
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11302-021-09810-w

REVIEW ARTICLE

ATP transporters in the joints

Ane Larrañaga‑Vera1 · Miguel Marco‑Bonilla2 · Raquel Largo2 · Gabriel Herrero‑Beaumont2 · Aránzazu Mediero2 · 
Bruce Cronstein1

Received: 12 April 2021 / Accepted: 9 July 2021 
© The Author(s) 2021

Abstract
Extracellular adenosine triphosphate (ATP) plays a central role in a wide variety of joint diseases. ATP is generated intracel-
lularly, and the concentration of the extracellular ATP pool is determined by the regulation of its transport out of the cell. 
A variety of ATP transporters have been described, with connexins and pannexins the most commonly cited. Both form 
intercellular channels, known as gap junctions, that facilitate the transport of various small molecules between cells and 
mediate cell–cell communication. Connexins and pannexins also form pores, or hemichannels, that are permeable to certain 
molecules, including ATP. All joint tissues express one or more connexins and pannexins, and their expression is altered in 
some pathological conditions, such as osteoarthritis (OA) and rheumatoid arthritis (RA), indicating that they may be involved 
in the onset and progression of these pathologies. The aging of the global population, along with increases in the prevalence 
of obesity and metabolic dysfunction, is associated with a rising frequency of joint diseases along with the increased costs 
and burden of related illness. The modulation of connexins and pannexins represents an attractive therapeutic target in joint 
disease, but their complex regulation, their combination of gap-junction-dependent and -independent functions, and their 
interplay between gap junction and hemichannel formation are not yet fully elucidated. In this review, we try to shed light 
on the regulation of these proteins and their roles in ATP transport to the extracellular space in the context of joint disease, 
and specifically OA and RA.
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Joint diseases

A number of metabolic, immunologic, inflammatory, and 
degenerative diseases affect the structures of the joint [1]. 
They result in reduced mobility and can be extremely pain-
ful and debilitating as they progress toward mobility failure. 
These problems are a leading cause of disability worldwide, 
representing a principal cause of dependence in the elderly, 
and can lead to increased mortality [2, 3]. Two of the most 
common disorders of the joint are osteoarthritis (OA) and 
rheumatoid arthritis (RA) [4, 5]. The socioeconomic burden 
of these pathologies is enormous; by 2040, nearly 78 mil-
lion US adults are expected to have some form of arthritis 

diagnosed [6]. OA, the most common form of arthritis, 
affected up to 14% US adults (32.5 million) in 2008–2014, 
according to United States Bone and Joint Initiative [7], 
and was responsible for 2.4% of all healthcare visits in that 
period. RA, an autoimmune form of inflammatory arthritis, 
has an estimated prevalence of 2% among the US population 
60 years of age and older [8]. OA is predominantly a degen-
erative disease that can affect almost any joint, but generally 
affects the hands, knees, hips, and feet, aging is its primary 
risk factor [9]. OA causes cartilage breakdown, subchondral 
bone sclerosis, osteophyte formation, and synovial inflam-
mation, leading to joint pain and physical disability in the 
aging population [10]. RA is a chronic autoimmune disease 
that can affect any joint, but generally involves the large and 
small joints of the hands, wrists, and feet and tends to be 
symmetrical in its effects [11]. RA is characterized by pain, 
swelling, and destruction of bones and cartilage, ultimately 
leading to joint destruction and disability [12]. It is primar-
ily driven by a significant synovial inflammatory response 
involving the innate and adaptive immune system [13], in 
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which fibroblasts in the synovium transform to an invasive 
phenotype, and inflammatory cells induce cartilage destruc-
tion and osteoclast generation that result in bone erosion, a 
hallmark of RA [14]. Although the two diseases differ in 
etiology, both trigger progressive joint destruction charac-
terized by pathological changes in articular cartilage, bone, 
and synovium [5].

Articular cartilage is responsible for reducing friction and 
cushioning the impact produced during movement [15]. This 
avascular, aneural, and alymphatic tissue provides an elastic 
and resistant structure on the surface of the joints. Carti-
lage is formed by a single cell type, the chondrocyte, which 
secretes the matrix [16].

Underlying bone, separated from the cartilage by the 
cement line, is constituted of a thin cortical lamella and the 
underlying trabecular cortical bone [17]. Bone is a min-
eralized connective tissue comprising three main types of 
cells: osteoblasts, osteocytes, and osteoclasts. Bone exists 
in a constant state of remodeling, which is important for 
the maintenance of normal skeletal structure and function. 
Osteoblasts synthesize the matrix and play a major role in 
bone mineralization, formation, and deposition; osteoclasts 
are multinucleated giant cells that originate from the hemat-
opoietic lineage and are responsible for the resorption of the 
mineralized bone matrix [18]. Osteocytes are derived from 
osteoblasts, are embedded within the mineralized matrix and 
are connected to each other by an intricate network of cana-
licular channels that coordinate the actions of osteoblasts 
and osteoclasts via the production of signaling molecules 
and sense mechanical stress [19].

The synovial membrane is the soft tissue lining the cavi-
ties of diarthrodial joints. Its main function is to produce 
the synovial fluid that minimizes joint wear and provides 
nutrients to the cartilage. In joint disease, the aggressive 
transformation of synoviocytes produces an inflammatory 
infiltrate that can destroy articular cartilage and cause bone 
erosion [14].

As the world population ages, the incidence of joint dis-
eases is projected to rise significantly in future [7]. There-
fore, increasing efforts are underway to find new treatments. 
There has been significant success in treating RA with drug 
therapy, including the introduction of new biologic and 
small-molecule drugs. In contrast, no new medical therapies 
for OA have been developed, although advances in orthope-
dic surgery can offer symptomatic relief for many patients.

