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Abstract Analytical drift is a major source of bias in mass

spectrometry basedmetabolomics confounding interpretation

and biomarker detection. So far, standard protocols for sample

and data analysis have not been able to fully resolve this. We

present a combined approach for minimizing the influence of

analytical drift on multivariate comparisons of matched or

dependent samples inmass spectrometry basedmetabolomics

studies. The approach is building on a randomization proce-

dure for sample run order, constrained to independent ran-

domizations between and within dependent sample pairs (e.g.

pre/post intervention). This is followed by a novel multivari-

ate statistical analysis strategy allowing paired or dependent

analyses of individual effects named OPLS-effect projections

(OPLS-EP). We show, using simulated data that OPLS-EP

gives improved interpretation over existing methods and that

constrained randomization of sample run order in combina-

tion with an appropriate dependent statistical test increase the

accuracy and sensitivity and decrease the false omission rate

in biomarker detection.Weverify these findings and prove the

strength of the suggested approach in a clinical data set

consisting of LC/MS data of blood plasma samples from pa-

tients before and after radical prostatectomy. Here OPLS-EP

compared to traditional (independent) OPLS-discriminant

analysis (OPLS-DA) on constrained randomized data gives a

less complex model (3 versus 5 components) as well a higher

predictive ability (Q2 = 0.80 versusQ2 = 0.55).We explain

this by showing that paired statistical analysis detects 37

unique significant metabolites that were masked for the in-

dependent test due to bias, including analytical drift and inter-

individual variation.

Keywords Metabolomics � Chemometrics �
Dependent samples � Analytical drift � Run order design �
Effect projections

1 Introduction

A challenge in metabolomics is analysis of large sample

cohorts or samples measured at different points in time

since the analytical drift often introduces bias that obscures

the analysis of data. This includes common situations such

as, comparison of matched sample pairs (e.g. control versus

case or pre versus post intervention) and matched sample

series (e.g. individual subjects over time or the duration of

a process). By default this is accounted for by random-

ization of the sample run order, with the assumption that

systematic bias should be made independent of the biolo-

gical variation of interest. NMR has thanks to its robustness

so far been the leading tool in metabolomics for so called

metabolome wide association studies (MWAS) (Chadeau-

Hyam et al. 2010) as well as for combining data acquired

over long periods of time or at multiple centers (Lindon

et al. 2005). However, with the superior sensitivity of mass

spectrometry (MS) there is a major incentive to solve this
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problem also for these techniques (Martin et al. 2014).

Progress has been made within the field using mainly

quality control (QC) sample strategies to make post ana-

lysis correction of the data to remove variation related to

analytical drift (Dunn et al. 2011). This has proven effi-

cient, but only solves part of the problem since some types

of variation, caused e.g. by drops in sensitivity, or the fact

that different compounds or compound classes with vary-

ing chemical properties are showing different drift patterns,

are more or less impossible to correct for afterwards (van

der Kloet et al. 2009). To account for or minimize such

variation the actions must be taken prior to or during the

analytical run. Actions prior to the analytical run is about

creating a systematic scheme for the sample run order

combining experimental design with randomization. Such

approaches are simpler, more straightforward and

mathematically more logical compared to actions during

the actual run, and can if carried out correctly have a large

positive impact on minimizing systematic bias in metabo-

lomics data, or other analytical data. An example of an

already existing and accepted approach is to use ex-

perimental design for creating sample run order schemes,

e.g. to obtain a balanced distribution between controls and

cases in separate batches or well plates. In the same way it

would make sense to use a priori information about sam-

ples when creating analytical run order schemes when

dealing with matched or dependent samples. The driving

force for this is a higher quality output data more suitable

for the following statistical analysis and evaluation. Thus in

order to minimize the bias from the systematic instrumental

drift on the comparison between matched samples, e.g.

controls or cases or the same subject before and after an

intervention, the most logical approach would be to keep

them together as a separate item in the analysis. In this way

the risk for confounding the biological variation of interest

between the matched samples with the instrumental drift is

minimized, something that is not guaranteed by full ran-

domization. However, for this to have impact on the end

results it requires that the subsequent statistical analysis

also considers the sample matching or dependency. This

can be compared to classical statistical approaches, where

tests for paired and dependent samples exist in many

shapes and forms. Nevertheless, in metabolomics studies

the common analysis pipeline includes some type of pat-

tern recognition based on multivariate statistics for eluci-

dating metabolite signatures of biological relevance and

predictive power. Most of these approaches, including all

commercially available software, do not take into account

paired or dependent samples in the analyses. Apart for

being incorrect statistically it also diminishes the effect of a

designed run order considering matched samples as at-

tached items, as discussed above. There are however a few

examples of multivariate approaches where samples de-

pendency have been considered. (Keun et al. 2004; Lund-

stedt et al. 2010; Stenlund et al. 2009) Furthermore

supervised multivariate approaches for the separation of

between and within individual variation considering de-

pendent subjects have been proposed (van Velzen et al.

