown at three replicated sites in Illinois,

Minnesota, and Nebraska during the 2013 growing season.

Metabolomics data acquisition using a gas chromatography–

time of flight-mass spectrometry (GC–TOF-MS) platform

allowed measurement of 367 metabolite features in harvested

grain, of which 153 metabolites were fully identified com-

pounds (i.e. identified to level 1 of the Metabolomics Stan-

dards Initiative (MSI;Sumner et al. 2007)). Initialmultivariate

data analyses included multiblock principal component

analysis (MB-PCA) and ANOVA–simultaneous component

analysis (ASCA) conducted on the entire GC–TOF-MS data

set. To probe the relative contributions of residual genetic

variation associated with backcrossing (i.e. differenceswithin

hybrids derived from the trait-positive and trait-negative

segregants) andGM trait effects, a detailed univariate analysis

of all 153 identified metabolites was also conducted. This

analysis included significance testing (a = 0.05), effect size

evaluation (assessing magnitudes of differences), and vari-

ance component analysis. The study therefore offers an

assessment of whether earlier observations (Venkatesh et al.

2015a, b) that compositional differences between near-ios-

genicGMand conventionalmaize hybrids are associatedwith

backcrossing also extends to metabolomics evaluations,

including those involving near-isogenic negative segregants.

2 Materials and methods

2.1 Production and genetic fingerprinting of inbred

variants

Positive and negative inbred variants of NK603 were

produced by standard marker-assisted backcrossing

(MABC) methods (Eathington et al. 2007) and as described

in Venkatesh et al. (2015b) (see Fig. 1 for an overview of

backcrossing and Fig. S1 for a schematic of the procedure

followed in this study). The variants were fingerprinted

using the Illumina (San Diego, CA, USA) InfiniumTM

platform. The InfiniumTM platform used for genotyping

consisted of 35, 000 SNPs markers. The genotyping anal-

ysis is described in detail in Venkatesh et al. (2015a).

Table S1 shows the genetic similarity of the inbred lines

used in this study to the recurrent parent.

2.2 Hybrid production

Hybrid seed production was similar to that described in

Venkatesh et al. (2015b). The 18 hybrid entries are listed in

Table 1 and were generated as follows; the testers, T2052Z

and S4062Y, were crossed to, (i) four traited inbred vari-

ants (positive segregants, POS), (ii) four null inbred vari-

ants (negative segregants, NEG), and (iii) the control

recurrent parent (RP), R8190.

Field Trials The hybrids were planted in the field during

the 2013 growing season using a randomized complete

block design at three different locations in U.S. (Steele

County, Minnesota [MNOW]; Polk County, Nebraska

(NEST]; and Warren County, Illinois [ILMN]). At each

location, the plots were comprised of four rows (7 meters

long and 0.7 meters between rows) and each plot was

planted in three replications (blocks). Maize grain was

hand-harvested. Dried ears from each row were bulk-

shelled and grain was stored at room temperature before

shipping to Monsanto Company in St. Louis, MO. Grain

samples were homogenized by grinding on dry ice to a fine

powder and stored frozen at approximately -20 �C. One
sample from the ILMN location (one replicate of POS

T1B1 with tester T2052Z) and one sample from the NEST

location (one replicate of NEG T1A2 with tester T2052Z)

were lost during collection and processing.

2.3 GC–MS sample extraction, derivatization,

and profiling

Powdered grain samples (20 mg) were extracted with 1 mL

of degassed extraction solvent (5:2:2 methanol:chloro-

form:water). The mixture was vortexed for 6 min at 4 �C
prior to centrifugation at 14,000xg for 2 min. The supernatant

(200 lL) was dried under vacuum at room temperature.

Derivatization was performed as previously described (Fiehn

et al. 2008) with 10 lL of methyloxamine hydrochloride

(40 mg/mL in pyridine) added to each sample prior to shaking

at 30 �C for 1.5 h followed by the addition of a mixture

(91 lL) of MSTFA containing fatty acid methyl ester

(FAME) markers into the sample and incubated at 37 �C for

30 min.

Samples were analyzed using a GC–TOF-MS approach

(Fiehn et al. 2008; Kind et al. 2009). The study design was

entered into the MiniX database (Kind et al. 2009).

