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Abstract
Recent research suggested an important role for pulmonary extracellular adenosine triphosphate (ATP) in the development of
ventilation-induced lung injury. This injury is induced by mechanical deformation of alveolar epithelial cells, which in turn
release ATP to the extracellular space. Measuring extracellular ATP in exhaled breath condensate (EBC) may be a non-invasive
biomarker for alveolar deformation. Here, we study the feasibility of bedside ATP measurement in EBC. We measured ATP
levels in EBC in ten subjects before and after an exercise test, which increases respiratory parameters and alveolar deformation.
EBC lactate concentrations were measured as a dilution marker. We found a significant increase in ATP levels in EBC (before 73
RLU [IQR 50–209] versus after 112RLU [IQR 86–203]; p value 0.047), and the EBCATP-to-EBC lactate ratio increased as well
(p value 0.037). We present evidence that bedside measurement of ATP in EBC is feasible and that ATP levels in EBC increase
after exercise. Future research should measure ATP levels in EBC during mechanical ventilation as a potential biomarker for
alveolar deformation.
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Introduction

Recently, we suggested an important role for pulmonary ex-
tracellular adenosine triphosphate (ATP) in the development
of ventilation-induced lung injury or acute respiratory distress
syndrome (ARDS) [1]. However, at this moment, there is no
clinically applicable method to detect extracellular ATP in the
lungs.

ATP is omnipresent in cell tissues and the majority of ATP
is located in the intracellular space [2–4]. Cells can release

ATP molecules after a variety of stimuli (e.g., mechan-
ical deformation, inflammation) and the extracellular
ATP concentration increases [3]. In the lungs, stretch
of the alveolar epithelial type I (AT I) cells results in
the extracellular release of ATP [5–7]. Real-time imag-
ing demonstrated that extracellular ATP release occurs
simultaneously with mechanical deformation [8]. A
nanomolar increase in extracellular ATP stimulates the
alveolar epithelial type II cells to release surfactant in
the alveolar space [7, 9–11]. Subsequently, extracellular
ATP is converted by the CD39 and CD73 enzymes to
adenosine and inosine [3, 4].

The amount of extracellular ATP release correlates with
the magnitude of alveolar deformation [6]. Mechanical
ventilation can induce severe mechanical deformation and
subsequent massive ATP release into the extracellular
space. Millimolar concentrations of extracellular ATP act
as a danger-associated molecular pattern and initiate the
pro-inflammatory innate immune response [3, 12, 13].
Prolonged exposure to high levels of extracellular ATP
can result in ventilation-induced lung injury or ARDS
[1]. The measurement of extracellular ATP in the lungs
might be a biomarker for alveolar deformation.
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ATP in the expired breath can be detected in exhaled breath
condensate (EBC) [14–16]. EBC is collected by leading ex-
haled breath air from a subject through a thermo-electric
cooling module. The resultant condensate is used for further
analyses. EBC collection is a non-invasive method to
acquire samples from the respiratory tract and alveoli
[17–19]. It is a safe method to assess inflammatory
biomarkers in various pulmonary diseases [20]. In addi-
tion, EBC contains only few cellular components and
low protein levels, indicating virtually no ATP release
and low conversion rate [14]. ATP has proven to be
stable in EBC for at least 30 min [16]. Previous studies
used a luciferin-luciferase assay to detect extracellular
ATP [14–16], a highly sensitive method to detect ATP
[21]. In this study, we used a handheld luminometer
with a ready to use assay kit. This allowed us to per-
form ATP measurements in a bedside manner.

We collected EBC from subjects before and after exercise
to test whether bedside ATP measurements were feasible.
Exercise results in a wide range of physiologic responses,
including a significant increase in respiratory parameters
(e.g., tidal volume, respiratory rate, and respiratory minute
volume) [22]. We hypothesized that the increase in respiratory
parameters during exercise resulted in a rise in alveolar defor-
mation and subsequent ATP release into the extracellular
space. The aim of this study was to assess the feasibility of
bedside ATP measurements and to measure ATP levels in
EBC before and after an exercise test.