2008; Westerhuis et al. 2010; Xu et al. 2014). Such ap-

proaches allow multivariate statistical analysis of paired or

dependent samples and would thus benefit from a designed

run order to minimize the confounding of instrumental drift

bias with the investigated biological effect.

We present an approach for minimizing the influence of

analytical drift on multivariate comparisons of matched

samples in mass spectrometry based metabolomics studies.

This is based on a ‘‘constrained’’ between and within

matched item wise randomization procedure for sample run

order, and a multivariate statistical analysis strategy al-

lowing paired or dependent analysis based on orthogonal

partial least squares (OPLS) (Trygg and Wold 2002) named

OPLS-effect projections (OPLS-EP). The run order is

created by considering matched samples as an attached

item and randomization is carried out item wise, followed

by a within item randomization to make sure that the

within item order is random over the whole run. Multi-

variate statistical analysis on the acquired data is then

carried out by means of OPLS-EP providing a dependent

multivariate statistical analysis taking advantage of the

OPLS method in terms of model interpretation. In sum-

mary we show how the combination of the suggested

constrained randomization strategy and EP by OPLS

largely facilitates interpretation and biomarker pattern

discovery in metabolomics studies.

2 Materials and methods

2.1 Constrained randomization of runorder

The constrained randomization is based on a two-step

procedure including a between and within item random-

ization. Thus, each sample is given two random numbers;

where the first (RANDIND) is unique for each individual

sample and the second (RANDMATCH) is shared for the

individual samples in the same matched group or depen-

dent item. The samples are then sorted in two steps; first

upon RANDMATCH and then upon RANDIND. This pro-

duces a run order where each item (matched group) is kept

together in the analysis whereas the within item run order is

randomized over the whole run, meaning that the only

information that has to be un-blinded is which samples that

are belonging to the same match group or dependent item

(Fig. 1).

1668 P. Jonsson et al.

123



2.2 Effect projections by means of OPLS

(OPLS-EP)

In studies were the same (or matched) subject(s) has been

characterized by the same variables before and after an in-

tervention, the data can be seen as two matrices X1, in-

cluding samples pre intervention, andX2, including samples

from the same (or matched) subjects post intervention. PLS-

or OPLS-discriminant analyses are common multivariate

statistical tool within metabolomics to model and interpret

the differences between the two sample sets X1 and X2.

However, these methods focus on finding the average dif-

ference between X1 and X2 and do not take into account the

matched or paired sample information. This is similar to

using an un-paired statistical test for defining significance in

a data set consisting of paired samples. In contrast, our

suggested method of EP by means of OPLS (OPLS-EP)

models the variation in the ‘‘effect matrix’’ XE, formed by

subtracting X1 from X2, that differs from zero. XE then

contains the effect of the intervention for each individual

subject. In OPLS-EP the effect matrix XE is used together

with a target vector of identity y, consisting of ones only.

OPLS is then used to find the relation between XE and y. XE

and y should not be mean centered prior to modelling butXE

can be scaled as appropriate. Variables that have the largest

absolute average in XE will have the largest impact on the

model. If each variable in XE is scaled by dividing with its

standard deviation the weight vector w will be proportional

to the t values (from which p value are calculated) in a

dependent (e.g. paired) t test for each variable.

2.3 Data sets

2.3.1 Data set from Westerhuis et al. (2010)

The data in Table 1 was designed with the objective to

model the differences between before and after treatment.

In the data set ‘‘variable 1’’ is set to have a different

response for males and females (?1 for men and ?3 for

women), ‘‘variable 2’’ has a common response (?2) for

all subjects and ‘‘variable 3’’ shows no response with

treatment. Furthermore, all variables were designed to

contain large individual differences. Westerhuis et al. used

the data to exemplify the features of their proposed ML-

PLS-DA method for considering dependent samples by

means of multivariate projections. Here we are using the

same data set to compare and highlight the differences

between the ML-PLS-DA, PLS-EP (an intermediate be-

tween ML-PLS-DA and OPLS-EP) and the OPLS-EP

approach suggested by us. In this way we aim to stepwise

clarify the benefits obtained by the EP and OPLS parts

respectively.

2.3.2 Simulated instrumental drift

A simulated data set was constructed to study how different

run order, magnitude of drift and type of statistical test

affected the outcome of a metabolomics study. The data set

consisted of 128 samples (64 matched objects; before and

after intervention) characterized by one variable. In the

‘‘before’’ sample class the simulated variable were set to be

Fig. 1 Scheme for constrained randomization of sample run order.