A Gerstel MPS2 automatic liner exchange system (ALEX)

was used to eliminate cross-contamination from sample

matrix occurring between sample runs. Derivatized sample

injections of 0.5 lL were made in splitless mode with a

purge time of 25 s and temperature program as follows: 50

to 275 �C at 12 �C/s and held for 3 min. An Agilent 6890

gas chromatograph (Santa Clara, CA) was used with a

30 m long, 0.25 mm i.d. Rtx5Sil-MS column with 0.25 lm
5 % diphenyl film; an additional 10 m integrated guard

column was used (Restek, Bellefonte PA). Chromatogra-

phy was performed at a constant flow of 1 mL/min,
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ramping the oven temperature from 50 to 330 �C over

22 min. Mass spectrometry used a Leco Pegasus IV time of

flight mass (TOF) spectrometer with 280 �C transfer line

temperature, electron ionization at -70 eV and an ion

source temperature of 250 �C. Mass spectra were acquired

from m/z 85–500 at 20 spectra/s and 1750 V detector

voltage.

Result files were exported to servers and further processed

using the metabolomics BinBase database (Kind et al. 2009).

All database entries in BinBase were matched against the

Fiehn mass spectral library of 1200 authentic metabolite

spectra using retention index and mass spectrum information

or the NIST11 commercial library. Identified metabolites

were reported if present with at least 50 % of the samples per

study design group (as defined in the MiniX database).

Data from samples were exported to the netCDF for-

mat for further data evaluation with BinBase. Briefly,

output results were exported to the BinBase database and

filtered by multiple parameters to exclude noisy or

inconsistent peaks. Quantification was reported as peak

height using the unique ion as default. Result files were

transformed by calculating the sum intensities of all

structurally identified compounds for each sample and

then dividing all data associated with a sample by the

corresponding metabolite sum. Data are presented in

Supplementary File S1.

2.4 Multivariate statistical analysis

Descriptions of both multiblock-principal component

analysis (MB-PCA) and ANOVA–simultaneous compo-

nent analysis (ASCA) are described in detail elsewhere

(Smilde et al. 2003, 2005; Xu and Goodacre 2012; Xu et al.

2014; Zwanenburg et al. 2011). A brief overview of the

analyses is presented below to facilitate data interpretation.

For MB-PCA, the original metabolite data (Supple-

mentary File S1) were repartitioned into a series of blocks

according to the experiment design (i.e., blocking).

Through such blocking, one particular factor becomes a

baseline and no longer has an effect on the data, whereas

the other factor(s) become a common trend across all of the

blocks making their influence more apparent. This

approach facilitates analysis of systems with multiple and

potentially interfering factors. MB-PCA generates three

types of results: (1) super scores, which show common

trends across all the blocks; (2) block scores, which show

individual patterns of the specific blocks; and (3) block

loadings, which contain the variable contributions to the

MB-PCA model.

ASCA is another recently proposed model aimed at the

analysis of data with multiple factors. In ASCA, the data

matrix is decomposed into the sum of a series of effect

matrices and each effect matrix contains the level averages

parentDonor parent parent parent

Generation F1 BC1 BC2 BC5 BC6

Parent 50% 75% 87.5% 98.4% 99.2%

Fig. 1 In plant breeding, selected individuals are crossed to introduce

or combine desired trait characteristics into new offspring; this

necessitates numerous generations of backcrossing to establish the

desired trait characteristics fully. Each successive backcross increases

the genetic similarity of the new offspring to the recurrent parent, e.g.

75 % similar at BC1 through to 99.2 % by BC6. These numbers are

based on how much of the recurrent parent genome can be

theoretically regained at each step; however slight variations can

occur. Marker-assisted methodologies that utilize DNA markers to

enable selection of plant individuals that contain the greatest number

of favorable alleles can reduce the number of generations required to

get close to 99 % similarity as adopted in the generation of the inbred

variants of this study (Fig. S2)
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for each factor, which represent the effect of that particular

factor. The variations that cannot be explained by the

model are put into the residual matrix e. In this study there

are three factors of interest, and thus the ASCA model is

written as

X ¼ 1� mT þ Xi þ Xl þ Xs þ X ilð Þ þ X isð Þ þ X lsð Þ þ X ilsð Þ
þ e

where mT is the mean vector of the full matrix; 1 is a

column vector of ones; Xi, Xl and Xs are the effect matrices

of the three factors, location, trait, and tester, respectively.

