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Abstract

The synaptic event called the inhibitory junction potential (IJP) was arguably one of the more important discoveries made by
Burnstock and arguably one of his finer legacies. The discovery of the IJP fundamentally changed how electromechanical coupling
was visualised in gastrointestinal smooth muscle. Its discovery also set in motion the search for novel inhibitory neurotransmitters in
the enteric nervous system, eventually leading to proposal that ATP or a related nucleotide was a major inhibitory transmitter. The
subsequent development of purinergic signalling gave impetus to expanding the classification of surface receptors for extracellular
ATP, not only in the GI tract but beyond, and then led to successive phases of medicinal chemistry as the P2 receptor field
developed. Ultimately, the discovery of the IJP led to the successful cloning of the first P2Y receptor (chick P2Y 1) and expansion
of mammalian ATP receptors into two classes: metabotropic P2Y receptors (encompassing P2Y1, P2Y2, P2Y4, P2Y6, P2Y11-14
receptors) and ionotropic P2X receptors (encompassing homomeric P2X1-P2X7 receptors). Here, the causal relationship between
the IJP and P2Y1 is explored, setting out the milestones reached and achievements made by Burnstock and his colleagues.
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Abbreviations PIT 2,2-Pyridylisatogen Tosylate
ENK Enkephalin SK channels  Small-conductance

GRP Gastrin-releasing peptide Ca**-activated K*-channels
GPCR G protein-coupled receptor TTX Tetrodotoxin

MRS2179 2'-Deoxy-N°-methyladenosine VIP Vasoactive intestinal polypeptide

3',5"-bisphosphate

MRS2279 2-Chloro
N6-methy1—(N)-methanocarba-
2'-deoxyadenosine-3',5"-bisphosphate

MRS2500  2-iodo-N°-methyl-(N)-
methanocarba-2'-deoxyadenosine-
3',5'-bisphosphate

NOS Nitric oxide synthase

PACAP Pituitary adenylate-cyclase activating peptide

Introduction

Geoffrey Burnstock (1929-2020) was widely acknowledged
for his pioneering work on ATP receptors. He defined ATP
receptors as P2 receptors, in deference to the already
established class of adenosine receptors which he would call
P1 receptors. Later, he and Charles Kennedy would broaden
the P2 receptors to P2X and P2Y subtypes—an expanded
classification based on the pharmacological profile for each
This article is part of the Topical Collection on A Tribute to Professor ~ subtype. Burnstock applied Paton’s criteria for the identifica-
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his expectations, members of the P2 receptor gene family were
isolated and their encoded peptides characterised in a relative-
ly short of period of time (1992-2001). Burnstock helped lead
the effort to clone the first member of P2 receptor family:
chick P2Y1 receptor. The pursuit of P2Y'1 led to my scientific
collaboration with Geoff, an alliance which produced 59
shared publications and lasted for a period of 25 years
(1992-2017). We were united by a passion for the synaptic
physiology of the peripheral nervous system. This commen-
tary describes key steps in the discovery of the IJP and in-
volvement of P2Y1.

Gastrointestinal physiology

Before the coming of purinergic signalling [1, 2], an energised
and successful Geoffrey Burnstock had spent more than
15 years making a significant contribution to our understand-
ing of gastrointestinal smooth muscle motility. This early
body of work began in 1953 with his postgraduate (PhD)
research on the alimentary canal of the brown trout [3]; this
gastrointestinal theme would continue for the remainder of his
scientific career.

Burnstock contributed to the development of gastrointesti-
nal physiology in 2 ways: through methodology and through
discovery. In terms of methodology, Burnstock modified the
Sucrose-Gap technique of Stdmpfli and Straub [4, 5], to record
the membrane potential and action potentials of the external
longitudinal muscle layer of the gut, thereby shedding light on
the electromechanical coupling of gastrointestinal smooth
muscle. Burnstock and Straub were the first to do so, over-
coming the problems of recording electrical events during the
powerful and spontaneous movements of drug-stimulated lon-
gitudinal muscle of the small intestine in pike, frog, rabbit, rat,
guinea-pig and cat, the rectum of trout, and guinea-pig taenia
coli [6]. The Sucrose-Gap technique would be employed time
and again to elucidate the electrogenic actions of a wide range
of excitatory and inhibitory drugs on the gastrointestinal tract.
Later, Burnstock and colleagues also made intracellular re-
cordings from smooth muscle cells using sharp microelec-
trodes, to corroborate the electrical events recorded first by
the Sucrose-Gap technique [7-9]. Such knowledge led to the
rapid advancement of understanding the actions of transmit-
ters, hormones and drugs on smooth muscle in a body of work
contained in 84 papers, prior to his seminal paper (his 85th
paper) on “ATP or a related nucleotide” as an inhibitory trans-
mitter [1].