The same symbol corresponds to matched/dependent samples. Red

symbols pre intervention; Blue symbols post intervention. The

procedure produces a runorder (x-axis) where matched or dependent

samples are kept together as an item and randomization is done both

between and within items (Color figure online)

Table 1 Simulated data adopted from Westerhuis et al. describing

the same samples characterized by three variables before and after

treatment

Sample Subject Gender Variable 1 Variable 2 Variable 3

Before treatment

1 1 Male 20 10 20

2 2 Female 18 12 17

3 3 Male 16 15 14

4 4 Female 14 16 11

5 5 Male 10 2 8

6 6 Female 9 3 5

7 7 Male 7 7 2

8 8 Female 7 7 8

9 9 Male 3 9 14

10 10 Female 2 9 17

After treatment

11 1 Male 21 12 20

12 2 Female 21 14 17

13 3 Male 17 17 14

14 4 Female 17 18 11

15 5 Male 11 4 8

16 6 Female 12 5 5

17 7 Male 8 9 2

18 8 Female 10 9 8

19 9 Male 4 11 14

20 10 Female 5 11 17
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normally distributed around a mean value of 100 while the

mean value for the simulated variable in the ‘‘after’’ sample

class was set to a value of 105. The standard deviation in

both classes was set to the value 10. In addition an indi-

vidual variation was added which was normally distributed

around the value 0 with a standard deviation of 6. The full

simulation was done using the following code in Matlab;

Xbefore = normrnd(100,10,64,1);

Xafter = normrnd(105,10,64,1);

IND_VAR = normrnd(0,6,64,1);

Xbefore = Xbefore?IND_VAR;

Xafter = Xafter?IND_VAR;

This produces a power of approximately 0.80 for a de-

pendent (paired) Student’s t test (a = 0.05, 2-tailed) and

approximately 0.70 for an independent (un-paired) Stu-

dent’s t test (a = 0.05, 2-tailed). Furthermore a simulated

instrumental drift (reflecting changes in sensitivity) was

added to the data. Four different drift scenarios (a–d) were

simulated;

(a) ‘‘Slope’’, a slope ranging from 100 % to (100-drift)

%.

(b) ‘‘Step’’, a discrete step going from 100 % to (100-

drift) % occurring after 64 samples.

(c) ‘‘Wave’’, a sinus wave (one period) ranging from

(100-drift) % to 100 %

(d) ‘‘Random’’, as ‘‘Slope’’ but in random order.

Drifts ranging from 0 to 50 % were tested (unit steps).

Prior to applying the simulated instrumental drift to the

data the run order was set, using two different options; (1)

traditional, or full, randomization (TR) or (2) constrained

randomization (CR). The accuracy for both the dependent

and independent t test was estimated for each type of drift

(‘‘Slope’’, ‘‘Step’’, ‘‘Wave’’ and ‘‘Random’’), at each

magnitude of drift (0–50 %) and for each type of ran-

domization (TR or CR). The estimation of accuracy was

done by creating the variable 10,000 times and test if there

was a significant difference (a = 0.05, 2-tailed) between

before and after sample(s) before and after applying the

drift. The number of times that the tests displayed the same

result before and after addition of drift was divided by the

total number of tests (10,000) to get the estimated accu-

racy. The cause of error was studied by calculating; sen-

sitivity, specificity, false discovery rate (FDR) and false

omission rate (FOR) were the result before addition of drift

was considered as the true condition and the result after

addition of drift were seen as the test outcome. Accuracy

was calculated as (R(True Positive) ? R(True Negative))/

Total number of tests, sensitivity as R(True Positive)/

(R(True Positive) ? R(False Negative)), specificity as

R(True Negative)/(R(True Negative) ? R(False Positive)),
false discovery rate (FDR) as R(False Positive)/(R(True

Positive) ? R(False Positive)) and false omission rate

(FOR) as R(False Negative)/(R(False Negative) ? R(True
Negative)).

2.4 LC/MS radical prostatectomy data

2.4.1 Patients

Samples (n = 64) were selected from a clinical series of

men treated with radical prostatectomy between February

2005 and September 2006 at the Department of Urology,

Umeå University Hospital. Blood samples were drawn

immediately before surgery and approximately 3 months

after surgery. EDTA plasma was frozen and stored in

-80 �C awaiting further analyses. All participants gave

written consent for use of their blood samples in future

research projects and the study was approved by the Re-

search Ethics Board at Umeå University Hospital, Dnr

03-482.

2.4.2 Preparation of samples for LC/MS analysis

Plasma samples were allowed to thaw at room temperature

just before extraction. To 100 lL of plasma, 900 lL of

extraction solution (methanol/water (8:1)) with 4 internal

standards (Val-Tyr-Val, Leu-Enk, Sulfadimetoxin, Reser-

pine) was added and the samples were vigorously extracted

at a frequency of 30 Hz for 2 min using a MM301 vibra-

tion Mill (Retsch GmbH & Co. KG, Haan, Germany). After

120 min on ice, the samples were centrifuged at 14000 rpm

for 10 min at 4 �C. A 250 lL aliquot of supernatant was

transferred to a LC vial and evaporated to dryness.

2.4.3 Metabolite profiling

Untargeted metabolite profiling of plasma samples were

performed by UHPLC-QTOFMSMS (Agilent 6540)

equipped with a Kinetics 2.1 9 100 1.7u C18 column in

positive mode 70–1700 m/z. The injection volume was

1 lL and column oven temperature was set to 40 �C.
Constrained randomization was used to create the run order

scheme so that the samples in the matched pairs were run

adjacent to each other. Samples were analyzed by a 19 min

revered-phase chromatography with gradient elution at

0.5 min/min flow rate from 99 % mobile phase H2O

(0.1 % formic acid) to 99 % mobile acetonitrile (0.1 %

formic acid).