X(il), X(is), X(ls), and X(ils) are the interaction matrices

between these factors, respectively. PCA was performed on

each effect matrix, respectively, to calculate loadings, and

the score of each effect matrix was obtained by adding the

residual matrix e back to the effect matrix and projected

into the PC space via the corresponding loadings. For

example, the score of the effect matrix of the location

factor Ti is calculated as the following:

Xi ¼ Cið Þ � PT
i

where Ci and Pi are the scores and loadings matrix obtained

by PCA performed on Xi.

Ti ¼ ðXi þ eÞ � Pi

Unlike MB-PCA, ASCA is essentially a supervised

technique; thus, an appropriate validation procedure is

needed. In this paper, we employed a permutation test-

based validation procedure proposed by Zwanenburg et al.

(2011). In the validation, the magnitude of the effect of the

factor of interest is expressed as the sum of squares (SSQs)

of C. A total number of n permutations (in this study

n = 1000) are performed, and in each permutation the

labels of the samples are randomly permutated, ASCA is

performed on the data using the permuted label, and the

SSQs of C are recorded. All of the SSQs of C form a null

distribution, and the SSQ of C calculated from the ASCA

model using the known labels (i.e., the observed SSQ) is

then compared with the null distribution. An empirical

p value can then be derived by counting the number of

permutations that obtained equal or higher SSQs than the

observed SSQ.

Metabolite data were autoscaled so that each variable

had zero mean and unit standard deviation before being

subjected to MB-PCA and ASCA. All of the multivariate

analyses were conducted using in-house scripts written in

MATLAB R2012a environment (Mathworks, Natick, MA,

USA).

2.5 Univariate statistical analysis

Univariate statistical analyses were performed using SAS

Software (SAS. 2012 Software Release 9.4 (TS1M1).

Copyright 2002-2012 by SAS Institute Inc., Cary, NC).

All identified metabolites were statistically analysed

using a mixed model analysis of variance, unidentified

metabolites were excluded from analysis. A combined-site

analysis was performed using the SAS procedure PROC

MIXED to fit the following model:

Yijklmn ¼ Uþ Li þ R Lð ÞjðiÞþTk

þ V Tð ÞlðkÞ þ S VTð ÞmðlkÞ þLEin þ eijklmn

where Yijklmn is the unique individual observation, U is the

overall mean, Li is the random location effect, R(L)j(i) is

the random replicate within location effect, Tk is the Tester

effect, V(T)l(k) is the Variant within Tester effect,

S(VT)m(lk) is the Segregant within Variant and Tester

combination effect, and LEin is the random site by entry

interaction effect, and eijklmn is the residual error.

A residual is the difference between the observed value

and its predicted value from a statistical model. A stu-

dentized residual is scaled so that the residual values tend

to have a standard normal distribution when outliers are

absent. Thus, most values are expected to be between ±3.

Extreme data points that are also outside of the ±6 stu-

dentized residual range are considered for exclusion, as

Table 1 Overview of entries associated with the hybrid sets

Female Inbred Male Inbred

T2052Z RP Control

T2052Z POS A1

T2052Z POS A2

T2052Z NEG A1

T2052Z NEG A2

T2052Z POS B1

T2052Z POS B2

T2052Z NEG B1

T2052Z NEG B2

S4062Y RP Control

S4062Y POS A1

S4062Y POS A2

S4062Y NEG A1

S4062Y NEG A2

S4062Y POS B1

S4062Y POS B2

S4062Y NEG B1

S4062Y NEG B2

The entries for this study were based on the listing in Table. A total of

four paired positive and negative segregants (e.g. POS A1 and NEG

A1) were generated through backcrossing as shown in Fig 2. Each

segregant as well as the recurrent parent (RP) was crossed with two

different testers for a total of nine (4 POS, 4 NEG, one RP) hybrid

entries per tester set

Evaluation of metabolomics profiles of grain from maize hybrids derived from near-isogenic… Page 5 of 14 82

123



outliers, from the final analyses. We chose to employ

outlier exclusion because in doing so we would be more

conservative and more likely to error in favor of identifying

more potential differences rather than fewer differences. A

total of 16 observations had studentized residuals outside

of the ±6 range (See Supplementary File S2 for outlier

information). All but the observations for 2-4-diaminobu-

tyric acid, N-methlalanine, and ornothine were identified as

outliers and removed from analysis. A further outlier test

resulted in a further five observations being removed as

shown in Supplementary File S2.