In terms of discovery, Burnstock’s defining contribution
arguably came from the discovery of the inhibitory junction
potential (IJP), a nerve-mediated hyperpolarisation of the
membrane potential which preceded the relaxation of the lon-
gitudinal muscle in guinea-pig taenia coli [7—10]. In the full-
ness of time, it would be shown that ATP or a related nucle-
otide was the mediator of the IJP and contributed to the non-
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adrenergic, non-cholinergic relaxation (NANC relaxation) of
the taenia coli [1, 2]. Burnstock applied the term NANC for
TTX-sensitive nerve-mediated events that persisted when ad-
renergic and cholinergic responses were attenuated by the
action of bretylium (or guanethidine) and atropine, respective-
ly. The existence of NANC nerves had long been debated,
mostly in the process of excitatory and inhibitory neurotrans-
mission in the CNS [11-13]. There was even measured sup-
port for ATP as a transmitter from the foremost CNS neuro-
scientists, as best exemplified by Krnjevic¢ in 1974: “Although
it may seem wasteful to use a high-energy compound like
ATP as a neurotransmitter, several features would make it
very suitable for such a function” [13].

The purinergic IJP in gastrointestinal smooth muscle cells
showed a latency of 100 milliseconds and more from the point
of stimulation of NANC inhibitory nerves to the onset of the
hyperpolarisation of the membrane potential caused by the
opening of potassium channels; this latency was too long to
be explained by the slowest conduction velocity of unmyelin-
ated C-fibre nerves in the GI tract [7-10]. Instead, this unex-
plained long latency presaged the involvement of a metabo-
tropic receptor, with ATP first activating a surface receptor to
produce an intracellular signalling molecule and cause the
downstream opening of potassium channels. In the fullness
of time, it would be shown that ATP acts through Gq-
coupled P2Y1 receptors, leading to IP3-mediated calcium re-
lease, opening of small-conductance, calcium-activated potas-
sium channels (SK channels, which are blocked by the bee-
sting venom apamin), a resultant outward potassium current
(Ik(cay) Which hyperpolarises the membrane potential of
smooth muscle cells and, in turn, closes voltage-gated calcium
channels to reduce free calcium levels in the intracellular fluid
of smooth muscle, and finally reduces the contractility of
smooth muscle [reviewed in: 14—17]. The purinergic 1JP,
identified first in the taenia coli of the caecum, has been dem-
onstrated in the smooth muscle layers of mammalian stomach,
small intestine, and large intestine [14—17].

Inhibitory junction potentials (1JPs)

The purinergic 1JP discovered by Burnstock is remarkable for
both its brevity and large amplitude, in response to single
electrical shocks applied to the intrinsic inhibitory nerves of
the gut. The resultant IJP lasts only 500 to 1200 ms, yet shows
an amplitude of 20 mV and more (Fig. 1a). When spontaneous
mechanical activity of smooth muscle is abolished by nifedi-
pine (L-type Ca”**-channel blocker), the duration of the
purinergic 1JP is slightly longer at around 1700 ms with a
latency of onset of around 150 ms, but the amplitude is no
larger [18]. The time-to peak of the purinergic IJP is around
300 ms [19]. For gastrointestinal smooth muscle, the
purinergic IJP represents the fastest of inhibitory events and
now is routinely called the fast-JP (flJP, f-IJP, or 1JP-f). In
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Fig. 1 The purinergic IJP (recorded by using an intracellular
microelectrode) is a rapid hyperpolarisation of the membrane potential
of'a smooth muscle cells (£, =— 56 mV); in this case, in the circular layer
of the muscularis extrema of the guinea-pig ileum. a The recorded elec-
trical event is short in duration (1 s) but large in amplitude (20 mV) in
response to single electrical shocks applied by field stimulation of the
intrinsic inhibitory nerves. b Repetitive stimulation of the intrinsic inhib-
itory nerves (1 Hz, 5 pulses) leads to rundown of the [JP-amplitude, a
phenomenon associated with the availability of primed storage vesicles at

contrast, other inhibitory neurotransmitters identified later in
the enteric nervous system evoke slower inhibitory events
which are now routinely called the slow-1JP (sIJP, s-1JP, or
1JP-s) [14-17].