ATP transporters

Extracellular adenosine triphosphate (ATP), a leading extra-
cellular signaling molecule acting in diverse physiological 
and pathological processes, has been shown to have a role 
in joint disease. Adenine nucleotides act as autocrine and 

paracrine signaling molecules at a large number of puriner-
gic receptors (P2 receptors) that are expressed to varying 
degrees on different cell types. Extracellular nucleotidases 
regulate extracellular ATP levels by dephosphorylating ATP 
to adenosine, which acts as an agonist at P1 receptors (a 
second class of purinergic receptors) [20].

As in other systems, released ATP in the bone microen-
vironment binds to purinergic receptors in an autocrine or 
paracrine manner. In the immune system, ATP released from 
damaged cells promotes cell migration through paracrine 
signaling [21, 22], whereas ATP released from migrating 
cells enhances cell motility in an autocrine manner [22–24]. 
This autocrine loop is essential for macrophage chemotaxis 
[25]. At least nine possible autocrine loops exist in resident 
peritoneal macrophages, with any one of three redundant 
feedback loops terminating on P2Y2, P2Y12, or adeno-
sine receptors sufficing for efficient chemotaxis [25, 26]. In 
the absence of pannexin-1 (Panx1), P2Y2 or P2Y12 mice 
exhibited efficient chemotactic navigation. This is blocked 
in the presence of apyrase as it degrades ATP and ADP, 
and also with the inhibition of multiple purinergic recep-
tors [25]. This chemotactic function of the purinergic loop 
is activated in conditions such as inflammation, infection 
or cell necrosis [24]. Another example can be observed in 
microglia, where cells release ATP as positive feedback to 
the increased extracellular ATP, via lysosomes. This local 
signal can be amplified to induce migration of remote micro-
glia, contributing to regenerative ATP signaling in the brain 
[24]. Chemoattraction also occurs in dendritic cells, where 
the activation of the P2X7 receptor by ATP, through Panx1 
induces plasma membrane permeabilization contributing to 
the release of ATP [27]. This autocrine purinergic receptor 
signaling is also essential to amplify the action of platelet 
activators [28, 29].

Several different mechanisms exist to transport ATP out 
of the cell to the extracellular space, including channel-
dependent mechanisms such as those involving connexin 
(Cx) hemichannels and pannexin (Panx) channels [30, 31].

Connexins

Connexins are composed of four transmembrane domains, 
two extracellular loops, and intracellular N- and C-termini. 
Connexins are a family of proteins that form hemichannels 
(or connexons) that can in turn form intercellular gap junc-
tions. More than 20 human connexin isoforms with differ-
ential functional properties and tissue distribution have been 
identified. They are commonly denoted by the word con-
nexin, abbreviated Cx, followed by the molecular weight 
[32]. Connexin hemichannels are formed by the oligomeri-
zation of six connexins, which can be six monomers of the 
same connexin or a combination of different connexins [33]. 
Two opposing hemichannels on adjacent cells can form a 
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gap junction that facilitates heterocellular communication 
[31].

Gap junctions and their importance in cell-to-cell trans-
port and communication have been extensively studied [34]. 
The functionality of unopposed hemichannels, although 
a newer concept, is also well documented. In brief, con-
nexin hemichannels form pores in the cell membrane that 
allow the transport of small molecules such as ATP, amino 
acids, reduced glutathione, NAD+, IP3, prostaglandin E2, 
and cyclic nucleotides to the extracellular space [35]. They 
can switch between open or closed conformation, and their 
pore, which is closed by default, can be induced to open in 
response to various stimuli, including changes in extracel-
lular calcium concentrations, cytosolic pH, or stress condi-
tions [33, 36].

Several connexin isoforms have been reported to be 
capable of releasing ATP through unopposed hemichan-
nels from different cell types, including Cx26, Cx30, Cx32, 
Cx36, Cx40, and Cx43, with Cx43 being the best studied 
[30, 37–39].

Pannexins

Pannexins are the human homologues of innexins, the 
proteins that constitute invertebrate gap junctions. Three 
isoforms, Panx1, Panx2, and Panx3, have been identified, 
although Panx1 is the most ubiquitously expressed and the 
best studied. Pannexin channels are involved in releasing 
extracellular ATP as a paracrine signaling ligand associated 
with inflammatory events [40, 41]. Panx1 can be activated 
and release ATP at physiological Ca2+ concentrations and 
membrane potentials in response to mechanical stimulation, 
caspase cleavage, or extracellular K+ [42–45].

Pannexins exist in the membrane as tetraspan proteins 
with intracellular N- and C-termini. Panx1 can be found as a 
hexamer and was recently described as an heptamer [46–48], 
while Panx3 forms hexameric single-membrane channels, 
and Panx2 is predicted to exist as heptamers and octomers. 
Pannexins can function as single-membrane channels and 
do not form gap junction channels [49, 50].

Shestopalov and Panchin have reported that Panx1 is 
expressed broadly, whereas Panx2 is expressed mainly in 
brain, and Panx3 in skin and connective tissues [51]. North-
ern blot studies indicate that Panx1 is ubiquitously expressed 
in human tissues, including the brain, lung, liver, skin, 
heart, skeletal muscle, spleen, thymus, pancreas, and colon 
[52]. Using custom-designed anti-Panx1 antibodies, Panx1 
expression has been found in the human brain, with variable 
levels in the lung, spleen, kidney, heart ventricle, and skin 
and in murine ear and tail cartilage [53]. Based on expressed 
sequence tags, mammalian Panx3 has been identified in syn-
ovial fibroblasts, osteoblasts, joints in murine paws, inner ear 
cartilage, and cochlear bone [52, 54]. Moreover, Panx3 has 

been detected by in situ hybridization in pre-hypertrophic 
chondrocytes, perichondrium and osteoblasts of embryonic 
day (E) 16.5 mice [55]. All three pannexin subtypes have 
been identified in several cultured mouse cell lines, includ-
ing osteoblast (MC3T3-E1), chondrocyte (ATDC5), and 
osteoprogenitor cell lines (C2C12), as well as in primary 
osteoblasts [56] (Table 1).