For each metabolite, the following comparisons were

conducted within each tester set (and shown in schematic

form in Supplementary Information.),

Comparison 1 The combined-site mean of the control

hybrid [i.e. the hybrid derived from the recurrent parent

(RP)] was compared to the combined-site mean of all the

hybrids derived from each of the negative and positive

segregant inbreds (Fig. S2).

Comparison 2 The combined-site mean for each trait-

positive hybrid was compared to the paired negative seg-

regant-derived hybrids, i.e. POS A1 was compared to NEG

A1, POS A2 was compared to NEG A2, and so on

(Fig. S3).

Statistically significant differences between the mean

values were declared at a = 0.05 (Table 2).

Further pairwise comparisons within each tester set were

conducted (Supplementary Files S2 and S3) as described

below and as shown in schematic form in Figs.S 4 and S5.

Comparison 3 The combined-site means for each trait-

positive hybrid were compared to each other i.e. POS A1

was compared to each of POS A2, POS B1, and POS B2

(Fig. S3), POS A2 was further compared to POS B1 and to

POS B2, and finally POS B1 was compared to POS B2.

This pairwise scheme was replicated for the hybrids gen-

erated from the negative segregants inbreds.

Comparison 4 In addition to the paired POS-NEG

comparisons of the combined-site means (POS A1 to NEG

A1 and so on) within Comparison 2 all remaining possible

comparisons between POS and NEG variants were made.

In other words, POS A1 was compared to NEG A2, NEG

B1, and NEG B2. POS A2 ws compared to NEG A1, NEG

B1, and NEG B2. Analogous comparisons were made for

POS B1 and POS B2.

Arithmetic means were used to assess the magnitudes of

differences observed between the comparator hybrids for

all identified metabolites using the following approach.

Firstly, the individual site mean for each component was

calculated for each hybrid entry (whether trait-positive,

trait-negative, or control) at all sites. Secondly, for each

tester, the combined-site mean of each metabolite was

calculated for the conventional control. Each individual

site hybrid entry mean (whether trait-positive, trait-nega-

tive, or control) was then expressed as the percent differ-

ence from the combined-site conventional control mean as

represented below.

This allowed a distribution of magnitudes of differences

to be gernerated for the control hybrids, the POS hybrids

and the NEG hybrids. Histograms of these distributions for

each individual metabolite were subsequently generated.

Variance components analysis (VCA) was also con-

ducted to estimate the relative contribution of the experi-

mental factors to the total variance in the study. In this

Table 2 Significant differences (a = 0.05) between hybrid entries

Comparison Significant Count %

Control vs. NEG No 1179 96.32

Control vs. NEG Yes 45 3.68

Control vs. POS No 1176 96.08

Control vs. POS Yes 48 3.92

POS vs. NEG No 1182 96.57

POS vs. NEG Yes 42 3.43

The number of comparisons is the number of metabolite components

(153) 9 testers (2) 9 comparions within each set (4) (i.e., for control

vs NEG) there were four comparisons for each metabolite, for control

versus POS there were four comparisons, and for POS versus NEG 4

there were comparions (paired). This is shown in schematic form in

Figs. S1 and S2

Individual site mean ðcontrolÞ minus combined site mean ðcontrolÞ � 100

Combined site mean (control)
� 100 ð1Þ

Individual site mean ðPOSÞ minus combined site mean ðcontrolÞ
Combined site mean (control)

� 100 ð2Þ

Individual site mean ðNEGÞ minusCombined site mean ðcontrolÞ
Combined site mean (control)

� 100 ð3Þ
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application, all effects from the combined-site ANOVA

model were set as random effects. The SAS procedure

PROC MIXED was employed to run the analysis. The

output table of covariance parameter estimates from SAS

PROC MIXED procedure gives estimates of the variance

component parameters for each of model components. The

variance component parameters of each model component

were divided by the total variance to obtain the variance

proportions for each metabolite.