2.4.4 Data processing and analysis

Data processing was done in MassHunter Qualitative

Analysis software version B.06.00 (Agilent Technologies).

Molecular Feature Extraction was performed through the
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‘‘Find by Molecular Feature’’ function for a nontargeted

approach. The processing generated a list with 797 putative

metabolite peaks (m/z, retention time and peak area). Only

peaks found in both subjects for a least 50 % of the pairs

were used in the analysis. The processed data set thus

consisted of 128 samples (64 pairs) characterized by 390

variables (metabolite peaks). The data set was analyzed

using both an independent and a dependent Students’s t test

of all individual variables. This was followed by multi-

variate analysis using the common OPLS-DA approach as

well as the suggested OPLS-EP approach. The latter to

obtain a multivariate model considering the sample de-

pendency and to generate model scores revealing the

magnitude of the metabolite profile change associated with

the surgical intervention for each individual patient.

3 Results

3.1 Comparing ML-PLS-DA with OPLS-EP

A comparison between OPLS-EP and ML-PLS-DA was

done using the data presented by Westherhius et al.

(Table 1). In order to make the comparison and develop-

ment easier to follow an intermediate PLS-EP step was also

applied to the same data to clarify the individual impact of

the EP and the OPLS modeling respectively. For the effect

projection approach an effect matrix XE is created by

subtracting the pre-treatment data (pre) from the post-

treatment data (post). As the response a constant vector

y consisting of only ones are used and PLS or OPLS is used

to find the relationship between XE and y. In ML-PLS-DA

instead two classes ‘‘pre minus post’’ and ‘‘post minus pre’’

are constructed and PLS-DA is used to find the separatation

between those classes. This means that in ML-PLS-DA the

obtained X-matrix is [-XE;XE] and the response vector

used is [-y;y]. For the presented data all three modeling

approaches find a perfect fit to the response using two

components (in this comparison data is not scaled). The

only difference between ML-PLS-DA and PLS-EP is that

in ML-PLS-DA there is an exact negative copy of each

observation meaning that the number of observations is

twice as many. The scores T from ML-PLS-DA corre-

sponding to XE are identical to the scores T from PLS-EP,

while the scores corresponding to -XE are negative copies

of T from PLS-EP. Hence ML-PLS-DA contains redundant

information in the observation direction. Variable weights

W (not shown) and loadings P from ML-PLS-DA and

PLS-EP are also identical providing the same interpreta-

tion. The difference between OPLS-EP and PLS-EP is the

choice of multivariate method. OPLS separates the pre-

dictive and orthogonal variation into different components.

In this example the orthogonal component to[1] is related

to the gender difference while the predictive component

t[1] shows the effect of treatment. PLS on the other hand

mixes the two types of variation in both components, which

is also the case for ML-PLS-DA. Model scores and load-

ings for ML-PLS-DA, PLS-EP and OPLS-EP are presented

in Fig. 2. Scaling by the standard deviation will make the

models of ML-PLS-DA different from models of PLS-EP

if not a pooled standard deviation is used for ML-PLS-DA.

If a pooled standard deviation is not used the most im-

portant variables (variables with large effect and small

standard deviation) will be down scaled since the differ-

ence between the negative copies will contribute with large

variance.

3.2 Simulated instrumental drift

In order to investigate how analytical drift, run order and

choice of statistical method effect the accuracy, four dif-

ferent drift scenarios were tested, (i) a slope which simu-

lates a continues drop in sensitivity during an analytical

run, (ii) a step which simulates a clear discrete drop in

sensitivity in the middle of an analytical run, (iii) a wave

simulating a fluctuation (a sinus wave) of sensitivity during

an analytical run and (iv) random noise. Two different run

order approaches were tested (i) Traditional randomization

(TR) and (ii) constrained randomization (CR). Further-

more, two variants of Student’s t test (dependent (DEP) and

independent (IND)) were applied for evaluating the vari-

able significance. Regardless of the pattern of the drift, the

accuracy for both independent and dependent tests drops

with increased magnitude of drift using traditional ran-

domization (TR) (Fig. 3a–d). When using the constrained

randomization (CR) a dependent t test can maintain the

accuracy as long as the drift follows a pattern (Fig. 3a–c)

but in case of random drift (Fig. 3d) the accuracy drops in

the same way as when using the traditional randomization

(TR) (Fig. 3a–c). When using constrained randomization

(CR) together with an independent t test the accuracy drops

more rapidly in comparison with traditional randomization

(TR). The explanation to this is that the variation (caused

by the drift) within the two groups are maximized by the

constrained randomization (CR).

In Fig. 3e–h the cause of the drop in accuracy can be

studied in detail by evaluating four different measures of

error (using Slope drift). Here, it is clear that the major

cause of drop in accuracy for CR-IND, TR-IND and TR-

DEP is caused by increased number of false negatives since

the false omission rate (FOR) increases dramatically and

sensitivity decreases dramatically with increased drift, in

comparison to changes in specificity and false discovery

rate (FDR). CR-DEP was the only combination that

maintained a high accuracy (Fig. 3e–h) and the reason for

this is that it maintains a high sensitivity irrespective of the
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size of the drift (Fig. 3e). It is also clear that the problem

associated with drift is that it gives rise to false negatives

rather than false positives. Still, false positives are more

prone to occur using TR in comparison to CR where the

FDR is slightly lower.

