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Abstract Presynaptic nerve terminals are equipped with a
number of presynaptic auto- and heteroreceptors, including
ionotropic P2X and metabotropic P2Y receptors. P2 recep-
tors serve as modulation sites of transmitter release by ATP
and other nucleotides released by neuronal activity and
pathological signals. A wide variety of P2X and P2Y
receptors expressed at pre- and postsynaptic sites as well as
in glial cells are involved directly or indirectly in the
modulation of neurotransmitter release. Nucleotides are
released from synaptic and nonsynaptic sites throughout the
nervous system and might reach concentrations high enough
to activate these receptors. By providing a fine-tuning
mechanism these receptors also offer attractive sites for
pharmacotherapy in nervous system diseases. Here we
review the rapidly emerging data on the modulation of
transmitter release by facilitatory and inhibitory P2 receptors
and the receptor subtypes involved in these interactions.
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Abbreviations
ABC ATP binding cassette
ACh acetylcholine
AP action potential
Ap5A P1,P5-di(adenosine-5′) pentaphosphate
BzATP benzoylbenzoylATP
CNS central nervous system
DA dopamine
DRG dorsal root ganglion

ENPP ectonucleotide pyrophosphatase
EJP excitatory junction potential
ENTPDase ectonucleoside triphosphate diphosphohydro-

lase
EPP end plate potential
EPSC excitatory postsynaptic current
EPSP excitatory postsynaptic potential
GABA +-aminobutyric acid
GPCR G-protein coupled receptor
IL-1β interleukin-1β
IPSC inhibitory postsynaptic current
LC locus coeruleus
LPS lipopolysaccharide
mEPP miniature EPP
mEPSC miniature EPSC
NA noradrenaline
NMJ neuromuscular junction
NT neurotransmitter
NTS nucleus tractus solitarii
PNS peripheral nervous system
sEPP spontaneous EPP
sIPSC spontaneous IPSC
UDP uridine 5′-diphosphate
UTP uridine 5′-triphosphate

Introduction

Ionotropic P2X receptors and metabotropic P2Y receptors
are the principal cell surface proteins, conveying the action
of extracellular ATP, the ubiquitous signaling substance. P2X
receptors are ligand-gated cation channels, composed of
three individual subunits, whereas P2Y receptors belong to
the superfamily of G protein-coupled receptors (GPCRs),
with seven transmembrane domains. Various subtypes of
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P2X and P2Y receptor families are expressed throughout the
brain and involved in a wide array of functions from fast
synaptic transmission to long-term plasticity and trophic
changes important for development, neuron-glia interactions,
and neuroimmunomodulation. In addition, ATP modulates
synaptic transmission pre- and postsynaptically, both in a
positive and negative direction via activation of P2X and
P2Y receptors, respectively.

The presynaptic nerve terminal is an important regulatory
site, whereby the efficacy of synaptic transmission could be
locally and efficiently controlled. Accordingly, axon terminals
in the central nervous system and in the periphery are equipped
with a wide variety of auto- and heteroreceptors [1–4].
Whereas presynaptic metabotropic receptors convey negative
feedback regulation of transmitter release, presynaptic iono-
tropic receptors could amplify synaptic transmission. More-
over the activation of ligand-gated cation channels with high
Ca2+ permeability could directly elicit transmitter release
triggered by the Ca2+ influx through the receptor-ion channel
complex [2, 4]. Coactivation of different presynaptic recep-
tors provides a fine-tuning mechanism whereby different
neurotransmitters and modulators can mutually influence the
activity of each other. Presynaptic and extrasynaptic receptors
controlling transmitter release also offer attractive target sites
for existing and future pharmacotherapy, as they may modify
the normal and pathological synaptic information processing
without all-or-none actions [3].

Since ATP and its related nucleotides are ubiquitous
signaling molecules, it is not surprising that their receptors,
i.e., ionotropic P2X and metabotropic P2Y receptors,
participate both in the negative and positive feedback
modulation of neurotransmitter release. Although the
principal function proposed for ATP-sensitive P2 receptors
was that they mediate the fast transmitter action of
extracellular ATP in neuro-neuronal and neuro-effector
synapses in the nervous system, it was already recognized
in the early 1990s that they are also involved in the
regulation of transmitter release [5, 6]. It was subsequently
revealed that the release of the major neurotransmitters of
the brain and the peripheral neurons [acetylcholine (ACh),
noradrenaline (NA), dopamine (DA), serotonin, glutamate,
γ-aminobutyric acid (GABA)] are modulated by P2X and/
or P2Y receptors. In 2000, Cunha and Ribeiro reviewed the
literature on the presynaptic modulator role of ATP and
suggested that there is a mismatch between the abundance
of P2 receptor expression, the robust release of ATP in
almost all parts of the central nervous system (CNS) and
peripheral nervous system (PNS), and the relative paucity
of identified P2 receptor-mediated synapses, which impli-
cates the major role of ATP as a neuromodulator, rather
than a classic transmitter [7].