3 Results and discussion

3.1 Genetic characterization of inbred germplasm

The design of the experiment was based on generating

multiple genetically similar positive (POS) and negative

(NEG) segregant male variants that would subsequently

be used in hybrid production. A schematic for the gen-

eration of the eight inbred variants (four POS and four

NEG) is shown in Fig. 1. The genetic similarity of these

inbred lines to the corresponding conventional line (re-

current parent) as well as to each other, was determined

as described in materials and methods and, as calculated,

ranged from 94 to[99 %. Results of the genetic simi-

larity analysis are presented in Table S1. The observed

minor differences in the genetic profiles of the inbreds

allow testing of whether ‘‘near-isogenic effects’’ can

contribute to potential differences between GM and non-

GM comparator hybrids derived from these inbreds

(Venkatesh et al. 2015a, b).

3.2 Metabolomics data acquisition

As described in materials and methods, the genetically char-

acterized male inbred variants were crossed with two different

female testers (Table 1) to generate hybrids which were

subsequently grown at multiple locations in the US. GC–MS

based profiling of the harvested mature grain allowed mea-

surement of 367 metabolite features of which 153 were

identified to level 1 of the MSI. These 153 metabolites

encompassed a diverse range of biosynthetic and biochemical

classes (see Supplementary File S1 for all metabolite data).

Supplementary Files S3 and S4 contain a summary of least

square means for identified metabolites for the hybrids asso-

ciated with the S4062Y and T2052Z testers, respectively.

3.3 Multivariate analysis

As part of an initial exploratory assessment, principal

components analysis (PCA), one of the most popular tools

for visualizing metabolomics data, was conducted on the

full data matrix. Results highlighted the predominant effect

of growing location on variation in this full metabolome

data set (Fig. 2a). In order to better discern the effects of

other factors (tester, near-isogenic, GM) of interest in this

study we subsequently used two different PCA variants,

multi-block (MB)-PCA and ANOVA-simultaneous com-

ponent analysis (ASCA).

3.4 Multiblock (MB)-PCA

A series of MB-PCA models was created by repartitioning

(i.e. blocking) the data so that the dominant factor on

metabolomic variation as established from the original

PCA, (that is to say, location) became a background and

the potential effect of other factors of interest could be

assessed across all location blocks. The scores plots from

the MB-PCA model are shown in Fig. 2b–e. These clearly

show that, at each different location, the female tester had a

significant influence on metabolomic variation. This can be

seen in the super scores (Fig. 2b); the block scores

(Figs. 2c–e) showed similar discrimination for all three

locations. No clear separation between the GM and non-

GM hybrids was observed in the scores plots of this model.

3.4.1 ANOVA-simultaneous component analysis (ASCA)

The original PCA highlighted that growing location had the

greatest impact on the maize metabolome when assessing

all metabolite features while MB-PCA established that use

of a different female tester to generate the maize hybrids

also had an effect. The clustering from both of these

algorithms indicated that there was no discernible effect of

GM or of residual genetic variation. We tested this

observation by employing an ASCA model. In ASCA, as

described in materials and methods, the data matrix is

modeled as the sum of a set of effect matrices. The scores

plots from the three submatrices (location, tester, trait) of

are given in Fig. 3. The presence of a factor effect (ob-

served SSQs; represented by the red vertical line in Fig. 3)

can be visualized by determining whether that red line is

distinct from the null distribution. It can be seen that sep-

aration between growing location and tester was observed

and that this was statistically significant (p\ 0.001). By

contrast, the scores plots obtained from the ‘‘GM’’ sub-

matrix involving a three-way comparison of the GM-trait

bFig. 2 PCA and MB-PCA of maize grain metabolome data. PCA

showed the effect of location (Fig. 2a). MB-PCA showed that the

female tester had a significant influence on the data at each location as

can be seen in the super scores (Fig. 2b). The block scores (Fig. 2c–e)

showed similar discrimination at all three locations [Illinois (ILMN)],

Minnesota (MNOW), Nebraska, (NEST). No clear separation

between the GM and non-GM hybrids was observed. TEV total

explained variance
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positive, GM-trait-negative, and conventional hybrids

showed no significant difference as seen in the figures of

the observed SSQs superimposed on the corresponding null

distribution. Indeed, the low value for the observed SSQs

even in relation to the null distribution (Fig. 3) reiterates

how negligible metabolomic differences between the GM-

trait positive, GM-trait-negative, and conventional hybrids

are. In summary, ASCA confirmed the results derived

through MB-PCA that growing location was the factor with

the most significant impact on the grain metabolome, fol-

lowed by tester, whereas there was no significant differ-

ences between the GM and non-GM hybrid comparators.