3.3 LC/MS radical prostatectomy data

The processed LC/MS data from the radical prostatectomy

study was subjected to multivariate data analysis by means

of OPLS-DA and OPLS-EP. Prior to OPLS-DA modeling

the X-variables (LC/MS) where mean centered and scaled

to unit variance. For OPLS-EP only scaling to unit variance

was performed. The predictive ability of the models (Q2)

was estimated using a 64-fold cross validation procedure

(Wold 1978) (leaving one matched pair out). The predic-

tive ability Q2 is a statistical measure of the stability of the

models. For OPLS-DA this corresponds to the stability of

the between class difference and for OPLS-EP to the

stability of the projected effect. Each variable in X used in

the OPLS-DA model was scaled by the pooled standard

deviation for each variable for the two classes (pre and post

surgery) while the variables in XE used in OPLS-EP was

scaled by the standard deviation of each variable. Com-

paring the models based on the two methods (OPLS-DA

and OPLS-EP) it was seen that the OPLS-EP model was

less complex in comparison to the OPLS-DA model re-

garding the number of significant components, 3 (1 pre-

dictive ? 2 orthogonal) for OPLS-EP versus 5 (1

predictive ? 4 orthogonal) for OPLS-DA. The reason for

this being that the OPLS-DA model needs to handle more

orthogonal variation (individual variation caused by a

higher number of samples as well as variation caused by

analytical drift since the sample dependency is not con-

sidered). Both methods showed a similar description of the

response variation (pre versus post surgery) (R2Y; OPLS-

DA: 0.92, OPLS-EP: 0.94) however the OPLS-EP model

gave a higher predictive ability of the response variation

Fig. 2 Comparison ofmodel results fromML-PLS-DA (left column a–
c), PLS-EP (middle column d–f) and OPLS-EP (right column g–i). All
threemodels fits the data perfectly (R2 = 1), however the interpretation

differs between them. Scores for ML-PLS-DA (a, b) showing a

separation between pre minus post samples (red bars) and post minus

pre samples (blue bars) mixed with gender differences (odd numbers:

males, even numbers: females) in t[1] (a) and a compensatory effect in

t[2] (b). The score plots (d, e) for PLS-EP are identical to the score plots

fromML-PLS-DAexcept for that they do not contain a negative copy of

each observation. Scores for OPLS-EP showing the effect of treatment

in t[1] (predictive component, g) and the gender difference in to[1]

(orthogonal component, h). Loadings for ML-PLS-DA (c), PLS-EP
(f) and OPLS-EP (i) showing the mixed variable contribution in the two

components for ML-PLS-DA and PLS-EP and the clear division of the

different variable contributions into predictive and orthogonal compo-

nents for OPLS-EP (Color figure online)
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(Q2; OPLS-DA: 0.55, OPLS-EP: 0.80). This suggests that

there is a clear structure in the data associated with the

sample dependency. To verify this all variables were tested

for univariate significance using t tests (dependent and

independent). For the independent t test 33 of the 390

variables (8.4 %) were found significant (p\ 0.05)

Fig. 3 CR-DEP (red line), CR-IND (turquoise line), TR-DEP (blue

line) and TR-IND (green line).In a–d four different types of drift were

evaluated Slope (a), Step (b), Wave (c), and Random (d). In a–c the

common trend is that CR-DEP is the only combination that maintains

a high accuracy with increasing drift. Applying a random drift

(d) none of the combinations can maintain a high accuracy with

increased drift. In e–h four different measures of error are evaluated

using the Slope drift. Sensitivity (e), Specificity (f), False discovery

rate (FDR) (g) and False Omission Rate (FOR) (h). All four

combinations show a fairly high Specificity (f) and fairly low FDR

(g) independent of the magnitude of the drift. The major differences

seen are that CR-DEP maintains a high Sensitivity (e) and a low FOR

(h) with increasing drift as opposed to the other combinations.

Although less evident, CR accounts for a lower FDR (g) and higher

Specificity (f) as compared to TR (Color figure online)
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whereas for the dependent t test 66 (16.9 %) variables were

found significant. 29 (7.4 %) variables were considered

significant by both tests while only 4 (1.0 %) variables

were found to be uniquely significant by the independent

test and 37 (9.5 %) by the dependent t test. The 37 vari-

ables found uniquely significant by the dependent t test

were further scrutinized and it was seen that they could be

divided into three major categories being, (i) variables ef-

fected by analytical drift, (ii) variables showing a large

variation between individuals and (iii) variables showing a

deviating variation for one or a few patients (sample pairs)

(Fig. 4). Interpretation or ranking of variables importance

for OPLS and PLS models can be done in different ways,

interpreation of weights (w), loadings (p), regression co-

efficents, selectivity ratio (Rajalahti et al. 2009) or VIP

(variable influence on projection) (Galindo-Prieto et al.