The focus of this mini-review is the facilitatory and
inhibitory modulation of neurotransmitter release by different

subtypes of P2X and P2Y receptors, irrespective of their
localization, i.e., whether they are pre-, post-, or extrasynaptic.

Therefore, in addition to a brief summary of the
determining factors of ATP availability in synapses, the
structure, pharmacology, signal transduction, and distribution
of P2X and P2Y receptors in the nervous system, available
information on the release-modulating P2 receptors, and the
receptor subtypes involved in these interactions will be
detailed and updated.

Determining factors of ATP availability in synapses

The participation of ATP and related nucleotides in the
regulation of neurotransmitter release presumes their accu-
mulation in the extracellular space upon ongoing neuronal
activity. Extracellular purine availability in the nervous
system is basically determined by the balance of release and
removal by enzymatic degradation and uptake.

Sources and stimuli that trigger ATP release

Since ATP is ubiquitous, all metabolically active cells of the
nervous system provide a potential pool for its release.
Therefore, besides the nerve terminals themselves, the cellular
source of released purines participating in the modulation of
neurotransmitter release could be any cell type located in
contact with nerve terminals, i.e., astrocytes, microglia, and
endothelia. Awide variety of stimuli are known to release ATP
to the extracellular space, which could lead to purine levels
sufficiently high to activate nucleotide receptors expressed on
the surface of pre- and postsynaptic membranes [8, 9].
Although the stimulation-dependent release of ATP upon
conventional [10, 11] and high-frequency (e.g., [12])
neuronal activity is well documented, these stimuli probably
result in a spatially restricted, localized increase in extracel-
lular purine levels, which serve the fast synaptic transmission
and its modulation within the synaptic cleft. Furthermore,
ATP-metabolizing ectoenzymes, present on the nerve termi-
nal membrane, and glial cells [13], such as ectoNTPDases,
and the CD39/ecto-5′nucleotidase [14], may strongly limit
nucleotide availability under these conditions. On the other
hand, pathological events are known also to stimulate purine
release. These signals include mechanical [15–17], chemical
[18], and hypotonic stimuli [19], hypoxia/hypoglycemia/
ischemia and consequent energy deprivation [20–25],
inflammatory signals, such as bacterial lipopolysaccharide
(LPS) [26, 27], interleukin-1β (IL-1β) [28], and cellular
injury. The pathological ATP release might result in a purine-
rich extracellular milieu leading to a more widespread
activation of receptors reaching also the extrasynaptic
receptors on the neighboring nerve terminals or distant cells
such as astrocytes. Therefore, P2 receptors could play a role
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in the modulation of not only neuronal but also astrocytic
transmitter release. Finally, nucleotides and nucleosides may
promote further release of purines, by a homo- or hetero-
exchange mechanism, if they reach a relatively high
concentration in the extracellular space [29].

Mechanisms of ATP release

Since ATP is a highly polarized molecule, which cannot
pass freely the cell membrane being released to the synaptic
cleft, it could enter the extracellular space by the following
mechanisms: (1) vesicular exocytosis, (2) carrier-mediated
release, (3) release through channels and membrane pores,
and (4) cytolytic release. (1) Vesicular exocytosis is a
prototype mechanism for neurotransmitters and neuromo-
dulators to enter the extracellular space, which is expected
to be a [Ca2+]o-dependent process. Indeed, ATP is taken up
and stored in synaptic vesicles of nerve terminals [8] and
astrocytes [15] and [Ca2+]o-dependent ATP release in
response to neuronal stimulation appears in many areas of
the central and peripheral nervous system (for further
references see [8, 9, 24, 30, 31]). Moreover, recent findings
indicate that vesicular ATP could be released not only from
nerve terminals but also from neuronal somata [32] and
astrocytes [15]. (2) Although specific transporters capable
of transmembrane movement of ATP are yet to be
molecularly identified in the nervous system, ABC (ATP
binding cassette) proteins have been implicated as ATP
transporters [19, 33, 34] in non-neuronal cells. These
transporters are also expressed in glial cells [35] and
mediate ATP release upon hypo-osmotic challenge [36,
37]. (3) Channels and pores, such as connexin hemi-
channels [38], are also potential candidates to drive the
transmembrane movement of ATP. They have been identi-
fied to mediate ATP release from astrocytes and other non-
neuronal cells in response to mechanical stress [39, 40] and
other stimuli [31, 41]. (4) Although only scarcely supported
by direct experimental proof [42], the general assumption is
that any kind of cellular injury could result in high local
ATP concentrations in the extracellular space. In this case
the millimolar cytoplasmic ATP is expected to leak out of
the cell through the membrane damage.