The environmental influence on metabolic profiles of

maize is consistent with that reported in other studies

(Asiago et al. 2012; Baniasadi et al. 2014; Frank et al.

2012; Skogerson et al. 2010). The influence of the different

testers on metabolomic variation is also consistent with

studies on the influence of germplasm differences (same

references) on the metabolome.

3.5 Univariate analyses

The main objective of the study was to evaluate the relative

impact of ‘‘near-isogenic’’ effects in the context of com-

parative evaluations of GM and non-GM maize hybrids

using MS-based metabolomics. We therefore also opted to

pursue a univariate analysis extended to each identified

metabolite individually. The univariate analysis approach

followed that adopted in an earlier investigation of grain

composition data (Venkatesh et al. 2015a). For all hybrids,

least square mean values of each metabolite were deter-

mined across the three sites (termed a combined-site

analysis). Subsequent analysis steps included, (i) statistical

comparisons (a = 0.05) of the combined-site mean for

each grain metabolite a) between and within trait-positive

and trait-negative hybrids, and b) between the conventional

comparators and the trait-positive or trait-negative hybrids

for each hybrid (tester) set, (ii) calculation of magnitudes

of difference between the component individual site means

of the trait-positive, trait-negative and control hybrids and

the control component combined-site mean, and (iii) vari-

ance component analysis to assess the relative contribu-

tions to compositional variation of growing location,

hybrid (tester) effect, and differences between the GM and

non-GM comparators including those arising from residual

genetic variation associated with back-crossing.

Supplementary Files S3 and S4 provide an overview of

the combined-site means for the control and all positive

and negative segregants for the S4062Y and T2502Z

hybrid sets, respectively, as well as a summary of the

univariate analyses. These results are discussed in more

detail below.

Factor Effect p-values

Location 17.38% <0.001

Trait 0.90% >0.1

Tester (S4062Y vs. T2052Z) 5.26% <0.001

Residual 76.47% -
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Fig. 3 ASCA results showed the effects of location, trait, and tester.

It can be seen that separation between growing location and tester was

observed and p values\0.001, for both factors, were obtained from

the corresponding permutation tests. In other words, not a single case

of 1000 permutations had obtained higher sum of squares (SSQs) than

the observed one. By contrast, the scores plots obtained from the GM

submatrix involving a three-way comparison of the GM-trait positive,

GM-trait-negative, and conventional hybrids, showed no significant

difference as seen in the figures of the observed SSQs superimposed

on the corresponding null distribution
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3.5.1 Statistical comparisons

For each metabolite, the following comparisons were

conducted within each tester set (and shown in schematic

form in Figures S2-S5). Firstly (Comparison 1, Figure S2),

for each metabolite the combined-site mean of the control

hybrid (i.e., the hybrid derived from the recurrent parent)

was compared to the corresponding combined-site mean of

each of the hybrids derived from each negative and positive

segregant inbreds (Supplementary Files S3 and S4). No

significant differences were observed for 96.32 % and

96.08 % of metabolite comparisons made, respectively

(Table 2). Such results indicate that the trait-negative and

trait-positive hybrids are not meaningfully different from

the control and are consistent with an absence of any GM

effect. Indeed, if the null hypothesis of a mean difference

of zero were plausible, it would be reasonable to conclude

that the observed differences simply reflect the number that

would be observed by chance at the 5 % significance level.

Secondly, (Comparison 2, Figure S3), the combined-site

means for all metabolites of the trait-positive segregants were

compared to the corresponding paired negative segregant-

derived hybrids (Fig. S1; Table 2).As shown inTable 2, there

were no significant differences observed for 96.57 % of the

metabolite comparisons made. Consistent with the low num-

ber of significant differences, there were no analytes that were

significantly different in all comparisons, i.e. no analytical

trends distinguishing the traited and non-traited sets could be

discerned (TablesS3,S4). Inotherwords, differences between

GMand non-GMcomparators can arise even in stringent tests

of paired trait-positive and trait-negative segregants but that

the lack of reproducibility observed here implies that differ-

ence often may not reflect the effect of the GM trait. Further

pairwise comparisons involving the trait-positive and trait-

negative hybrids were conducted as described in detail in

materials and methods. Thus, (Comparison 3, Figure S4), the

combined-site means for each trait-positive hybrid were

compared to each other (Supplementary Files S3 and S4); this

pairwise scheme was then conducted for the trait-negative

hybrids. Finally, (Comparison 4, Figure S5), in addition to the

paired comparisons within Comparison 2, all remaining

possible comparisonsbetween trait-positive and trait-negative

hybrids were made (Supplementary Files S2 and S3). As with

Comparisons 1 and 2, results highlighted that, while statisti-

cally significant differences can arise in comparisons of paired

trait-positive and trait-negative hybrids, their inconsistent

expression suggests that factors other than the GM trait

contribute.