Panx1 can be inactivated by ATP release, CO2-mediated 
cytoplasmic acidification, channel blockers, or mimetic 
peptides [57, 58]. Another regulatory mechanism that has 
been proposed is phosphorylation of Panx1. During acute 
vascular inflammation, Panx1 phosphorylation at tyros-
ine 198 by Src-family tyrosine kinases results in increased 
channel activity [59]. Sustained neuronal depolarization is 
mediated by Panx1 activation thought phosphorylation of 
tyrosine 308, allowing the activation of NMDA receptors 
during anoxia [60]. Panx1 phosphorylation can also medi-
ate decreases in channel activity, as observed in HEK-293 
human embryonic kidney cells in which Panx1 channels 
were inhibited by nitric oxide [61].

Although there is considerable information available 
on the actions of connexins and pannexins in cellular ATP 
release, determining their relative contributions to ATP 
release and other signaling events is a major challenge in 
the field [40, 41]. In this review, we focus on the expression 
and activity of these channels in joint diseases.

ATP transporters in joint diseases

Cx43 in the joint

Although diverse connexins have been identified in joint 
tissues, Cx43 is the most widely expressed, found in chon-
drocytes, synovial fibroblasts, and bone cells, and it is con-
sidered to play a role in a variety of musculoskeletal patholo-
gies including OA, RA, and osteoporosis.

One of the most important hallmarks of OA and RA is 
the destruction of cartilage, and Cx43 is broadly expressed 
in chondrocytes, which produce and maintain cartilage. 
Because these cells are commonly found in individual lacu-
nae, Cx43 is more likely to be forming hemichannels that 
do not constitute gap junctions; indeed, the presence of 
hemichannels in chondrocytes has been confirmed in vitro 
(Fig. 1) [62]. However, the specific role of connexins in par-
ticular pathologies remain to be fully elucidated.

Chondrocytes from patients with OA are reported to 
express more Cx43 than healthy chondrocytes [63]. This 
phenomenon might be a consequence of the activation of a 
repair response, also observed in wound healing, that may 
maintain chondrocytes in a more immature, proliferative 
state. Although increased Cx43 expression enables con-
stant ECM remodeling, in the long term increased Cx43 
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expression and function could lead to the gradual formation 
of poor-quality fibrocartilage (Fig. 1) [64].

Connexin hemichannels are reported to respond to cycli-
cal mechanical loading in cartilage by increasing the con-
centration of ATP in the extracellular space, which would 
activate P2 receptors, calcium signaling cascades and, after 
ATP is dephosphorylated to adenosine, P1 receptors. This 
increase in ATP release is significantly reduced in the pres-
ence of flufenamic acid, an hemichannel inhibitor [65].

Cx43 hemichannels function as mechanosensitive 
ATP-release channels in different cell types [66–68]. Both 
bovine and human explant chondrocytes express Cx43 in 
the superficial region, down to approximately 200 μm below 
the articular surface [62]. This suggests that Cx43 performs 
uncoupled mechanotransduction primarily in the superficial/
middle zone of articular cartilage through mechanotransduc-
tion pathways different from those operating in the cells in 
deeper zones. Moreover, this could be related to the way 
that (as shown in other cell types) hypoxia regulates Cx43 
dephosphorylation, translocation, and proteosomal deg-
radation [69]. Suggestively, the size of this subpopulation 
of mechanosensitive chondrocytes expressing Cx43 in the 
cilium (~ 15%) is very similar to that of the subpopulation 
showing mechanosensitive purinergic Ca2+ signaling [70]. 
ATP may activate P2 receptors and thereby activate intracel-
lular Ca2+ signaling cascades that have an anabolic effect, 

upregulating proteoglycan and collagen synthesis and cell 
proliferation [71, 72]. In contrast, chondrocytes isolated 
from OA cartilage do not show mechanically induced ATP-
mediated hyperpolarization, even though P2Y2 mRNA 
expression is similar in normal and OA cells [72]. This 
indicates that the abnormalities of mechanotransduction in 
OA are not related to differences in P2 receptor expression 
but rather involve ATP desensitization due to an increased 
levels of ATP in the synovial fluid in OA [72, 73]. Moreover, 
Cx43 has been detected in meniscal cell clusters, suggest-
ing that it may be connected to the development of OA [74, 
75]. Furthermore, Cx43 and Cx45 levels within the damaged 
superficial zone and middle zone cartilage are elevated in 
patients with OA [62].

Cx43 might also be acting through channel-independent 
mechanisms in OA, working as a scaffold protein [76] bind-
ing to cytoskeletal proteins and regulating cytoskeletal archi-
tecture and cell proliferation [77, 78].

The inflammatory environment in rheumatic joints 
can further contribute to the regulation of Cx43 in carti-
lage. Inflammation, similarly to mechanical load, causes 
increased production and release of ATP by opening 
plasma membrane hemichannels; this leads to the acti-
vation of purinoceptors, resulting in increased calcium 
release [79]. Interleukin 1 (IL-1) is the best-studied 
cytokine associated with rheumatic diseases and is well 

Table 1   Roles of connexin and pannexin channels in cartilage and bone cell lines

Channel Cell type Function

Cx43 Chondrocytes • OA chondrocytes have increased Cx43 expression compared to healthy chondrocytes [63]
• The inflammatory environment in rheumatic joints enhances Cx43 function in cartilage [38]

Synoviocytes • OA synoviocytes have increased Cx43 expression compared to healthy synoviocytes [63]
• Cx43 induces the expression of OA-associated genes such as MMP genes or ADAMTS [81]