Metabolism of ATP in the extracellular space

Several enzyme families are responsible for the extracel-
lular degradation of ATP in the nervous system. The first
step of the inactivation of ATP is mediated by the family
of ectonucleoside triphosphate diphosphohydrolases
(ENTPDases, EC 3.6.1.5, also known as ectoATPase or
apyrase), which are able to hydrolyze ATP and adenosine
diphosphate (ADP) to AMP [14]. Among these enzymes
ENTPDase 1, 2, 3, and 8 are present in the brain [43, 44],

having low micromolar Km for ATP and ADP giving rise
to rapid and highly effective hydrolysis of ATP in almost
all neuronal tissues. In addition to the ENTPDase family,
ATP and other nucleotides could also be dephosphorylated
by ectonucleotide pyrophosphatases (ENPPs) and by
alkaline phosphatases, both having broader substrate
specificity, but also widespread tissue distribution [14].
The final step of extracellular inactivation is the
hydrolysis of AMP by the ecto-5′-nucleotidase (EC
3.1.3.5) enzyme, which is the rate-limiting step giving
rise to the formation of adenosine that acts on P1
receptors, which include A1, A2A, A2B, and A3 receptor
subtypes. Thus, endogenous ATP is converted to adeno-
sine to activate A1 adenosine receptors within a second in
the hippocampus [45, 46], whereas the hydrolysis of ATP
seems slower in other brain regions, such as the cerebral
cortex [47]. Ectoenzymes therefore have an important role
in the substrate delivery to different subtypes of P2X and
P2Y receptors. In spite of its short half-life, effective
concentrations of nucleotides can be reached in the
synapse for the activation of ionotropic P2X receptors
and metabotropic P2Y receptors.

Structure, pharmacology, and signal transduction
of P2X receptors

Ionotropic P2X receptors are nonselective cation channels
consisting of at least three subunits. P2X receptor subunits
are 379-595 amino acid long polypeptide chains, having
two transmembrane domains (TM1 and TM2) and a large
extracellular loop [48, 49]. Until now seven members of
this receptor family have been identified molecularly,
which are numbered from P2X1 to P2X7, and have
individual kinetics and pharmacological phenotype [50].
These receptor proteins coassemble into various homo- or
heterooligomeric assemblies to form functional receptors.
Among possible combinations so far 16 variations have
been proved to be functional [51]. These are all of the
homooligomeric receptors, except P2X6, which does not
function in homooligomeric form, and the rest are
heterooligomers, formed from P2X1-P2X6 subunits. How-
ever, recently it has been reported that by N-glycosylation
even the homomeric P2X6 receptor could be rendered
functional [52]. On the other hand, the P2X7 receptor
functions only in homooligomeric form and does not
coassemble with other known P2X receptor subunits. P2X
receptors are permeable to both monovalent (Na+, K+) and
divalent (Ca2+) cations and the activation of the receptor
generates an inward current leading to the local depolar-
ization of the cell membrane; in addition, the Ca2+ influx
through the receptor-ion channel complex could directly
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trigger transmitter release. Moreover, upon prolonged or
repetitive agonist application certain P2X receptors,
especially the P2X7 receptor, display pore dilation which
makes the channel permeable to high molecular weight
cations up to 800 Da.

Basically P2X receptors are sensitive to ATP and to its
various synthetic analogues but not to AMP and adenosine
and the ligand binding profiles of homomeric P2X
receptors are well established (for further information, see
[50, 53]). On the other hand, less is known about the
pharmacology of heteromeric receptors; among them, the
pharmacological profile of P2X2/3, P2X2/6, P2X1/2, P2X1/4,
P2X1/5, and P2X4/6 are described [54–59]. However, the
expression pattern and the ligand binding profile of
individual assemblies of P2X receptors are highly over-
lapping, often creating difficulties in the identification of
the P2X receptor subunit composition of receptors
expressed in native tissues. Moreover P2X receptor
assemblies also share common ligand binding properties
with certain members of the P2Y receptor family. There-
fore, transgenic mice genetically deficient in individual
P2X receptor subtypes are being increasingly used for P2X
receptor identification.

The distribution of P2X receptors in neuronal structures

In situ hybridization studies with specific riboprobes, and
immunocytochemical studies using antibodies raised
against individual P2X receptor subunits, revealed that all
seven P2X receptors are widely expressed in the nervous
system. However, the expression of different receptor
subunits show species-, region-, and cell type-specific
distinct distribution [60]. Among the P2X receptors,
P2X2, P2X4, and P2X6 seem to be most abundantly
expressed in the brain, whereas other subunits show more
restricted localization [60–63]. The typical localization of
the P2X2 receptor is on nerve terminals of the brain and the
periphery [61, 64, 65], although it also appears postsynap-
tically [62]. P2X1 receptors had initially been suggested to
be exclusively expressed on smooth muscle membrane
consistent with its role in mediating fast synaptic transmis-
sion at the autonomic neuroeffector junction [60]. However,
recent studies with more sensitive probes revealed that its
expression is more widespread, i.e., it is also present on
central and peripheral neurons [63, 66]. The same holds
true for P2X3 receptors, which are primarily associated with
sensory pathways, but functional studies indicate that they
are also expressed in other brain regions and autonomic
pathways [67–69]. The P2X4 receptor shows substantial
expression in several brain areas such as the cerebral cortex,
hippocampus, thalamus, and brainstem [70] and is associ-