3.5.2 Effect size evaluation

We hypothesized that, in this study, magnitudes of differ-

ences between the trait-positive, trait-negative, and

corresponding conventional hybrids in levels of metabo-

lites would be similar, and that the influence of GM, as well

as of ‘‘near-isogenic’’ effects would be small, even if such

magnitudes of differences could lead to findings of statis-

tical significance. The context for evaluating magnitudes of

differences was provided by an approach that involved

expressing the individual site mean for each metabolite

(whether from the trait-positive, trait-negative, or control)

as the percent difference from the combined-site conven-

tional control mean. In essence, any metabolite variation

associated with the control hybrid comparisons would

represent a location effect (i.e. differences due to growing

location) only, whereas metabolite variation associated

with the trait-positive and trait-negative hybrids would

incorporate additional contributions from GM and ‘‘near-

isogenic’’ effects.

Figure 4a shows, for all metabolites, the average percent

difference from the combined-site conventional control

mean, standard deviation, first percentile, and 99th per-

centile for the trait-positive, trait-negative and conven-

tional hybrids (see Supplementary File S5 for results for

individual metabolites). Figure 4b provides information

regarding the magnitudes of differences in histogram form.

As is readily observed, the distribution and magnitudes of

differences for metabolites assessed across each hybrid

grouping are remarkably similar (see Supplementary File

S6 for individual metabolites). This approach allows the

distribution of magnitudes of differences observed for the

trait-positive, trait-negative, and conventional hybrids to be

visually compared to each other and shows that, broadly,

the GM and ‘‘near-isogenic’’ effects assessed in this study

have no major impact on metabolite variation.

3.5.3 Variance components analysis

Variance component analysis (VCA) was conducted to

quantify the effect of the test factors on the maize grain

metabolite profiles. The results of the VCA combined

across all components is presented in Fig. 5 (see Supple-

mentary File S7 for variation in levels of individual

metabolites) and demonstrated that the contribution of

near-isogenic and GM effects were extremely small rela-

tive to the much larger location and tester effects (Fig. 5).

This is followed by a tester effect where the term ‘‘Tester’’

represents variation due to the two different females (tes-

ters) used in hybrid formation and the Rep (Location)

effect. The term ‘‘Variant (Tester)’’ represents variation

within the variants associated with a given tester and the

term ‘‘Segregant (Variant Tester)’’ represents variation due

to differences between the trait-positive and trait-negative

segregants. These latter terms encompass variation that

would be associated with any near-isogenic and GM trait

effects. It should be note that although the term ‘‘Segregant
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(Variant Tester)’’ involves a direct comparison of the POS

and NEG variants (for each tester set) some contribution

from a near-isogenic effect can be assumed and this term

cannot strictly be viewed as a GM effect. Regardless, it is

apparent that, overall, term ‘‘Segregant (Variant Tester)’’ is

associated with the smallest source of variation in this

study (Fig. 5). Indeed, this term was associated with pre-

cisely 0.0 % variation for 113 of the 153 metabolites

analyzed. Only a total of 6 metabolites (cholesterol, etha-

nolamine, lysine, melezitose, shikimic acid, and squalene)

had a Segregant (Variant Tester) effect of [5 % (i.e.