2014). The different strategies will give slightly different

ranking of variables (but that is outside the scope of this

article). We here choose to use the predictive loading

(p[1]) for the OPLS-EP model and compare that to the

outcome of the the univariate test (Fig. 5b). From the figure

it can be seen that the OPLS-EP predictive loading (p[1])

does not correlate perfectly with the significance ranking of

the univariate test. However there is a clear trend that the

significant variables from the univariate test are found

among the most influential variables in the OPLS-EP

model.

In addition, the OPLS-EP model provided a straight-

forward visualization of the individual responses to the

surgical intervention (radical prostatectomy) as an effect

projection (Yhat) focusing on the change in the interven-

tion specific metabolic signature of the dependent samples

(Fig. 5a). Here, the effects could be compared to the target

value (Yhat = 1) in order to detect individuals or sub-

groups of individuals with a deviating metabolic response

to treatment.

4 Discussion

Our results show that the suggested constrained random-

ization procedure is advantageous in studies including de-

pendent or matched samples. It is evident that by keeping

dependent samples together as an item in the analysis

Fig. 4 Examples of variables found significant by dependent but not

by independent Student’s t test representing the three scenarios

discussed in the text, (i) variables effected by analytical drift, (ii)

variables showing a large variation between individuals and (iii)

variables showing a deviating variation for one or a few patients

(sample pairs). Peak area for the variable peak plotted against the run

order for each matched pair (before and after surgery). The length of

the arrow defines the magnitude of change in peak area between the

matched samples, while the direction defines if there is an increase

(up) or decrease (down) in peak area between the samples. Left

column (a, c, e); uncorrected variables, corresponding to the

independent test. Right column (b, d, f); the same variables after

correction (peak area after - peak area before), corresponding to the

dependent test. a Variable affected by analytical drift, p(independent

test) = 0.75. b the same variable as in a after correction, p(dependent

test) = 0.020. c Variable showing large variation between indi-

viduals, p(independent test) = 0.11. d The same variable as in c after

correction, p(dependent test) = 0.016. d Variable showing large

deviation for one individual, p(independent test) = 0.18. e The same

variable as in d after correction, p(dependent test) = 0.00013
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instrumental drift bias will be practically un-confounded

with the biological variation of interest, i.e. within item

variation, which in turn facilitates interpretation and

biomarker discovery by means of statistical analyses that

consider the sample dependency. In a way this is chal-

lenging the common statistical assumption of a fully ran-

domized run order for handling potential confounding bias.

However, it is clear that a traditional randomization ap-

proach will not be able to completely reduce the bias in-

troduced by instrumental drift over the analytical run, due

to the fact that dependent samples can end up at completely

different ends of the analytical run making it difficult, if not

impossible, to separate the true biological effect from the

instrumental drift variation. A criticism to be expected

towards the suggested constrained randomization is that it

complicates the design of fully blinded studies. However,

the only difference between a fully blinded study and a

study based on the suggested approach is that the sample

matching or dependency has to be known prior to analysis.

Apart from that the approach is completely based on full

randomization both between and within dependent items so

no information in relation to the biological question of

interest, e.g. control/case or pre/post intervention, is nec-

essary to reveal. We thus consider the benefits of the

suggested constrained randomization approach over the

traditional to be so significant that it is by all means jus-

tified to alter the traditional randomization strategy to

better suit the study design. After all the aim of metabo-

lomics or other bioanalytical studies is to generate data of

high quality that allows addressing pre-defined questions

and hypotheses with high reliability and to obtain this it

makes sense to at least start off with the best possibilities in

terms of design of the study and run order prior to the

actual analysis step.

Common practice regarding data analysis in metabo-

lomics studies is to use some type of multivariate statistical

approach to build predictive models of, and extract

biomarker patterns from, the whole metabolite profile

generated in the sample analysis. For this the so called

multivariate projection methods, e.g. PLS or OPLS (Trygg

and Wold 2002; Wold et al. 2001), have become very

popular since they offer a high level of transparency in the

Fig. 5 a Effect projection plot. Model estimation of the projected

effect (Yhat). The dotted line (Yhat = 1) indicates the target value for

the OPLS-EP model. Each individual patient corresponds to one

observation number and the magnitude of the projected effect is given

by the height of the corresponding black bar. Deviations from the value

1 for a specific patient indicate a larger ([1) or smaller (\1) metabolic

effect (difference between after and before treatment) in the model

direction (metabolic profile) associated with the surgical treatment.

b Histogram of the predictive loading (p[1]) from the OPLS-EP model

shows that variables significant in the both the independent and

dependent univariate tests (red dots) and variables significant only in

the dependent univariate test (blue dots) are among the most influential

variables in the OPLS-EP model (high absolute loading value (|p[1]|))

for the effect of surgery. Interestingly variables found significant only

by the independent univariate test (black dots) are found in connection

to the other significant variables in the model loadings (although at the

lower end of the ranking). Variables not found significant by any of the

univariate tests (grey dots) are as expected ranked low by the OPLS-EP

model (low absolute loading value (|p[1]|). However a few exceptions

can be found indicating that the multivariate model is picking up

variables as influential to the model that were not defined as significant

by univariate statistics (Color figure online)
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interpretation of the calculated models. Especially the ver-

sions of the methods focusing on discriminant analysis (DA)

are widely used since many applications involve searching

for differences between pre-defined sample classes where

matched or dependent samples are frequently occurring.