Osteoblast • Cx43 inhibits osteoblast precursor proliferation [89, 90]
• Cx43 is necessary for the anabolic proprieties of PTH [92–94]
• Diminished Cx43 levels influence the activity of bisphosphonates, reducing their anti-apoptotic effects on 

osteoblasts [95]
Osteocytes • Cx43 hemichannels are essential for osteocyte viability [86]

• Cx43 is responsible for the mechanosensing properties of osteocytes by promoting ATP release [97]
Osteoclasts • Cx43 is central to cell fusion in osteoclastogenesis in vitro [101]

Panx1 Chondrocytes • Panx1 mediates cell-to-cell interaction in response to cell stiffness [63]
Osteocytes • Panx1 forms a complex with the P2X7 receptor that promotes NLRP3 inflammasome activation [110]

• Panx1 enhances RANKL expression under apoptotic conditions [112]
• Panx1 enhances bone resorption in response to apoptosis [116]

Osteoclast • Panx1 is essential for osteoclast differentiation [114]
Osteoblast • Panx1 increases RANKL expression [112]

Panx2 Osteoblast • Panx2 expression levels do not change during osteoblast differentiation [132]
Panx3 Chondrocytes • Panx3 promotes chondrocyte differentiation by regulating intracellular ATP/cAMP levels [55]

• Panx3 inhibits cell proliferation [55]
• Panx3 induces ATP release during joint damage and triggers cartilage and joint destruction in OA 

[136–138]
Osteoblast • Panx3 promotes osteoblast differentiation [134]

• Panx3 is not required for postnatal bone remodeling [132]
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established to promote cartilage destruction. In rabbit 
articular chondrocytes, IL‐1 increases cytosolic Ca2+ con-
centrations, resulting in overexpression of Cx43. Tonon 
et al. have suggested that IL-1 could increase the abun-
dance of gap junctions between chondrocytes and synovio-
cytes, forming heterologous cell networks and favoring 
synovial invasion of the cartilage (Fig. 1) [80]. However, 
these experiments were performed under mechanical 

stimulation, and the potential role of hemichannels can-
not be fully established without further studies.

Another proposed role of Cx43 on chondrocytes relates 
to the hemichannel C-terminal domain (CTD). Recent stud-
ies reveal that CTD deficiency in mice alters chondrocyte 
structure and phenotype, leading to defective cellular pro-
liferation and decreased synthesis of matrix components. 
Cx43 is a substrate for a variety of metalloproteases (MMP) 

Fig. 1   Role of connexin 43 (Cx43) in healthy and arthritic joints. 
A) Under homeostatic conditions, the distribution of Cx43 (green 
structures) in cartilage depends on the location of chondrocytes in 
the tissue. In the area near the synovial capsule, Cx43 has formed 
hemichannels in chondrocytes. In contrast, the deep zone of the car-
tilage contains more abundant chondrocytes that allow the formation 
of gap junctions, favoring cell-to-cell interaction. B) In bone, Cx43 
in osteoblasts forms both hemichannels and gap junctions to inter-
act with proximal osteoblasts. In osteocytes, Cx43 alone maintains 
the formation of hemichannels. C) The inflammatory environment 
of an arthritic joint favors the expression of MMP13 and IL-1β. This 
increase is related to a rise in Cx43 in chondrocytes, which leads in to 

the release of calcium and ATP and to a dedifferentiation process that 
promotes chondrocyte senescence due to progressive degradation of 
the cartilage. D) The increase in Cx43 due to increased IL-1β allows 
the overexpression of genes associated with OA, such as MMP1, 
MMP13, and ADAMPS, and the release of intracellular calcium. It 
also promotes interaction with proximal chondrocytes through the 
formation of gap junctions, which leads to the proliferation of synovi-
ocytes in the cartilage. E) In bone, inflammatory conditions together 
with higher Cx43 abundance lead to the inhibition of osteoblast pre-
cursors and a decrease in bone formation and osteoclastogenesis in 
osteocytes in vitro
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that are upregulated in the joints of individuals with OA as 
a consequence of inflammation. MMP proteolysis of CTD 
may contribute to the phenotypic changes associated with 
functional alterations of Cx43 that lead to defective tissue 
repair and disease progression, especially considering that 
CTD is a pivotal player in regulating the chemical gating of 
Cx43 channels that influence the release of ATP [78].

Similar to cartilage, OA synovial membrane also shows 
increased Cx43 expression as compared to healthy tissue. In 
synoviocytes, Cx43 induces the expression of OA-associated 
proteins such as MMP-1, MMP-13, and ADAMTS, a disinte-
grin-like and metalloproteinase with a thrombospondin type 
1 motif (Fig. 1) [81].

Moreover, a collagen-induced arthritis rat model of RA 
[79] showed increased synovial Cx43 expression com-
pared to control rats. In vitro lipopolysaccharide inflam-
matory stimulus also enhanced Cx43 expression, and the 
MMP increase in response to IL-1 was shown to be Cx43 
dependent in cultured synovial fibroblasts [82, 83]. More 
importantly, in a genetic silencing study of Cx43, rats 
treated with short interfering RNA directed against the 
Cx43 gene (siCx43) showed reductions in joint swelling, 
arthritis scores, and numbers of osteoclast‐like cells. In cul-
ture, siCx43 reversed the lipopolysaccharide (LPS)-induced 
upregulation of TNF‐α, IL‐6, and IL‐1β mRNAs [83].

Human patients with oculodentodigital dysplasia 
(ODDD) have mutations in Cx43 and show craniofacial 
abnormalities, aplastic or hypoplastic middle phalanges, 
syndactyly, and broad tubular long bones, indicating that 
connexins have a role in skeletal development [33]. Esseltine 
et al. obtained induced pluripotent stem cells (iPSCs) from a 
patient with a connexin‐linked ODDD and found that, com-
pared to wild-type iPSCs, they showed reduced Cx43 mRNA 
and protein and impaired channel function, which translated 
to delayed osteoblast differentiation, along with delayed 
expression of collagen‐I bone sialoprotein (BSP) and osteo-
pontin (OPN) in differentiated ODDD cells [84]. However, 
some mutations found in patients with ODDD can lead to 
reductions in gap junctions but also a hemichannel gain of 
function [85].