ated with postsynaptic specialization of synaptic contacts
[62]. P2X5 subunits have the most restricted localization in
the brain, although it shows strong representation in certain
areas, e.g., the nucleus tractus solitarii (NTS) [71]. Finally,
P2X7 receptors are also expressed in the brain, especially in
reactive microglia and astroglia [72] and immunoelectron
microscopic studies revealed a widespread presynaptic
expression of P2X7 receptor immunoreactivity in a number
of different brain areas, including the brainstem, hippocam-
pus, cortex, spinal cord, and the skeletal neuromuscular
junction [73–75]. However, two studies, using the same
antibodies, demonstrated that P2X7 receptor immunoreac-
tivity is still observable in the brain of P2X7 receptor
knockout animals and thereby raised doubts on the validity
of previous immunocytochemical observations [76, 77].
Therefore, available P2X7 receptor antibodies either recog-
nize a site, which is not the P2X7 receptor, or, as a recent
study indicates [78], a brain analogue of the P2X7 receptor,
which shares its antibody binding domain with the cloned
P2X7 receptor and partially retains its functionality in P2X7

receptor knockout animals.

Structure, pharmacology, and signal transduction
of P2Y receptors

P2Y receptors all belong to G protein-coupled receptors,
having seven hydrophobic transmembrane domains, and
possess their ATP binding site on the external side of TM3
and TM7 domains [79–82]. The P2Y receptor family has
eight individual members, numbered P2Y1, P2Y2, P2Y4,
P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14. P2Y receptors are
basically activated by adenine and uridine nucleotides, such
as ATP, ADP, uridine diphosphate (UDP), and uridine
triphosphate (UTP), but not by nucleosides and they are
classified according to their sensitivity to purines and/or
pyrimidines: P2Y1, 12 and P2Y13 are adenine nucleotide-
preferring receptors; P2Y6 is preferred by uridine nucleo-
tides; P2Y2, 4 and P2Y11 are receptors with mixed
selectivity; whereas P2Y14 is activated by UDP-glucose,
UDP-galactose, UDP-N-acetylglucosamine, and UDP-glu-
curonic acid [83]. Although a minority of P2Y receptor
subtypes are incompletely characterized and the pharmacolog-
ical profiles of individual P2Y receptors are partially over-
lapping, ligands are available which display some selectivity to
certain subtypes of the P2Y receptor family [for further
information see 84, 85]. Nevertheless, identification of
individual P2Y receptors requires careful pharmacological
analysis and the use of receptor knockout animals, if
available, and exclusion of the involvement of adenosine
receptors in the effect of nucleotides used as P2Y agonists,
because they may be metabolized to adenosine (see, e.g., [45,
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47]). In addition, the potential heteromerization of P2Y
receptor subtypes with each other and with A1 adenosine
receptors [86] should also be taken into account when
individual P2Y receptors are identified.

Whereas P2X receptors convey rapid changes in the
neuronal excitability on the millisecond timescale, P2Y
receptors act on a longer, second timescale, appropriate
for the fine-tuning of synaptic transmission. As for the
signal transduction pathways activated by various sub-
types of P2Y receptors, P2Y1, P2Y2, P2Y4, P2Y6, and
P2Y11 receptors are coupled via Gq/11 proteins to stimulate
phospholipase C, followed by increases in inositol
phosphates and mobilization of Ca2+ from intracellular
stores; in addition, the P2Y11 receptor mediates an
increase in adenyl cyclase activity [84]. On the other
hand, P2Y12, P2Y13, and P2Y14 receptors are coupled via
Gi/o proteins to inhibit adenyl cyclase activity followed by
a decrease in intracellular cAMP levels [84]. The
activation of Gi protein-coupled P2Y receptors leads to
the voltage-dependent inhibition of N-type voltage-sensi-
tive Ca2+ channels directly or indirectly and subsequent
inhibition of neurotransmitter release [85]. The inhibition
of voltage-sensitive Ca2+ currents has also been demon-
strated for those P2Y receptors, which are coupled to the
Gq/11 proteins [85]; however, this inhibition is voltage
independent [85]. In addition, the Gi/o-coupled P2Y
receptors are known to activate voltage-sensitive GIRK
K+ channels via direct interaction of Kir3 channel protein
[85], which hyperpolarizes the neuronal membrane.

The distribution of P2Y receptors in neuronal structures

mRNA encoding all known P2Y receptors, i.e., P2Y1,
P2Y2, P2Y4, P2Y6, P2Y12, P2Y13, and P2Y14 are present in
the brain [81, 87–89]. Although our knowledge of their
cell-specific localization at the protein level is still
incomplete, it appears that a number of them, such as
P2Y1, P2Y2, and P2Y6 receptors, are expressed both on
neurons and astrocytes [90–96], whereas others are not
exclusively, but predominantly localized to astrocytes
(P2Y13: [97] P2Y14: [98]), oligodendrocytes (P2Y12:
[99]], or microglia (P2Y12: [100]). P2Y receptor mRNA
and protein can be detected in a number of different
structures, including sympathetic and parasympathetic and
sensory nerve terminals, basal ganglia, brainstem, cerebel-
lum, cortex, hypothalamus, and hippocampus (for further
references, see [85]). However, immunocytochemical data
should be handled with caution due to the lack of
verification of the specificity of many of the available
antibodies. For detailed information on the distribution of
individual P2Y receptor mRNAs and proteins, we refer to
recent reviews on this particular topic [85, 101].