Although this is the case almost all applications of the DA

methods in metabolomics, and related fields, are focusing

on multivariate discrimination of sample classes by com-

paring the class averages and thus not taking the sample

matching or dependency into account. So, in cases where it

would have been a given to use a paired or dependent sta-

tistical test in univariate statistics this is far from obvious in

the multivariate case. This issue has been addressed previ-

ously and feasible multivariate approaches to resolve it has

been presented (van Velzen et al. 2008; Westerhuis et al.

2010; Xu et al. 2014). However, still the majority of the data

analyses presented in metabolomics studies are based on

comparing class averages instead of considering the existing

sample matching or dependency. Our addition in terms of

the presented effect projection approach coupled to OPLS is

here shown to include a number of useful features for the

analysis of omics data sets including matched or dependent

samples. By using the constructed effect matrix XE, con-

taining the individual effects in the dependent or matched

samples, for multivariate projections by means of OPLS

against a constant vector a paired or dependent multivariate

test is obtained where the individual subject’s effects dif-

ferent from zero can be statistically tested in a comparable

way to a traditional univariate hypothesis test. In addition,

this multivariate hypothesis test comes with all the addi-

tional features offered by the OPLS method, such as visu-

alization, interpretation and validation of the results as well

as the possibility to make predictions of the effects for new

samples based on the existing model. In addition, it is from a

user point of view completely straight forward to perform

this in any multivariate software offering the OPLS method,

which importance should not be underestimated. The in-

terpretation feature is one of the main benefits of the OPLS-

EP method, since it allows focusing on the effect related

variation in the predictive OPLS component, while the

orthogonal variation is modelled and can be interpreted

separately in additional orthogonal components. Compared

to the ML-PLS-DA by Westerhuis et al., as well as an in-

termediate PLS-EP approach used in the comparison, the

facilitated interpretation offered by OPLS-EP is clear from

our results and should be seen as a great asset of the pro-

posed method. In that respect ML-PLS-DA and PLS-EP

suffers from mixing of predictive and orthogonal variation

in the model components, which to some extent confuses the

interpretation. In addition it was also seen that ML-PLS-DA

and PLS-EP, due to the way the data is pre-treated (mean

centered), provides model scores with a mirror pattern that

creates artificial between sample differences. In this case it

creates a difference between male and female subjects be-

fore treatment that is not present in the data (Fig. 3). These

problems are resolved by the OPLS-EP approach by

showing the magnitude of the individual effects in the

predictive component while revealing other correct sys-

tematic differences of interest in the orthogonal compo-

nents. In addition, the EP approach of applying a

multivariate projection method on the effect matrix (XE) is

a natural extension of a dependent univariate significance

test, which makes it intuitively more graspable as compared

to other working multivariate versions including ML-PLS-

DA.

An issue, which is often discussed in clinical applica-

tions of omics studies, is how to be able to detect or define

subpopulations of disease at diagnosis or how to be able to

monitor the individual response to an intervention or

treatment based on some biochemical signature or pattern

(Trygg et al. 2007). We hypothesize that the proposed

OPLS-EP method can be a tool to aid in this development

of new and more informative molecular diagnostics. The

basis for this hypothesis is that the multivariate effect

projection score (Fig. 5a) will contain information that can

be used to detect subgroups either by visual detection and

statistical significance testing or by correlating to other

sources of data, e.g. gene mutations, clinical outcome,

survival, etc. (Malone et al. 2014). Regarding response to

an intervention or treatment it would be obvious to use the

individual EP to define which subjects that show a statis-

tically significant effect and which do not. This response

grouping could be used as a means by itself to distinguish

responders from non-responders, or to define a response

continuum, but could also be used to correlate against other

data sources to get more insight into what causes these

differences in response. In our presented example of pa-

tients before and after radical prostatectomy surgery it

would for instance have been interesting to correlate the

effect projection scores against the future clinical outcome

in terms of disease relapse, in order to obtain a molecular

signature post surgery that can be used to base further

treatment decisions on. Furthermore, subgroups of other

than clinical origin would also be valuable to detect and

evaluate. This could then work as a tool to detect unknown

biases, information that could be useful in the design of

new studies e.g. for future matching of samples. It is also of

importance to investigate the usefulness of the orthogonal

variation in the OPLS-EP models. One interesting clinical

application could be to study if it is possible to separate the

effect of a specific treatment and possible adverse effects

so that the treatment effect is modelled in the predictive

model component while the adverse effect or effects are

modelled in the orthogonal counterparts.