Methods

Study design and setting

This prospective observational study was performed at BeLife
Human Performance Lab, a performance screen and rehabili-
tation center. We included subjects between 18 and 75 years
old who had a cycle ergometry exercise test at BeLife between
October 2017 and January 2018. The exclusion criteria were
age < 18 years, new onset respiratory symptoms in the past
week, and/or a history of unstable respiratory disease (asthma,
chronic obstructive pulmonary disease, interstitial lung dis-
ease, or pulmonary malignancy) requiring changes in therapy
in the past 3 months. The primary outcome of this study was
the difference in ATP levels in EBC before and after an exer-
cise test. In addition, ATP levels in EBC were correlated with
the following respiratory parameters: respiratory rate, tidal
volume, and respiratory minute volume. This study was
commissioned by the Department of Adult Intensive Care
Medicine of the Erasmus MC Rotterdam, the Netherlands.
The study has been performed in accordance with the 1964
Declaration of Helsinki and its later amendments. All subjects
gave written informed consent.

Data collection

Cycle ergometry exercise test All subjects performed a cycle
ergometry exercise test according to the local ramp protocol.
The test consisted of a gradual increase in workload until
exhaustion. Hemodynamic, metabolic, and respiratory param-
eters, including respiratory rate, tidal volume, and respiratory
minute volume, were recorded. Measurement of height and
weight and spirometry (Jaeger Vyntus CPX, Vyaire Medical,
USA) were performed before the exercise test. Before and
after exercise, a capillary blood gas sample was taken. If a
capillary blood gas sample after exercise could not be obtain-
ed, blood lactate was measured using Lactate Pro2 LT-1730
(Arkray, Japan).

Exhaled breath condensate EBC was collected with the com-
mercially available TurboDECCS System exhaled breath
condensator (Disposable Exhaled Condensate Collection
Systems, DECCS, Medivac, I taly). A disposable
TurboDECCS mouthpiece with saliva filter designed for
spontaneously breathing subjects was used. We set condensa-
tion temperature at − 7 °C. EBC was collected twice: once
directly before and once 5 min after the exercise test. Subjects
exhaled through the mouthpiece during 15min of tidal breath-
ing. EBC was collected during 15 min to collect sufficient
sample volume; duration of EBC sampling does not influence
adenosine concentrations [17]. In order to minimize sensa-
tions of shortness of breath or faintness after the exercise test,
no nose clip was required.

Luciferin-luciferase assay ATP levels in EBC were measured
with luminometry and luciferin-luciferase assay. In this study,
a 3-M ready to use luciferin-luciferase water assay kit (3 M
Clean-Trace Luminometer LM1, Neuss, Germany) was used.
The amount of ATP was expressed in relative light units
(RLU). The linearity and sensitivity of this luminometer was
confirmed by measurements with different concentrations of
sterile pure ATP solutions ranging from 10−11 to 10−5 M [23].
These ATP concentrations correspondedwith 101 to 106 RLU.
Two hundred microliters of EBC was pipetted directly into
each assay kit using disposable pipette tips (Filter tip,
Greiner Bio-one, Austria). The assay was repeatedly per-
formed every 15 s for a duration of 2 min until an equilibrium
was reached, i.e., stable RLU values during at least two mea-
surements. In order to decrease intra-assay variability, the
luciferin-luciferase assay was repeated three times with differ-
ent assay kits for every EBC sample. Mean ATP level of the
three equilibrium values was used in the analyses and intra-
assay coefficient of variation (CV) was calculated.

Dilution marker and amylase assayWe used EBC lactate as a
marker for EBC sample dilution and calculated EBC ATP-to-
EBC lactate ratio. In one occasion, insufficient sample
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material was collected and median EBC lactate was used.
Lactate in capillary blood gas and EBC was performed on a
RapidPoint 500 System (Siemens, Germany, detection limit
180 μmol/L). Subsequently, EBC was stored at − 80 °C for
amylase assay. A colorimetric (405 nm) amylase assay was
performed to detect possible saliva contamination. Amylase
activity was assessed using an Amylase Activity Assay Kit
(MAK009, Sigma-Aldrich, USA) and a Varioskan LUX mul-
timode microplate reader (Thermo Fischer Scientific, USA)
according to manufacturer protocol.

Sample size and statistical analysis

We did not calculate a sample size, as the change in ATP levels
in EBC before and after exercise is currently unknown. We
decided to include ten subjects in this feasibility study.
Baseline characteristics and exercise test data were presented
as descriptive statistics. Data was tested for normality. As
most data was not normally distributed, continuous data were
reported as median and interquartile range (IQR). A related
samples Wilcoxon signed rank test was used to assess differ-
ences before and after the exercise test. All statistical analyses
were performed in IBM SPSS Statistics 21. A p value < 0.05
was considered statistically significant.