Modulation of neurotransmitter release by facilitatory
P2 receptors

ACh

PNS

P2X receptors Since P2X receptors have relatively high
Ca2+ permeability [102, 103], this property makes them
capable of initiating neurotransmitter release by Ca2+ influx
through the receptor-ion channel complex or facilitating
Ca2+-dependent neurotransmitter release, provided that they
are located nearby the release sites (Table 1). The first
report suggesting that P2 receptors are involved in the
facilitatory modulation of neurotransmitter release stems
from 1991 when we found that opposite to the well-known
inhibitory action of adenosine, α,β-methylene ATP, a
metabolically stable analogue of ATP, enhanced electrically
evoked acetylcholine release from the myenteric plexus of
guinea pig and facilitated the related contractile response
[6]. This effect was not blocked by the antagonists of
adenosine receptors, and therefore was proposed to be
mediated by ATP-sensitive P2 receptors [6]. In the same
time Fu and Poo observed that ATP potentiates the
spontaneous secretion of acetylcholine from developing
neuromuscular synapses in Xenopus cell culture by
promoting Ca2+ influx through the plasma membrane.
However, this effect was not recognized to be the result
of P2 receptor activation [104]. Later on, P2 receptor-
mediated facilitation of acetylcholine release was confirmed
by electrophysiological recordings in chicken ciliary
ganglion [105] and mouse motor nerve terminals [106].
Presynaptic P2X receptors, involved in the facilitation of
acetylcholine release, have also been identified in developing
and adult neuromuscular synapses of Xenopus [107] and rat
[108]. Homomeric P2X7 receptors are inserted into the
membrane of mouse motor nerve terminals and their
activation elicits vesicular exocytosis [74, 109]. However,
there is no report about the presence of other subunit
compositions of P2X receptors at the neuromuscular junction
and it is also unclear whether such facilitatory receptors also
exist on the terminals of central cholinergic neurons.

Monoamines (NA, serotonin, DA)

PNS

P2X receptors The presynaptic facilitatory action of ATP
on noradrenergic transmission was described for the first
time by Miyahara and Suzuki in rabbit ear artery [110]. It
was followed by the demonstration of the facilitatory
effect of ATP and its metabolically stable analogue
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Table 1 Facilitatory modulation of neurotransmitter release in the PNS and CNS

Preparation Measured effect Proposed receptor Reference

Acetylcholine

Guinea pig ileum NT quantification P2 [6]
Chicken ciliary ganglion Presynaptic current P2X [105]
Xenopus NMJ sEPP/mEPP P2 [104, 107]
Mouse NMJ EPP/mEPP P2 [106]
Mouse NMJ Vesicular destaining, EPSC P2X7-like [74, 109]
Rat NMJ NT quantification P2X [108]
Noradrenaline

Rabbit ear artery EJP P2 [110]
PC12 cells NT quantification P2 [111]
Guinea pig ileum NT quantification P2 [6]
Rat vas deferens NT quantification P2X1, P2X3, P2X2/3 [113]
Guinea pig atrium NT quantification P2X3, P2X2/3 [114, 115, 118]
Human and porcine heart NT quantification P2X [119]
Sympathetic neurons NT quantification P2X2 [116]
LC neurons AP discharge P2X [120]
Rat hippocampus NT quantification P2X1, P2X3 [68]
Serotonin

Rat hippocampus NT quantification P2 [121]
Dopamine

Rat striatum NT quantification P2Y [122, 123]
Rat nucleus accumbens NT quantification P2 [124–128]
Glutamate

Rat brainstem mEPSC/NT quantification P2X1 [131, 157]
Rat NTS EPSC P2X3, P2X2/3 [129, 130, 132]
Rat hippocampus NT quantification P2X1, P2X3, P2X2/3 [69]
Rat hippocampus NT quantification P2X7 [75]
Mouse hippocampus NT quantification P2X7 [137]
Rat hippocampus EPSC P2X2 [133]
Rat hippocampus EPSC P2X7 [134]
Rat hippocampal neurons EPSC P2 [135]
Rat cortical synaptosomes NT quantification P2X7 [136]
Cultured astrocytes NT quantification P2X7 [142]
Retinal Müller glial cells NT uptake P2X7 [143]
Rat spinal cord EPSC/mEPSC P2X3, P2X1/5, P2X4/6 [144–148]
Rat nucleus accumbens NT quantification P2 [149]
Rat medial habenula EPSC P2Y4 [150]
Cultured astrocytes NT quantification P2Y1 [151]
Cultured Schwann cells NT quantification P2 [152]
GABA