As shown by our results the constrained randomization

approach is vital for the OPLS-EP method to perform
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optimally when analytical drift is present. The reason for

this being that the constrained randomization as opposed to

the traditional fully randomized counterpart makes sure to

minimize the influence of analytical drift on the between

dependent sample differences. These issues have earlier

been addressed by performing post correction of the ac-

quired data in order to correct for the bias introduced by the

instrumental drift (Dunn et al. 2012; Kamleh et al. 2012;

van der Kloet et al. 2009). Although sufficient and so-

phisticated, the need of major post correction methods is

usually a sign of suboptimal procedures prior to and during

the analytical run. In our mind post correction methods

should be a tool to fine tune the quality of the data to allow

higher sensitivity analyses for e.g. biomarker discovery.

Thus we believe that such post correction could be valuable

as a complement to the constrained randomization ap-

proach and maybe create means to further optimize the

quality of the data. The aim of most metabolomics studies

is to some extent linked to biomarker discovery, meaning

identification of metabolites or patterns of metabolites that

can be used for diagnostic or prognostic purposes, target

identification or as a means to get a deeper understanding

of the studied biological process. In this paper we show that

when the study design is set up to contain dependent or

matched samples it is of value for the sensitivity of the

biomarker discovery to use the constrained randomization

approach for minimizing drift bias combined with a data

analysis approach taking the sample dependency or

matching into account, e.g. paired Student’s t test or OPLS-

EP. In the example including radical prostatectomy pa-

tients pre and post surgery it was seen when comparing the

conventional OPLS-DA approach to the OPLS-EP ap-

proach that the latter provides a much more reliable and

sensitive output in terms of a less complex model due to

minimization of analytical drift bias as well as a more

predictive model, which is directly associated with the

detection of a higher number of significant metabolites, i.e.

potential biomarkers. This was also verified and further

investigated in detail by comparing the output of an un-

paired versus a paired Student’s t test on the variable sig-

nificance. We saw that the paired test was able to find 37

significant variables (metabolite peaks) that were masked

for the independent test due to different sources of bias,

here identified as instrumental drift, large inter-individual

variation and few largely deviating individuals (Fig. 4).

We also showed that these 37 significant metabolite peaks

were ranked among the top influential variables in the

multivariate OPLS-EP model, which validates the value of

OPLS-EP from a biomarker detection perspective

(Fig. 5b). The identified sources of bias have a common

denominator in that they cause the baseline samples, here

pre surgery, to have different starting points, making the

independent analyses severely suboptimal since they focus

on the difference between group averages. This is also

obvious when using e.g. OPLS-DA (independent analysis)

for analyzing dependent data, which is the common case in

most studies today. In cases where the bias is of biological

origin, i.e. baseline samples have different starting points

due to biological differences the dependent OPLS-EP ap-

proach will resolve this problem on its own, independent of

randomization method. However, when the bias is due to

analytical drift the use of the constrained randomization

prior to the OPLS-EP analysis will be absolutely crucial. In

our mind this raises a question whether it would be a

preferred strategy to work more according to the procedure

sample matching—constrained randomization—OPLS-EP

even in cases where there is no true sample dependency, at

least in the biomarker discovery phase. This is already the

case in many clinical studies where samples are matched

according to e.g. gender, age, and time in storage. We

believe that this type of matching could be extended further

to include other types of studies but also be made more

efficient and correct by including more data describing the

samples. For instance in the case of clinical studies or in

biobanks a wealth of parameters are usually collected de-

scribing the samples or subjects. By taking advantage of

this information multivariate tools like principal compo-

nents analysis, clustering techniques or similar could be

utilized for a more sophisticated sample matching. Our

hypothesis is that by using this matching as a means for

constrained randomization followed by OPLS-EP we will

obtain a sensitive tool for biomarker pattern discovery. The

fact that the matched samples are not truly dependent

might be to challenge existing statistical rules, however if

the sensitivity for detecting biomarkers is higher and that

proper validation of detected biomarkers in new studies

and settings verifies the value, then this development serves

a purpose making it worthwhile to consider as a preferred

method of choice.

Futurewise, we foresee many interesting applications for

the proposed procedure that we aim to explore in more

detail. For instance we hypothesize that it can be of great

value for solving problems related to drift in data from

samples measured at different points in time, e.g. ex-

ploratory study and follow up study for validation/verifi-

cation, samples measured at different labs, e.g. multi-center

studies, as well as the high reward problem of combining

and interpreting data from the same samples measured at

different analytical platforms or originating from different

sources within an individual or system. From a clinical

perspective we believe that the suggested methodology

paves way for higher sensitivity in detection of subgroups

among individuals, e.g. in terms of disease aggressiveness

or response to treatment. Furthermore we envisage that the

methodology will support the development and application

of clinical studies designed as interventions to further
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increase sensitivity in detection of biomarkers and disease

subgroups.

5 Concluding remarks

In conclusion the presented results show how the combi-

nation of the constrained randomization strategy and mul-

tivariate analysis by means of EP by OPLS can increase the

sensitivity and simplify the interpretation of biomarker

patterns in metabolomics studies of dependent samples.

Constrained randomization and OPLS-EP should be seen

as novel and useful additions to the field of metabolomics,

as well as in general to other fields involving multivariate

characterization and comparison of dependent samples.
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