To discriminate between the roles of hemichannels 
and gap junctions in ODDD, two mouse models express-
ing dominant negative mutants of Cx43 have been devel-
oped. The first, R67W, has the ability to form functional 
hemichannels, but not gap junction channels, whereas the 
second, Δ130–136, has complete loss of Cx43 function [86]. 
The researchers found that while Δ130–136 mice showed 
reduced bone mass and aberrant bone structure, R67W mice 
had only a few abnormalities. However, they did not evaluate 
the gain or loss of hemichannel functionality.

Other mouse models have also been developed to help 
elucidate the function of Cx43 in bone. Mice with total 
Cx43 knockout (KO) die as a consequence of a cardiac 

phenotype, but during embryonic development, their 
bones show reduced mineralization, cortical thinning, 
and increased porosity [87, 88]. Meanwhile, studies using 
conditional KO models have pointed to differential roles of 
Cx43 at different stages of osteoblastic maturation. It has 
been suggested that Cx43 might inhibit the proliferation 
of early osteoblast precursor cells, as conditional Cx43KO 
mice show increases in this populations. However, when 
Cx43 is knocked out in lineage-committed cells, osteo-
blasts do not seem to be essential and cells differentiate 
normally [89, 90]. Cx43-deficient mice also show impaired 
osteoblast differentiation and fracture repair (Fig. 1) [91].

Age-associated reduction of Cx43 in osteoblasts has 
been linked to bone loss and osteoporosis, and it could 
diminish parathyroid hormone (PTH)-dependent bone 
formation. Moreover, Cx43 seems to be essential for the 
anabolic proprieties of PTH when used to treat osteopo-
rosis, as it prevents PTH-induced production of cAMP by 
osteoblastic cells [92–94].

Diminished Cx43 levels in osteoblast and osteocytes 
could also influence the activity of bisphosphonates, the 
most commonly prescribe anti-osteoporotic drugs, by 
reducing their anti-apoptotic effects on these cells [95]. 
Bisphosphonates are reported to trigger the activation of 
the kinases Src and ERKs, which promotes cell survival by 
opening Cx43 hemichannels in a gap-junction-independent 
manner [96]. Moreover, bisphosphonate treatments that 
cause increased bone mineral density induce the formation 
of Cx43 hemichannels in osteocytes, which can result in 
increased ATP release.

Cx43 is considered essential for osteocyte viability and 
bone health, based on evidence from Δ130–136 and R67W 
mice, which also suggested that this effect is mediated 
by hemichannels rather than gap junctions [86]. Cx43 is 
also considered central to mechanosensing capability of 
osteocytes. Osteocytic MLO-Y4 cells express functional 
hemichannels that are activated by oscillating fluid flow 
through a mechanism that involves protein kinase C and 
promotes ATP release [97].

Conversely, although in vitro studies showed that Cx43-
deficient cells have reduced responsiveness to biomechani-
cal signals, Cx43-deficient mice display an enhanced 
anabolic response to mechanical load in vivo [98, 99]. 
This could be explained by a mechanism in which Cx43 
deficiency leads to enhanced bone formation and resorp-
tion as well as enhanced response to load and decreased 
response [100].

In line with this, Zhang et al. reported that mice with 
osteocyte-specific Cx43 deficiency showed increased bone 
resorption and osteoclastogenesis due to osteocyte-medi-
ated changes in RANKL/OPG ratio [99]. Further, Cx43 
is believed to influence osteoclastogenesis, allowing cell 
fusion, as blocking gap-junctional communication inhibits 
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bone resorption in vitro [101]. However, no direct function 
of hemichannels in osteoclastogenesis has been described, 
and in vivo studies will be required to demonstrate whether 
they play a role.

Panx1 in the joint

All three pannexins have been detected in murine chondro-
cytes, with Panx1 most abundantly expressed (Fig. 2). Stud-
ies using polydimethylsiloxane of varied stiffness as a cell 
culture substrate indicate that cell–cell communication in 
chondrocytes is mediated by Panx1 in response to stiffness 
and that this is critical for chondrocyte metabolism and car-
tilage tissue engineering [63, 102].

Joint pain during arthritis is produced by aberrant noci-
ceptive circuits activated in the central nervous system 
[103], and ATP is released during tissue injury and critically 

modulates microglial activity [104]. Mousseau et al. found 
that joint injury is followed by an increase in nociceptive 
output that depends on Panx1 expressed on microglia. They 
observed that pharmacological and genetic inhibition of 
Panx1 ameliorated mechanical joint pain in rodents. Moreo-
ver, continuous systemic treatment with probenecid (a US 
FDA–approved broad-spectrum Panx1 inhibitor) prevented 
the reduction in mechanical threshold that occurs in rats with 
monosodium iodoacetate (MIA)-induced joint injury (which 
mimics arthritis) and blocked the increase in IL-1β that plays 
a dominant role in promoting joint pain [105].