Midbrain synaptosomes NT quantification P2X3, dinucleotide R [153]
Cultured dorsal horn neurons IPSC P2X [154]
Cultured hippocampal cells IPSC P2 [156]
Cultured cortical cells NT quantification P2X7 [155]
Rat brainstem IPSC P2X1 [157]
Rat, mouse, and guinea pig hippocampus NT quantification/IPSC P2X7 (indirect) [75, 137, 158]
Cultured astrocytes NT quantification P2X7 [159]
Rat hippocampus IPSC P2Y1 [163, 206]
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α,β-methylene ATP on [3H]noradrenaline efflux in PC12
cells [111] and in the guinea pig ileum [6]. However, the
knowledge on P2 receptors at that time did not allow the
identification of P2 receptor subtypes involved in these
effects. The issue has been reinvestigated and it was found
that sympathetic nerve terminals are equipped with
ionotropic P2X receptors, activation of which directly
elicits or facilitates noradrenaline release elicited by nerve
stimulation [1, 112–115] via a direct Ca2+ influx through
the receptor-ion channel complex. The pharmacological
phenotype of these receptors varies between species,
between transmission sites of the sympathetic nervous
system, and even between the somata and nerve terminals
of an individual neuron. Thus, in cultured sympathetic
neurons of the rat an α,β-methylene ATP-insensitive
P2X2-like receptor was identified [116], whereas in the
guinea pig right atrium we found that α,β-methylene ATP
stimulates noradrenaline outflow and the pharmacological
profile of the underlying receptor was similar to that of
P2X3 or P2X2/P2X3 receptors, consistent with the expres-
sion of their mRNA in the sympathetic ganglia [115]. In
another study the facilitatory P2X receptors involved in
the modulation of noradrenaline outflow in the rat vas
deferens were identified as P2X1, P2X3, or P2X2/P2X3

receptors [113]. In contrast, cultured mouse sympathetic
nerve terminals do not seem to express facilitatory
nucleotide-sensitive receptors [117]. Importantly, these
receptors seem to be endogenously activated by ATP
released in response to ongoing neuronal activity [115,
116] and by myocardial ischemia in the guinea pig [118],
porcine, and human heart [119] and could contribute
to ischemia-induced arrhythmia and ischemic heart
dysfunction.

CNS

P2X receptors In the central nervous system, locus coeru-
leus (LC) neurons of the rat are equipped with ATP-sensitive
P2X-like receptors, which facilitate the discharge of sponta-
neous action potentials [120]. Facilitatory P2X receptors
have also been described in the noradrenergic axon terminals
innervating the hippocampus, and the homomeric P2X1 and

P2X3 receptors were identified as the most likely subunits
responsible for this action [68].

P2Y receptors P2 receptors enhance the release of
serotonin from the hippocampus [121] and that of
dopamine from the striatum [122, 123], and the latter
effects are thought to be mediated by P2Y receptors.
However, the pre- or postsynaptic localization of receptors
responsible for these effects were not clarified in these
studies. The P2 receptor agonist 2-methyl-thio ATP
releases dopamine from the nucleus accumbens through
direct and indirect mechanisms [124–126] in vivo.
Interestingly, P2 receptor activation-evoked dopamine
release seems to play a role in the modulation of feeding
behavior as P2 receptor antagonists inhibit feeding-
induced dopamine release and concomitant behavioral
changes after food deprivation [127, 128].

Excitatory amino acids (glutamate, aspartate)

CNS

P2X receptors In addition to ACh and monoamines, the
release of excitatory amino acid transmitters is also
modulated by presynaptic P2X receptors in the CNS, as
demonstrated partly by neurochemical and partly by
electrophysiological methods.

Activation of P2X receptors elicits glutamate release
in the brainstem [129–132], hippocampus [69, 75, 133–
135], and cortical synaptosomes [136]. As for the
underlying receptor subunits involved in these effects,
P2X1 [69], P2X2 [133], P2X3, and P2X2/3 receptors [69,
130] as well as P2X7 [75, 132, 134, 136, 137] were
identified. The involvement of P2X2 receptors [133] and
P2X7 receptors [137] has been confirmed by the use of
transgenic mice deficient in P2X2 and P2X7 receptors,
respectively. Moreover the activation of P2X7 receptors
not only elicits glutamate release but also permits the
activation of other ligand-gated ion channels on the nerve
terminals, such as α7 nicotinic receptors, as demonstrated
recently in rat cortical synaptosomes [136]. The activation
of a P2X7-like receptor promotes Ca2+ influx in cortical

Table 1 (continued)

Preparation Measured effect Proposed receptor Reference

Glycine

Rat dorsal horn IPSC P2X [161]
Rat trigeminal nucleus sIPSC P2X [162]

AP action potential, EJP excitatory junction potential, EPP end plate potential, EPSC excitatory postsynaptic current, IPSC inhibitory
postsynaptic current, mEPP miniature EPP, mEPSC miniature EPSC, NMJ neuromuscular junction, NT neurotransmitter, sEPP spontaneous EPP,
sIPSC spontaneous IPSC
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synaptosomes [138] and in isolated midbrain synaptic
terminals [139] and activates p38MAP kinase enzyme in
the hippocampus [140]. This latter effect seems to
participate in the effect of ATP to elicit glutamate release
as it was sensitive to the inhibition by the specific
p38MAP kinase inhibitor, SB203580 [140]. Nevertheless,
the exact mechanism whereby the P2X7 receptor and
subsequent activation of p38MAP kinase enzyme leads to
increased glutamate release awaits further investigation. In
addition, it has been reported that the P2X7 receptor
agonist BzATP depresses synaptic transmission at the
mossy fiber-CA3 synapse [141] in a p38MAPK-dependent
way. However, more recently the participation of P2X7

receptors in this latter effect has been disproved [76, 77].
In addition to nerve terminals, P2X7 receptor activation
also elicits glutamate release from cultured astrocytes
[142] and inhibits the uptake of glutamate in Müller glial
cells of the retina [143].