Results

Subject characteristics before and after the exercise
test

Twelve subjects were enrolled in this study. One EBC sample
obtained before the exercise test contained substantial traces
of amylase, while the other samples had an absorbance similar
to background signal. We considered this sample to be con-
taminated with saliva and the subject was excluded from anal-
yses. Another subject was excluded as no EBC was collected
despite multiple attempts. The characteristics of the ten includ-
ed subjects are presented in Table 1. Only two subjects had no
medical history, as BeLife is both a performance screen center
and a rehabilitation center. The results of the exercise tests are
shown in Table 2. Both hemodynamic and metabolic param-
eters increased significantly during exercise. Respiratory pa-
rameters, including respiratory minute volume, increased sig-
nificantly as well. This was also reflected in a statistically
significant decrease in pCO2 after the exercise test. In the
capillary blood gas, there was a significant change in
HCO3

−, base excess, and lactate.

ATP in exhaled breath condensate

The ATP levels in EBC were detectable in all subjects and
increased in nine out of ten subjects (Fig. 1). ATP levels in

EBC increased significantly after exercise (112 RLU, [IQR
86–203]) as compared to before the exercise test (73 RLU,
[IQR 50–209]; p value 0.047) (Table 3). Lactate concentra-
tions measured in EBC as a dilution marker did not differ
before and after exercise. Comparison of EBC ATP-to-EBC
lactate ratio before and after the exercise test resulted in a
significant increase (p value 0.037) as well. The ATPmeasure-
ments were reproducible with an intra-assay CV of 9.8%.
Collected EBC volume was significantly greater after the ex-
ercise test, while collection time was similar. No adverse
events were observed during this study. We did not find a
significant linear correlation between respiratory rate, tidal
volume, or respiratory minute volume and the amount of
ATP detected.

Discussion

This study showed that the bedside measurement of ATP
levels in EBC is feasible. We found a significant increase in
ATP levels in EBC after the exercise test as compared to
before exercise. Lactate concentrations in EBC, measured as
a dilution marker, were similar before and after the exercise
test. In addition, we confirmed that EBC collection is simple
and safe.

ATP levels in EBC increased in nine out of ten subjects
after exercise. Although exercise induces multiple systemic
responses, as indicated by a significant increase in physiologic
parameters and especially blood lactate concentration, we hy-
pothesized that increased alveolar deformation is the main
reason for the observed increase in ATP levels. A systemic
origin of increased ATP levels in EBC after exercise is unlike-
ly, as extracellular ATP is rapidly degraded by both soluble
and membrane-bound ecto-enzymes [3]. In addition, in
healthy lungs, the tight junctions between adjacent pulmonary
epithelium seal the cells and form a barrier between the alve-
olar air space and the interstitium [24, 25]. Barrier function
can diminish following cell damage or inflammation, but it
remains intact during brief exercise. This is also reflected by
the fact that blood lactate concentration increased significant-
ly, while EBC lactate concentration remained unchanged. As
lactate (89 g/mol) is a significantly smaller molecule than ATP
(507 g/mol) [26], a rise in lactate concentration in EBC
through paracellular transport is more likely to occur. Thus,
it is possible that the lung itself is the source of increased ATP
levels in EBC after exercise. In one subject, ATP levels in
EBC did not increase after exercise. This subject was stressed
before the exercise test, as indicated by highest heart rate and
respiratory parameters at rest. She was in excellent physical
condition and recovered fast with a heart rate below baseline
at 120 s after exercise. Therefore, the difference in physiologic
variables before and after the exercise test was smallest in this
subject. Other possible explanations for the decrease in ATP
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Table 1 Demographic and
clinical characteristics of the
subjects (n = 10)

Characteristic Median IQR

Female n = 8 (80%)

Age (years) 46 30–53

Height (cm) 170 166–177

Weight (kg) 73.1 61.2–95.2

BMI 26.0 22.1–32.0

BSA (m2) 1.90 1.74–2.10

Duration of exercise test (min:s) 9:46 7:11–11:08

Medical history Obesity (n = 3)

Asthma (n = 1)

Surgery (n = 1)

Intensive care admission (n = 1)

Essential thrombocytosis (n = 1)

M. Crohn (n = 1)

No medical history (n = 2)
Current smoking n = 1

Recent respiratory symptoms n = 2

Spirometry

Forced vital capacity (L) 4.00 3.01–4.54

FEV1 (L) 3.09 2.32–3.89

FEV1 predicted (%) 100 90–111

FEV1/VC (%) 80.6 73.7–84.5

BMI body mass index, BSA body surface area, FEV1 forced expiratory volume in one second, IQR interquartile
range, VC vital capacity