The functional role of Panx1 channels is cell type spe-
cific. Extracellular ATP is sensed by P2X7 and P2X4 recep-
tors and mediates activation of the NLRP3 inflammasome 
during inflammation [106–108]. The NLRP3 inflamma-
some is a multiprotein complex that takes part in the innate 
immunity machinery [109] and whose activation leads to 

Fig. 2   Role of pannexin channels in healthy and arthritic joints. A) In 
healthy cartilage, chondrocytes mediate ATP release by Panx3. This 
leads a decrease in intracellular ATP, activation of phosphokinase A, 
and phosphorylation of CREB, a transcription factor that induces cell 
proliferation inhibition. B) In bone, the release of ATP by Panx1 is 
a signal of osteocyte apoptosis, causing macrophage recruitment and 
RANKL release that enables osteoclast activation and increased bone 

resorption. C) In rheumatic disease, the release of ATP mediated by 
Panx3 via Runx2 in chondrocytes activates P2 receptors. This leads to 
a repetitive cascade of signaling mediated by ERK1/2 and MMP13, 
which direct an aberrant differentiation to hypertrophic chondrocyte 
phenotype. D) Rheumatic bone disease alters Panx3 activity in osteo-
blasts and Panx1 activity in osteoclasts
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activation of intracellular caspase 1 and secretion of pro-
inflammatory IL-1β and IL-18. Panx1 directly interacts with 
the P2X7 receptor, and this interaction has been associated 
with NLRP3 activation [110, 111]. The P2X7/Panx1 com-
plex directly binds to caspase-1 and induces IL-1β release 
and pyroptosis in neurons and astrocytes [108]. Pharmaco-
logical and genetic inhibition of the P2X7 receptor amelio-
rates mechanical joint pain in rodents in a similar manner to 
the blockade of Panx1 [105].

Moreover, the caspase-mediated activation of these 
pathways by the Panx1/P2X7 receptor complex and ATP 
release serves as a ‘find me’ signal necessary for mac-
rophage recruitment during apoptosis [42]. Panx1 activation 
and ATP release in apoptotic osteocytes, activated by the 
P2X7 receptor, enhances RANKL expression in neighboring 
osteocytes and osteoblasts, induces macrophage recruitment, 
and increases osteoclast abundance in adjacent bone surface 
[112]. This cell fusion during osteoclast maturation is due to 
P2X7/Panx1-mediated ATP release that also enhances bone 
resorption [113–115]. The attenuation of Panx1 bone resorp-
tion that occurs in Panx1 KO mice after osteocyte apoptosis 
indicates that Panx1-mediated ATP release is a prerequisite 
for bone resorption [116].

Osteocyte apoptosis triggers bone remodeling by induc-
ing neighboring viable osteocytes to produce RANKL 
[117] (Fig. 2). This process begins early in apoptosis, sug-
gesting that signals involved in apoptosis play a key role 
in inducing viable osteocytes to produce osteoclastogenic 
cytokines. ATP and UTP together with lysophosphatidyl-
chloline (lysoPC) and the chemokine CX3CL1 have been 
identified as ‘find me’ signals in the early phase of apoptosis 
[118]. Osteocytes co-express Panx1 and the P2X7 receptor 
and activate caspase-dependent Panx1 activation and chan-
nel opening during apoptosis [97, 119]. Work in Panx1 KO 
animals has demonstrated that Panx1 does not participate in 
osteocyte apoptosis mediated by bone fatigue and microda-
mage, but is essential for RANKL expression triggered by 
apoptotic osteocytes and the initiation of osteoclastic bone 
remodeling. Similarly, work in P2X7 receptor knockdown 
mice indicated that both the P2X7 receptor and Panx1 are 
essential during osteocyte apoptosis and RANKL release 
associated with fatigue and microdamage [116]. Although 
the exact mechanism involved is not clear, it is likely to be a 
paracrine mechanism whereby ATP is released via caspase-
3-mediated Panx1 opening in apoptotic osteocytes and acti-
vating the P2X7 receptor in viable osteocytes [116]. Because 
Panx1 and P2X7 receptor KO are total in the mouse system 
used, and both genes are ubiquitously expressed, altera-
tions in other cells may contribute to RANKL expression 
and bone remodeling in microdamage [56]. This finding is 
consistent with results indicating that both Panx1 and the 
P2X7 receptor are essential for osteoclast differentiation and 
macrophage fusion in vitro [114].

During bone digestion, membrane components of the 
ruffled border also need to be recycled after macropinocy-
tosis of digested bone materials [120, 121]. Macropinocy-
tosis is a non-selective endocytic pathway that consists in 
the uptake of nutrients and proteins from the extracellular 
space by invagination of the plasma membrane, which can 
produce changes in cell size [122]. It has been shown, that, 
elevated ATP levels in the extracellular space can regulate 
the macropinocytosis process in murine neuroblastoma cell 
line Neuro2a via internalization of Panx1 channel. This sug-
gests that ATP via Panx1 and P2X7 may not only act as a 
chemoattractant signal in macrophages [25] and in osteo-
clasts [114], but as a signal to internalize Panx1 by macropi-
nocytosis. This relationship between Panx1 and macropino-
cytosis occurs in the carcinogenic processes, in which ATP 
acts as a growth factor or energy source if internalized [123].

Furthermore, Panx1 acts as a mechanosensitive chan-
nel and as a key mediator in intercellular signaling and 
in inflammatory responses [110, 124]. The global Panx1 
knockout mouse model has demonstrated that Panx1 is 
essential for load-induced skeletal responses. Both Panx1 
and P2X7 receptor expression are regulated in vivo by 
mechanical loading in osteocyte-enriched wild-type bones 
in a loading time–dependent manner [125]. These findings 
demonstrate a functional interaction of the P2X7 receptor/
Panx1 signaling complex that is crucial for osteocyte mecha-
nosignaling. Loss of Panx1 does not affect mineral apposi-
tion rate, which represents the activity of osteoblasts, but 
it modulates the rate at which bone is formed, consistent 
with an alteration in load-induced bone remodeling [125]. 
Although the absence of Panx1 downregulates β-catenin 
expression in melanoma cells [126], β-catenin expres-
sion in non-loaded Panx1 knockout (Panx1−/−) osteocyte-
enriched cells is unaffected. However, mechanical loading 
in Panx1−/− bones significantly downregulates β-catenin 
and upregulates sclerostin, indicative of crosstalk between 
Panx1 and Wnt/β-catenin signaling [114]. Similarly, Seref-
Ferlengez et al. have demonstrated that the complex formed 
by Panx1 and the P2X7 receptor and altered ATP signaling 
impair osteocytes and osteoblast mechanosignaling under 
high-glucose conditions [127].