The purinergic fast-IJP does not efficiently summate upon
repetitive nerve stimulation and, instead, there is rundown in
the amplitude of successive 1JPs at stimulus frequencies
higher than 0.1 Hz (1 pulse every 10 s) (Fig. 1b). However,
there is still limited summation at higher stimulus frequencies.
The purinergic fast-1JP to single electric shocks is around 70%
ofthe maximum IJP-amplitude; a higher number of pulses or a
higher frequency of pulses marginally enhances the amplitude
of the resultant compound IJP (Fig. 1c). The maximal ampli-
tude of the purinergic fast-1IJP depends on the difference be-
tween the membrane potential of smooth muscle (£,,) and the
reversal potential for potassium channels (Ex). Thus, the max-
imum amplitude of the fast-1JP is defined by the driving force
(Ex-E,,) and is around 25-30 mV with E,, values of — 60 mV
and Ex of —85 to —90 mV (Fig. lc). Since single electrical
shocks so efficaciously produce a fast-IJP of 20 mV in ampli-
tude, the purinergic fast-1JP is both powerful and synaptically
economical.

The purinergic fast-IJP is often accompanied by a non-
purinergic slow-IJP in many smooth muscle bands of the gut
[20, 21]. This is certainly true for guinea-pig taenia coli [18,
22], which Burnstock had used regularly in his studies of
purinergic signalling. The nature of the slow-1JP is beyond
the scope of this commentary but involves the production
and release of nitric oxide (NO) from intrinsic inhibitory
nerves, and activation of cGMP-dependent potassium chan-
nels in smooth muscle. Notably, the slow-1JP summates with
increasing numbers of stimulus pulses or increasing stimulus
frequency. Both ATP and NO are considered to be co-released
by the intrinsic inhibitory nerves of the gut. There is co-
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the active zone of the nerve varicosities where transmitters are released. ¢
1JPs do summate if the interval between successive 1JPs is sufficiently
brief (100 ms at a stimulus frequency of 10 Hz, 5 pulses). The maximum
amplitude of the compound IJP is approximately 30 mV for intracellular
recordings made from the circular muscle of the guinea-pig ileum (King:
unpublished data). The maximum amplitude of hyperpolarisation evoked
by extracellularly-applied ATP (100 mM) is around 30 mV in the same
tissue [54]

localisation of ATP-containing storage vesicles and nNOSo
in nerve varicosities harvested from the myenteric plexus;
their presence in synaptic varicosities is dependent on intra-
axonal kinesin and myosin motors in intrinsic inhibitory
nerves [23, 24]. Accordingly, purinergic and nitrergic trans-
mission in the gut are impaired in mice deficient in the trans-
port motor, myosin Va [23, 24]. Neuronal nitric oxide syn-
thase (nNOS) is now used as a marker in intrinsic inhibitory
nerves for the co-localisation of ATP, NO and yet another
peptidergic inhibitory transmitter responsible for a
prolonged-1JP (which involves either PACAP or VIP) [15].
These intrinsic inhibitory nerves are classed phenotypically as
ATP/NOS/VIP/PACAP/ENK (short anal projection) and
ATP/NOS/VIP/PACAP/GRP (long anal projection) for de-
scending inhibitory pathways to the circular muscle of the
guinea-pig ileum [15]. It has been postulated that purinergic
inhibition is concerned more with descending inhibition in the
peristaltic reflex, whereas nitrergic inhibition may determine
the general degree of excitability and contractility of smooth
muscle [25]. To this end, there is a decreased rate in P2Y'1
knockout mice of the colonic transit of faecal pellets which is
also observed in WT-mice treated with the selective P2Y1
antagonist, MRS2500 [21]. On the other hand, the impairment
of nitrergic transmission caused by polymorphisms of the
NOS-1 gene is strongly associated with oesophageal muscle
spasm (achalasia) in human infants [26].

Metabotropic P2Y receptors

Burnstock proposed the existence of extended families of me-
tabotropic and ionotropic ATP receptors [27], based on the
discovery of two cloned P2Y receptors now named P2Y'1
and P2Y2 [28, 29] and two cloned P2X receptors now named
P2X1 and P2X2 [30, 31]. The numbering system developed
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by Burnstock for these extended families of cloned P2 recep-
tors is summarised elsewhere, yet represents a fundamental
element of housekeeping in the P2 receptor field [32]. The
cloned P2Y receptor proteins are 328—377 amino acids in
length and are some of the shorter GPCRs found in mamma-
lian cells. They possess seven hydrophobic regions, forming
the trans-membrane spanning regions TM1-TM7, which lie
between an extracellular N-terminus (27-51 residues in
length) and cytosolic C-terminus (15-68 residues in length),
with consensus motifs for intracellular kinases on the intracel-
lular loops and cytosolic C-terminus (Fig. 2). Alignment of the
protein sequences for the TM1-TM7 region reveals 17-62%
identity (35-80% similarity) [33].