Table 2 Physiologic variables
before and after the exercise test Variables Unit Before exercise (rest) After exercise (peak VO2) p value

Hemodynamic parameters
Heart rate 1/min 87 (74–97) 172 (147–189) < 0.01*
Systolic blood pressure mmHg 129 (125–158) 185 (167–213) < 0.01*
Diastolic blood pressure mmHg 77 (68–93) 79 (74–94) 0.959
MAP mmHg 94 (89–117) 112 (106–131) < 0.01*

Metabolic parameters
VO2 mL/min 345 (297–413) 2047 (1599–2436) < 0.01*
Respiratory exchange ratio 0.78 (0.72–0.89) 1.10 (1.03–1.27) 0.014*
PETCO2 mmHg 33.75 (27.76–36.25) 33.28 (29.42–38.21) 0.721
EqCO2 33.0 (30.3–35.7) 33.6 (27.7–36.8) 0.959
MET 1.1 (1.0–1.6) 7.7 (6.1–10.9) < 0.01*

Respiratory parameters
Tidal volume L 0.744 (0.533–0.883) 2.261 (1.809–2.652) < 0.01*
Respiratory rate 1/min 15.4 (12.7–17.2) 40.1 (31.5–44.1) < 0.01*
Respiratory minute volume L/min 11.5 (8.7–13.4) 87.1 (64.4–112.3) < 0.01*

Capillary blood gas
pH 7.408 (7.398–7.442) 7.358 (7.290–7.387) 0.080
pCO2 mmHg 35.0 (30.2–35.9) 31.2 (27.1–33.9) 0.042*
pO2 mmHg 75.2 (62.1–85.0) 91.5 (90.9–97.4) 0.068
HCO3

− mmol/L 21.5 (21.0–22.1) 15.1 (13.7–19.8) 0.043*
Base excess − 2.1 (− 3.2; − 1.6) − 9.7 (− 10.9; − 4.3) 0.043*
Hematocrit mmol/L 0.41 (0.35–0.43) 0.43 (0.40–0.46) 0.102
Hemoglobin mmol/L 8.6 (7.4–9.1) 9.1 (8.3–9.7) 0.066
Oxygen saturation 0.95 (0.92–0.96) 0.96 (0.96–0.98) 0.068
Lactate mmol/L 1.63 (1.32–1.83) 7.82 (5.63–9.79) 0.018*

Data are presented as median and interquartile range unless stated otherwise

VO2 volume of oxygen consumption, MAP mean arterial pressure, PETCO2 partial pressure of exhaled carbon
dioxide, MET metabolic equivalent of a task

*p value < 0.05
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levels are contamination of the sample (other than saliva) ac-
quired before the exercise test, or increased instability of ATP
after the exercise test due to a change in EBC composition
after exercise (e.g., pH) [27, 28].

EBC composition and origin In theory, EBC originates from
the entire respiratory tract, although the exact origin of EBC
remains unclear [29, 30]. The composition of EBC corre-
sponds with the composition of airway lining fluid (ALF)
[29], although solute concentrations are significantly lower.
EBC is generated in a milieu of air that is nearly saturated
with gas-phase water vapor; the majority of EBC consists of
evaporated water (up to 99.9%) [17, 31–33]. The remainder
EBC fluid contains a multitude of volatile and non-volatile
compounds. The non-volatile compounds in ALF undergo
aerosolization during tidal breathing as small droplets of

ALF are released from the airway surfaces [29, 30, 32]. The
number of particles detected in exhaled air varies between 0.1
and 4.0 particles per milliliter [34].Multiple models have been
proposed to explain particle aerosolization, including airway
turbulence, thermodynamic aerosol formation, and the bron-
chiole fluid film burst (BFFB) model [30, 35, 36]. Airway
turbulence, however, is an improbable source of aerosoliza-
tion in EBC as flow is laminar in the bronchiole at naturally
achieved flow rates [35].

Several studies assessed the influence of exercise on the
composition of EBC. The majority of ions and compounds
remained unchanged [27], although a significant increase in
EBC pHwas reported [27, 28]. Both unchanged and increased
lactate concentrations in EBC after exercise were observed
[27, 37]. The EBC lactate concentrations in this study were
in concordance with previously measured concentrations [38].
ATP concentrations in EBC have been measured in patients
with COPD, asthma, and cystic fibrosis. These studies report-
ed some variability in ATP concentrations [14–16]. However,
they did demonstrate a decrease in ATP levels after antibiotic
treatment of pulmonary cystic fibrosis exacerbations [16].