Panx2 in the joint

Panx2 is more ubiquitously expressed than was suggested by 
the initial reports that it was exclusive to the central nerv-
ous system, including cerebellum, cerebral cortex, medulla, 
occipital pole frontal lobe, temporal lobe, and putamen; 
northern blot analysis has revealed Panx2 expression in 
rodent eyes as well as thyroid, kidney, liver, and rat cochlear 
system [54, 128–130]. Using two novel monoclonal antibod-
ies to Panx2 (N121A/1 and N121A/31), Panx2 expression 
has been found in murine heart, lung, stomach, spleen, spinal 
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cord, skin, eye, colon, and testis [131]. Unfortunately, there 
is little data about Panx2 expression in bone or cartilage. 
Using predesigned TaqMan assays, Yorgan et al. studied 
the expression of pannexins in different tissues including 
spine, femur, and calvaria and found Panx2 expression by 
qRT-PCR in murine calvaria, but they did not observe any 
changes in expression during osteoblast differentiation [132].

Panx3 in the joint

As described above, Panx3 is expressed in pre- and hyper-
trophic chondrocytes as well as mature osteoblasts and has 
been suggested to play a role in their differentiation (Fig. 2) 
[55, 133]. In the chondrogenic cell line ATDC5, Panx3 pro-
motes chondrocyte differentiation by regulating intracellular 
ATP/cAMP levels [55]. Iwamoto et al. showed that ATP 
release into the extracellular space by Panx3 is responsible 
for PTH-mediated cell proliferation inhibition, as well as 
decreasing intracellular levels of cAMP and CREB phospho-
rylation [55]. During development, Panx3 expression at sites 
of intramembranous and endochondral ossification begins as 
early as E13–E13.5 [133]. In the growth plate, Panx3 expres-
sion precedes chondrocyte mineralization and co-localizes 
with bone development markers such as Col10α1 and OPN 
[133]. Moreover, Panx3 promoter is transactivated with runt‐
related transcription factor 2 (Runx2), a key transcription 
factor for normal bone formation that also promotes MMP13 
expression [134].

In vivo, genetic deletion of Panx3 in mice leads to abnor-
mal differentiation of hypertrophic chondrocytes; Lac of 
Panx3 plays a role in joint diseases and a delay in osteo-
blast differentiation and mineralization [134]. Moon et al. 
reported elevated Panx3 abundance in damaged areas of 
cartilage in osteoarthritic mice and humans [9]. Global or 
Cre/loxP cartilage-selective Panx3 knockdown mice were 
resistant to an OA induction procedure known as destabiliza-
tion of medial meniscus surgery to induce OA (DMM-OA). 
Furthermore, Panx3 and Panx1 levels were increased in 
osteophytes in DMM-operated control mice but not Panx3-
deficient mice [135]. This high Panx1 and Panx3 expres-
sion results from osteophyte growth and development, that is 
similar to endochondral ossification and therefore leads to a 
similar pattern of protein expression. The altered mechanical 
environment that follows joint injury causes Runx2-medi-
ated Panx3 induction, promoting ATP release from articular 
chondrocytes. The increase in extracellular ATP activates P2 
receptors and downstream effectors such as ERK1/2. This 
cascade activates a vicious cycle with Runx2, Panx3,and 
MMP13 activation that leads to a complete destruction of 
the articular cartilage and joint [136–138]. It has further 
been reported that loss of Panx3 has no other consequence 
for joint development and health. This suggest that Panx1 

might be sufficient to mediate normal joint development and 
in permanent adult cartilage [135].

In C2C12 cells, an osteoprogenitor cell line derived from 
mouse myoblasts, and in primary calvarial cells, Panx3 
is located in plasma membrane and regulates osteoblast 
differentiation (Fig. 2) as its expression is induced dur-
ing the transition from cell proliferation to differentiation 
[139]. During osteoblast differentiation, Panx3 functions 
as a hemichannel that releases intracellular ATP into the 
extracellular space. This released ATP binds to purinergic 
receptors in an autocrine or paracrine manner, activates the 
PI3K-Akt signaling pathway, and mediates the activation of 
endoplasmic reticulum Ca2+ channels due to Panx3 opening 
[55]. This Ca2+-binding activates calmodulin (CaM)/(CN) 
signaling pathways that, upon activation of nuclear factor 
of activated T-cells calcineurin-dependent1 (NFATc1), pro-
motes the expression of Osterix and, in turn, induces the 
expression of osteoblast genes such as those encoding alka-
line phosphatase (ALP) and osteocalcin (Ocn) [140–142]. 
Moreover, Panx3 activation can promote the degradation 
of p53, an inhibitor of osteoblast differentiation, by acti-
vating the Akt/mouse double-minute 2 homolog (MDM2) 
pathway. In a paracrine manner, the Panx3 gap junction 
propagates intracellular Ca2+ to neighboring cells to pro-
mote osteoblast differentiation [140, 142]. Both primary 
cultured osteoblasts and the MC3T3-E1 pre-osteoblast cell 
line express increasing levels of Panx3 as they differentiate 
[133]. These increases mirror those of osteogenic markers 
such as Alpl, Ibsp, and Sp7 during differentiation. Moreover, 
Panx3 expression in osteoblasts increases MDM2 phospho-
rylation, promotes p53 degradation, and stimulates Smad1/5 
phosphorylation [55].