The activation of P2X receptors facilitates excitatory
transmission in the spinal cord, releasing glutamate from
primary afferent fibers terminating in lamina II [144–
148] and lamina V [144]; these actions are mediated by
P2X3, P2X1/5, and P2X4/6 receptors, respectively. Finally,
the ability of the P2 receptor ligand 2-methyl-thio ATP to
release glutamate has also been demonstrated in vivo in
the dopamine-depleted nucleus accumbens [149], although
the underlying receptor subtype was not identified in this
study.

P2Y receptors Interestingly, the activation of P2Y receptors
is also implicated to elicit and potentiate glutamate release
in the central nervous system. In the medial habenula
nucleus UDP and UTP increase presynaptic release prob-
ability and elicit a non-Hebbian-type long-term potentiation
of excitatory transmission, an effect probably mediated by
P2Y4 receptors [150]. In addition, the activation of P2Y1

receptors elicits vesicular glutamate release from astrocytes
[151] and from cultured Schwann cells [152].

Inhibitory amino acids (GABA, glycine)

CNS

P2X receptors ATP or P1,P5-di(adenosine-5′) pentaphos-
phate (Ap5A) elicits an increase in the intrasynaptosomal
calcium and induces subsequent GABA release in midbrain
GABAergic synaptosomes via activation of P2X3 and a
dinucleotide receptor [153]. The regulation of GABA
release by P2X receptors has also been reported in the
spinal cord [154], cultured cortical [155] and hippocampal
[156] cells, and the brainstem, where the excitatory and
inhibitory synaptic transmission is facilitated via P2X3 and

P2X1 receptors, respectively [157]. In addition to direct
modulation of glutamate release, P2X7 receptor activation
also releases GABA from the hippocampus through the
activation on non-NMDA-type glutamate receptors [75].
This effect is absent in mice genetically deficient in P2X7

receptors [137] and mediated by the sodium-dependent
reversal of the GABA transporter [75]. P2X receptor-
mediated, TTX-sensitive GABA release has been implicat-
ed in the accelerated recovery of guinea pig hippocampal
slices from a hypoxic/hypoglycemic insult [158]. The
activation of P2X7 receptors also releases GABA from
cultured RBA astrocytes, however, with a different mech-
anism, by participation of the HCO3

- /Cl- exchanger [159].
On the other hand, no evidence was found for a direct
facilitation of GABA release by P2 receptors in the
hippocampal nerve terminal preparation [160]. Neverthe-
less, the release of another inhibitory transmitter, glycine, is
augmented by P2X receptor activation in the dorsal horn
[161] and in the brainstem trigeminal nucleus [162].

P2Y receptors In addition to P2X receptors, activation of
P2Y1 receptors leads to an increase of the inhibitory
postsynaptic current (IPSC) frequency in an acute hippo-
campal slice in a manner dependent on action potential
generation, indicating that this effect is related to the
activation of receptors present on the somata/dendrites of
hippocampal interneurons [163].

Modulation of neurotransmitter release by inhibitory P2
receptors

In addition to facilitatory modulation, P2 receptors are also
involved in the inhibitory modulation of the release of
various transmitters and the metabotropic P2Y receptors are
thought to play a major role in these actions (Table 2).

ACh

PNS

It has been known for a long time that ATP is involved
in the inhibitory presynaptic modulation of cholinergic
transmission [164]. However, it has been the subject of a
long-standing debate whether ATP itself is responsible for
this effect or its degradation product adenosine [165–167],
whereas an alternative was that ATP itself acts on adenosine
receptors [168] or activates a putative P3 receptor bearing
pharmacological features of both P1 and P2 receptors [169].
A more definitive proof for the involvement of P2 receptors
in the inhibition of acetylcholine release was obtained later
in the frog neuromuscular junction [170], rat submandibular
ganglia [171], and rabbit retina [172]. Presynaptic P2Y
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receptors responsible for the inhibition of spontaneous
acetylcholine release were recently identified at the mouse
neuromuscular junction [173]. In this study the underlying
subcellular mechanism of the inhibition of acetylcholine
release was also explored: the activation of P2Y receptors is
coupled to Gi/o proteins and modulates presynaptic Ca2+

channels related to tonic secretion of acetylcholine [173].

CNS

Inhibitory P2 receptors involved in the modulation of
ACh release have been demonstrated in rat cerebral cortex

[47]. By contrast, in the hippocampus, ATP primarily
inhibits acetylcholine release through its breakdown to
adenosine and subsequent action on A1 adenosine receptors
[47].