Burnstock helped lead the effort to clone ATP receptors.
The first recombinant ATP receptor was chick P2Y'1 (cP2Y1),
isolated as clone 803 from a ¢cDNA library of chick brain
screened for homologous sequences to a partial guinea-pig

N-terminus

adenosine-like sequence (RDC1) [28]. When the chick is
close to hatching, its brain undergoes a rapid phase of expres-
sion of receptor mRNAs; accordingly, the hatched chick is a
highly precocious neonate. Impressively high levels of P2Y 1
receptor expression were observed for [*°S]-dATP«S
radioligand binding in chick brain (37 pmol/mg protein for
cP2Y1 versus 1-2 pmol/mg protein for muscimol binding at
GABA,) [28, 34]. Transcripts for chick P2Y1 are not only
localised in neurons and astrocytes of the brain; its mRNA is
present in spinal cord, gastrointestinal tract, spleen, and leg
muscle in adult chicken [28]. A remarkably high level of
P2Y1 protein expression also was observed in neurons in
the hippocampus of human brain [35], with a wide distribution
of human P2Y1 (hP2Y1) in many other neuronal and non-
neuronal peripheral tissues [36]. A full description of hP2Y1
expression and distribution appears online in the JUPHAR
P2Y1 database [37].
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Fig.2 The amino acid sequence of P2Y 1 orthologues (human P2Y 1, red;
guinea-pig P2Y1, blue; chick P2Y1, purple). The location of the -
helices forming the transmembrane spanning domains (TM1-TM7) are
shown for the hP2Y1 crystal [40]. Extracellular loop (EL1-3) and intra-
cellular loops (IL1-3) and N- and C-termini are shown too. P2Y se-
quences were aligned using Clustal Omega and anchored to the amino
acid sequence for TM1 of hP2Y1. Human and guinea-pig P2Y1 peptides
are 373 amino acids in length, whereas the N-terminus of chick P2Y1 is
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shorter by 11 amino acids and the resultant peptide is 362 amino acids in
length. Guinea-pig P2Y1 peptide is 95% identical to human P2Y1,
whereas chick P2Y1 is 83% identical to human P2Y1. Non-conserved
amino acids are marked by grey shading. The amino acid residues marked
by green shading are predicted to interact with the agonist 2-MeSADP by
Molecular Dynamics modelling of the human P2Y1 crystal. These resi-
dues are conserved for the three P2Y1 orthologues and are predicted to
form the binding pocket for 2-MeSADP [41]



Purinergic Signalling (2021) 17:25-31

29

The pharmacological and operational profiles have been
studied for chick P2Y1 expressed heterologously in Xenopus
laevis oocytes, where agonist responses evoke a calcium-
dependent chloride current (/cyca)) [28, 38]. ATP and not
adenosine activated the chick ATP receptor, thus defining a
P2 receptor (Fig. 3a). The reversal potential of ATP-evoked
currents was around — 25 mV, implicating the involvement of
a chloride current. Substitution of extracellular calcium ions
with extracellular barium ions reduced the amplitude of /¢jca)
evoked by either hyperpolarising voltage steps or extracellular
ATP [28]. Chick P2Y1 showed an agonist potency order rem-
iniscent of the mammalian native P2Y receptor with 2-
MeSATP>2-MeSADP>ATP > ADP as agonists, while UTP,
«,3meATP and BZATP were inactive (Fig. 3a,b). When the
chick P2 receptor was expressed transiently in COS-7 cells,
ATP receptor activation led to a suramin-sensitive increase in
levels of intracellular inositol triphosphate (IP3) [38]. The
binding of the radioligand [**S]-dATP«S was displaced by
2-MeSATP>ATP > ADP at high affinity, whereas adenosine,
B, ymeATP and UTP did not [38]. The non-selective P2 re-
ceptors antagonists, suramin and Reactive Blue-2, reversibly
antagonised evoked ATP-responses as either /¢y, or raised
IP; levels at chick P2Y1 [38]. Thus, pharmacological, bio-
chemical and structural data defined the chick P2Y1 receptor
as the first metabotropic P2Y receptor. Over 280 species
orthologues of cP2Y1 have been cloned, including human
P2Y1 where ADP and 2-MesADP are more potent agonists
than ATP and 2-MeSATP [39]. The predicted binding site for
2-MeSADP has been elucidated by molecular dynamics
modelling of the known human P2Y1 crystal [40, 41].