147/153 of metabolites had values\5 %). Of these, most

were associated with high residuals, and/or larger variation

attributable to other factors such as location or tester, and

iii) no consistent pattern of differences between the paired

negative- and positive segregant-derived hybrids. As an

illustrative example, lysine had a Segregant (Variant Tes-

ter) of 5.44 % but the variance component term for loca-

tion was 58.37 %. Pairwise comparisons of lysine levels

showed that, for both the S4062Y and T2502Z hybrids

Trait Sample Size
Average Percent 

Difference
Standard 
Deviation

1st 
Percentile

99th 
Percentile

Control 918 -0.00 24.67 -65.16 61.91

NEG 3672 -0.32 28.61 -61.50 81.85

POS 3672 2.43 31.11 -62.36 95.74
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Fig. 4 a (Upper table) shows

the average percent difference

(for all metabolites) from the

combined-site conventional

control mean, standard

deviation, first percentile, and

99th percentile for the trait-

positive, trait-negative and

conventional control hybrids.

b (Lower panels) presents the

average percent difference from

the combined-site conventional

control mean in histogram form

where the x-axis is magnitude of

difference and the y-axis is

frequency of observations

(expressed as percent)
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tester, only one of the POS entries showed a statistically

significant difference (a = 0.05) when compared to the

conventional control values. As an other example, differ-

ences in shikimic acid levels between POS and NEG seg-

regants are associated with only one tester (S4062Y,

Supplementary File S3) but not the other (T2502Z, Sup-

plementary File S4).

These results, which highlight a lack of any consistent

effect that could be associated with GM, are consistent

with those of Venkatesh et al. (2015a, b). The greater

impact of germplasm and environment on compositional

and metabolite variation is becoming increasingly well-

established in studies on GM crops (Harrigan et al. 2010;

Herman and Price 2013) and it is increasingly evident that

the introduction of a GM trait is a negligible contributor to

that variation, and even less than that associated with near-

isogenic effects.

4 Concluding remarks

This study allowed a comparative evaluation of the effect

of GM trait insertion and residual genetic variation on the

maize grain metabolome in the context of variation asso-

ciated with conventional breeding and growing location.

Overall, the study was characterized by very few statisti-

cally significant differences and it was evident that GM

trait insertion had little effect on the grain metabolome.

Residual genetic variation was also only a minor contrib-

utor to variation but it was greater than that of the effect of

GM and could therefore be considered a potential source of

statistically significant differences observed between GM

and non-GM comparators. This was evidenced, in this

study, by the fact that some differences observed between

the GM trait-positive and trait-negative hybrids did arise

even though these were never reproducible across the study

for any metabolite assessed.

In an earlier publication (Venkatesh et al. 2015b), we

evaluated maize grain composition in the context of natural

variability associated with conventional germplasm and the

impact of the multiple backcrossing steps used to develop

both conventional and GM maize products. That study used

the same sample set assessed here and the results showed

that differences that would be observed in comparisons

between any near-isogenic comparators, conventional or

GM, can exceed that of GM effects but that the effect of

GM and residual genetic variation on composition are

markedly less than the effects of conventional breeding or

growing location. The small number of statistically sig-

nificant, but not biologically relevant, differences observed

in composition studies of GM crops may, in most cases,

simply be associated with residual genetic variation. The

results from the current study described here show that this

conclusion extends to assessments of the metabolome.

Our results have implications for practices and princi-

ples of safety assessments of GM crops. The absence of

unintended biologically relevant compositional conse-

quences observed after decades of composition studies on a

range of GM crops support the safety of the GM process

(Herman and Price 2013). Furthermore, in light of our
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analysis averaged across all

metabolites These results

highlight the lack of any trait

effect; the term Tester

represents variation due to the

two different female lines used

in hybrid formation.

Location*Entry effect which

represents the effect of the

interaction between location and

each of the hybrid entries. The

term ‘‘Variant (Tester)’’

represents variation within the

variants associated with a given

tester and the term Segregant

(Variant Tester) represents

variation due to differences

between the trait-positive and

trait-negative segregants
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results, the results of previous studies, whether composi-

tional or based on omics technologies, that may have

attributed minor differences between near-isogenic con-

ventional and GM comparators to the presence of the GM

trait may need to be re-interpreted. Metabolomics studies

can only have merit in comparative assessment of GM

crops if there is a hypothesis that directly associates

changes in metabolite levels with both a given GM trait and

with a potential safety concern. This is an unlikely scenario

given the extensive variability of the grain metabolome

attributable to factors considered to be associated with a

history of safe use (e.g. differences in growing environ-

ment, conventional breeding) and the limited nutritional

coverage of the metabolome particularly compared to that

offered by traditional compositional studies. Issues related

to safety and nutrition are therefore more effectively

addressed through targeted hypothesis-driven evaluations

based on compositional assessments that cover key nutri-

ents and that provide clear interpretable endpoints.
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