Limitations from this study mainly derived from the low
particle concentrations found in EBC and the absence of EBC
collection and sample handling standardization. The largest
pitfall of analyses of EBC is the unknown amount of
fragmented droplet aerosols. According to the BFFB model,
an increase in respiratory minute volume should lead to an
increased number of expired particles [39]. This does not sig-
nificantly influence EBC sample dilution, as the total amount
of exhaled water increases as well [40]. Nevertheless, our
subjects had to recover at least 5 min in order to partially
restore normal respiratory minute volume. Previous studies
reported a wide range in EBC adenosine concentrations and
calculated a purine-to-urea ratio to correct for dilution vari-
ability [41–43]. Significant amounts of urea and lactate have
been observed in EBC [38]. In theory, both can be used as a
denominator for the unknown amount of particles that has
been aerosolized. Previously, urea was used as it is not pro-
duced or metabolized in the lungs [44, 45], despite a great
within-subject variability in EBC urea concentrations [17,

Table 3 Adenosine triphosphate in exhaled breath condensate (EBC)

Exhaled breath condensate Unit Before exercise (rest) After exercise (peak VO2) p value

EBC ATP RLU 73 (50–209, range 34–231) 112 (86–203, range 64–351) 0.047*

EBC lactate mmol/L 0.44 (0.41–0.48) 0.45 (0.42–0.49) 0.573

EBC ATP-to-EBC lactate ratio 176 (109–444, range 78–525) 278 (186–486, range 131–780) 0.037*

Time of EBC collection min:s 15:00 (14:48–15:00) 15:00 (14:48–15:00) 0.317

EBC volume mL 1.3 (0.8–2.0) 1.9 (1.2–2.1) 0.038*

Data are presented as median and interquartile range unless stated otherwise

RLU relative light units

*p value < 0.05
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Fig. 1 Adenosine triphosphate in exhaled breath condensate before and
after exercise
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46]. In our study, lactate concentrations were comparable be-
fore and after exercise, although lactate can be produced by
the respiratory epithelium [27]. As EBC lactate can increase
during exercise, an EBC ATP-to-EBC lactate ratio might un-
derestimate the true increase in ATP levels. ATP levels in EBC
are near the lower detection limit with the bedside
luminometer used in this study. Intra-assay variability was
9.8% despite low ATP levels in EBC; a CVof 10% is consid-
ered acceptable [47]. The CV tended to decline as ATP levels
in EBC were greater. Increasing the lower detection limit
would not only increase test sensitivity, but decrease test var-
iability in the lower ranges as well. According to previously
published calibration curves, we estimate that EBCATP levels
in our study were in nanomolar ranges [23]. Although ATP
levels measured in EBC are underestimated; a part of extra-
cellular ATP is rapidly converted to adenosine [3]. Despite
supervised EBC collection and saliva filter in the
TurboDECCS mouthpiece, one sample was tested positive
for amylase. According to literature, sample contamination
rarely occurs and routine amylase assay is not recommended
[17, 33]. However, sample contamination is unacceptable
when purine concentrations are measured. Therefore, we rec-
ommend routine amylase assay in EBC collection of sponta-
neously breathing subjects. We did not estimate a sample size
to detect a correlation between respiratory parameters and an
increase in ATP levels. Moreover, substantial variability be-
tween subjects obscured any correlation. Because of the great
variability in exhaled aerosol concentrations between subjects,
longitudinal measurements and intra-individual comparisons
are preferable [48]. In addition, the within-subject change in
ATP levels was assessed, as reference values for inflammatory
biomarkers in EBC remain to be established [18, 29, 49].

Conclusions

In the present study, we confirmed that it is feasible tomeasure
ATP levels in EBC in a bedside manner. In addition, ATP
levels in EBC increased after exercise, whereas lactate con-
centrations in EBC remained similar. We hypothesized that
ATP levels increased as a result of alveolar deformation.
Although EBC collection has some pitfalls and may underes-
timate alveolar extracellular release of ATP, the non-invasive
measurement of ATP levels in EBC holds great potential.
Measurement of ATP in EBC may provide a relatively simple
and non-invasive method to monitor alveolar deformation.
Future studies will focus on the measurement of ATP in
EBC during mechanical ventilation.
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