Purinergic IJP and P2Y1receptors

Based on the pharmacological profiling of native P2Y recep-
tors [42], Burnstock proposed that cP2Y1 was pharmacolog-
ically related to the ATP-activated P2Y receptor in guinea-pig
taenia coli [43]. Moreover, pyridylisatogen tosylate (PIT) was

found to be a nonsurmountable antagonist at cP2Y 1 (Fig. 3¢)
[44], with PIT also known to block ATP relaxations but not
adenosine relaxations in the guinea-pig taenia coli [45]. Later,
PIT would be shown to be a selective antagonist for human
P2Y1 receptors and not human P2Y2, P2Y4, P2Y6, P2Y11 or
P2Y12 [46]. The guinea-pig P2Y1 (gpP2Y1) receptor has
since been cloned and characterised by Wood and colleagues,
with an agonist potency order of 2-MeSADP> 2-
MeSATP>ADP>ATP for gpP2Y1-evoked calcium signals
in HEK293 cells [47]. PIT was not tested on gpP2Y1, but
the P2Y 1-selective antagonist MRS2179 was highly effective
at blocking this recombinant P2Y receptor [47].

The link between P2Y1 and the purinergic fast-1JP was
better forged after the development by Jacobson of the
deoxyadenosine bisphosphate derivatives (including
MRS2179, MRS2279 and MRS2500) as highly-selective
P2Y1 antagonists [48—50]. Burnstock did not play a major
role in screening bisphosphate compounds as P2Y1 receptor
antagonists; instead, our laboratory carried out complementa-
ry tests on these bisphosphates for activity at recombinant
P2X receptors [S1]. The blocking activity of commercially
available MRS2179 was first confirmed for the fast-1JP of
the circular and longitudinal muscle layers of the human colon
[52]. Later, the blocking activity of MRS2279 and MRS2500
was confirmed for the purinergic fast-IJP of the circular mus-
cle layer of the human colon [53]. Ultimately, the involvement
of P2Y1 in the purinergic fast-1JP was solidified using P2Y1-
null mice and by cross-comparison of knockout data from
WT-mice treated with selective P2Y 1 antagonists [20, 21].

Summary

The early discovery of the IJP by Burnstock was a potent
stimulus for wide ranging research over many successive de-
cades. It caused us to reflect on how neurotransmitters operate
potassium channels and which neurotransmitters other than
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Fig. 3 Pharmacological profile of cP2Y1 expressed in Xenopus laevis
oocytes. a Chick ATP receptor was defined as a P2 receptor and not a
P1 receptor, because it was activated by ATP but not by adenosine. The
activity of ATP but not UTP and o, 3meATP defined a P2Y receptor and
excluded the involvement of P2U or P2X receptors. b Chick ATP
receptor was activated potently by 2-MesATP and 2-MeSADP which
were full agonists, whereas ATP and ADP were partial agonists. ECsq

values were: 2-MeSATP, 10+ 1 nM; ATP, 155+50 nM; ADP, 258 +
40 nM. Nucleotide responses were inward chloride currents (V,,, —
40 mV) and all agonists were tested at 1 uM for 60 s, every 30 min. ¢
ATP responses at the chick P2Y receptor were antagonised in a
nonsurmountable way by 2,2-Pyridylisatogen Tosylate (PIT, 0.1—
100 uM), with an ICs, value of 13.2+9 uM [44]. PIT blocks ATP
responses, but not adenosine responses, in the guinea-pig taenia coli [45]
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acetylcholine and noradrenaline could do so in the peripheral
nervous system. It led to the proposal that ATP itself is a
transmitter. In turn, it caused us to study receptor mechanisms
and explore the attendant medicinal chemistry of ATP recep-
tors. It led to studies on the molecular signalling of ATP re-
ceptors and structure of ATP receptors. Cloning of chick
P2Y1 led to homology screening and discovery of a broad
family of P2Y receptors, the distribution of which led to wider
research on the fundaments of cell physiology and experimen-
tal medicine. It gave rise to further medicinal chemistry for
P2Y subtype-selective agonists and antagonists as potential
therapeutics for human diseases. This enduring legacy has
served science well for almost 6 decades; it will be interesting
to see how farther the Burnstock legacy will take us.
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