One mechanism specific to the function of Panx3 endo-
plasmic reticulum Ca2+ channels is the phosphorylation of 
serine 68 (Ser68) of Panx3 to promote osteoblast differen-
tiation [143]. Mutation of this residue to alanine was suffi-
cient to inhibit Panx3-mediated osteoblast differentiation as 
it induces depletion of Osterix and ALP expression. Panx3 
Ser68 phosphorylation has been found in pre-hypertrophic 
and hypertrophic chondrocytes, bone areas of the newborn 
growth plate, and the endoplasmic reticulum membranes in 
C2C12 cells [143]. These data indicate that this phosphoryl-
ation is an essential step controlling the gating of the Panx3 
endoplasmic reticulum Ca2+ channel to promote osteogen-
esis, and that it is necessary for osteoblast differentiation 
but not osteoprogenitor proliferation. Several mechanisms 
have been proposed whereby this Ser68 phosphorylation 
of Panx3 at the endoplasmic reticulum membrane might 
be modulated by a cytoplasmic kinase. It is possible that a 
protein complex formed by Akt and other molecules, and a 
signaling pathway they control, may be necessary to activate 
Panx3 as a Ca2+ channel [143]. 5′ AMP-activated protein 
kinase (AMPK) can form a complex with Akt to activate 
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Panx3 endoplasmic reticulum Ca2+ channel. AMPK activ-
ity regulates Panx3 proliferation and the differentiation of 
odontoblasts through ATP-releasing hemichannel activities 
[144]. BMP2 is another candidate for forming a complex 
with Akt, because it regulates Panx3 expression and the 
activation of the Panx3 signaling pathway [140, 141]. Both 
Smad-dependent signaling and an independent pathway, 
such as MAPK signaling, may interact to produce Panx3 
endoplasmic reticulum Ca2+ channel activation. Another 
residue important for Panx3 activity (though less so than 
Ser68) is Ser303, whose mutation to alanine inhibits Panx3-
mediated ALP activity [143]. All together, these results sug-
gest that Panx3 phosphorylation occurs at an early stage and 
declines during development. This may be because in the 
transition from proliferation to differentiation, cells normally 
require substantial energy flow, with enormous exchanges of 
energy, and this might be regulated by phosphorylation of 
Panx3 in the endoplasmic reticulum to control intracellular 
Ca2+ levels.

Panx3 knockdown in zebrafish causes delayed osteoblast 
differentiation and mineralization and cartilage deformity 
[134]. Similarly, osteoblast differentiation is induced by 
Panx3-mediated ATP release and downstream PI3K/AKT 
signaling, and KO zebrafish demonstrated delayed osteoblast 
differentiation and mineralization [7, 10]. Investigations of 
animals lacking Panx3 either in the osteoblast lineage or 
ubiquitously indicate that Panx3 expression in osteoblasts 
is not required for postnatal bone remodeling. As described 
previously for cartilage, it is possible that the loss of Panx3 
in both Panx3 conditional knockout (Panx3fl/fl; Runx2-Cre) 
and Panx3−/− mice vs. their phenotypically normal litter-
mates can be compensated by the action of Panx1 [132].

Conclusions and future directions

In this review, we have discussed the presence of connex-
ins and pannexins in joint tissue and their relevance to the 
initiation of rheumatic diseases such as OA and RA. Chon-
drocytes, osteoblasts, and osteoclasts, the main cell types 
found in joints, all express one or more isoforms of both 
connexins and pannexins. Moreover, the regulation of ATP 
channels, including connexins and pannexins, is altered as 
a consequence of joint diseases.

Among the connexins, Cx43 levels in cartilage and syno-
vial membrane are elevated during the onset of disease and 
inflammation [63, 78–80]. Bone is also affected, as Cx43 
prevents early osteoblast differentiation [89, 90]. There is 
disagreement about whether the age-associated reduction 
of Cx43 in osteoblasts might contribute to bone loss and 
osteoporosis [92]. However, studies to date seem to indicate 
that inhibiting the reduction of Cx43 in joint tissues might 

be beneficial in preventing the progression of joint diseases, 
taking into account the inflammatory component of the dis-
ease pathologies as well as the relevant role of MMPs in 
these pathologies [64, 81].

Among the pannexins, Panx1 mediates the response to 
stiffness in cartilage but also joint pain [63, 102, 103]. As 
pain is the main factor in joint disease causing disability, 
its attenuation is a very attractive target when developing 
treatments, especially considering that previous strategies 
targeting pain mediators have been unsuccessful [145].

In addition, Panx1/P2X7 receptor complex function and 
ATP release together act as a ‘find me’ signal necessary 
for macrophage recruitment [42], osteocyte apoptosis, 
and enhanced bone resorption [113, 117]. This could have 
implications for treating bone pathologies such as osteo-
porosis, and preliminary studies have begun to harness its 
potential as a means to prevent bone loss [146].

Panx3 is involved in the cartilage damage seen in OA in 
both mice and humans [9] and also promotes hypertrophic 
chondrocyte differentiation [55, 133]. This is significant 
especially when considering that chondrocytes from OA 
patients show a hypertrophic-like phenotype, and prevent-
ing the development of this phenotype has been proposed 
to slow or prevent OA progression [147].

To further clarify this, however, we will need to bet-
ter understand whether hemichannels exist in cells of the 
osteoblastic lineage and whether their controversial roles 
described herein represent real effects. Also, further inves-
tigation will be needed to elucidate the different roles of 
gap junctions as compared to hemichannels in joint tissues 
and how their interplay might affect joint disease.

In conclusion, although we focus here on OA and RA, 
improved understanding the modulation of connexins and 
pannexins in joint tissues could provide attractive treat-
ment approaches that could also benefit the treatment of 
all joint diseases s, which are increasingly needed given 
that the aging of the population, along with the rising 
prevalence of metabolic dysfunction, are increasing the 
socioeconomic burden of joint diseases with every year 
that passes.
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