Monoamines (NA, serotonin, DA)

PNS
The presence of nucleotide-sensitive inhibitory P2

receptors on postganglionic sympathetic neurons was
recognized relatively early [5, 174–179], although initially
these receptors were qualified as P2Y-like [5] or as putative

Table 2 Inhibitory modulation of neurotransmitter release in the PNS and CNS

Preparation Measured effect Proposed receptor Reference

Acetylcholine

Frog ganglion EPSC P2 [165]
Guinea pig ileum NT quantification P2 [164, 166, 167]
Ileal synaptosomes NT quantification P1 [168]
Guinea pig submucosal neurons EJP P3 [169]
Frog NMJ EPP P2 [170]
Rat submandibular ganglion EPSC P2 [171]
Rabbit retina NT quantification P2 [172]
Mouse NMJ sEPP P2Y [173]
Noradrenaline

Mouse vas deferens NT quantification P2Y-like [5, 174, 181, 182]
Rat vas deferens NT quantification P3 [178]
Rat vas deferens NT quantification P2Y [181]
Rat vas deferens NT quantification P2Y12, P2Y13 [113]
Guinea pig vas deferens NT quantification P2Y-like [179]
Guinea pig saphenous artery EJP P2 [175]
Rat caudal artery NT quantification P3, P2Y [176, 177, 180]
Rat atrium NT quantification P2Y-like 183
Rat iris NT quantification P2Y-like [184]
Rat kidney NT quantification P2 [185]
Rat pancreas NT quantification P2 [186]
Chick sympathetic neurons NT quantification P2, P2Y12 [187, 188, 189]
Bovine chromaffin cells NT quantification P2Y12 [190, 194]
Rat cortex NT quantification P2Y [195]
Rat hippocampus NT quantification P2Y [196]
Serotonin

Rat cortex NT quantification P2 [197]
Dopamine

Rat striatum NT quantification P2 [198]
Glutamate

Rat cortex EPSC P2 [199]
Rat hippocampus EPSC P2Y [200, but see 201]
Rat spinal cord Polysynaptic EPSP P2Y [204]
Hippocampal slice culture EPSC P2Y [205]

EJP excitatory junction potential, EPP end plate potential, EPSC excitatory postsynaptic current, EPSP excitatory postsynaptic potential, NMJ
neuromuscular junction, NT neurotransmitter, SEPP spontaneous EPP
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P3 receptors, which are “hybrid” receptors between P1 and
P2 receptors and sensitive to adenine nucleotides but also to
theophylline derivatives [176–178]. These receptors have
been described and characterized in sympathetic nerves
innervating the rat caudal artery [176, 177, 180], guinea pig
saphenous artery [175], vas deferens [5, 178, 179, 181,
182], atrium [183], iris [184], kidney [185], and pancreas
[186] as well as in cultured sympathetic neurons [187, 188].
As for subtype-specific identification, Queiroz et al. [113]
identified presynaptic inhibitory nucleotide receptors on the
noradrenergic axon terminals of the rat vas deferens as
P2Y12 and/or P2Y13 receptors, whereas on cultured
sympathetic neurons [189] and bovine adrenal chromaffin
cells [190] only P2Y12 receptors have been identified.
Interestingly, it appears that mouse sympathetic neurons
[191] and noradrenergic nerves innervating the rat adrenal
cortex [192] do not express an inhibitory P2 receptor. The
mechanism of P2Y receptor-mediated inhibition of nor-
adrenaline release has also been explored in several studies:
the activation of P2Y receptors inhibits voltage-dependent
Ca2+ influx and thereby limits the Ca2+-dependent vesicular
exocytosis and subsequent efflux of noradrenaline to the
extracellular space [189, 193, 194].

CNS

Similar inhibitory P2Y receptors have also been reported
in the CNS in the rat brain cortex [195] and hippocampus
[196]; however P2Y receptor subtypes involved were not
identified in these early studies.

In the CNS, ATP inhibits the release of serotonin [197]
and dopamine [198] via activation of metabotropic P2
receptors.

Excitatory amino acids (glutamate, aspartate)

CNS

ATP and its metabolically stable analogue ATP-γ-S
inhibits depolarization-evoked glutamate release from rat
brain cortex slices [199] and inhibits glutamatergic EPSPs
in hippocampal CA1 synapses [200]. Although the under-
lying receptor was sensitive to theophylline derivatives, the
authors proposed that ATP acted through a putative
pertussis toxin-sensitive P2Y receptor. However, this
hypothesis was challenged by showing the rapid and highly
effective hydrolysis of ATP in the hippocampal slices [45,
46] and by the demonstration of the complete absence of
nucleotide-mediated modulation of excitatory synaptic
transmission in the hippocampi of A1 receptor-/- mice
[201]. In a recent study Rodrigues et al. demonstrated that
single hippocampal pyramidal neurons do express P2Y1,
P2Y2, and P2Y4 receptors, and the release of glutamate,

measured by a neurochemical technique, is inhibited by
these receptors [69]. The discrepancy between the obser-
vations obtained in electrophysiological and neurochemical
studies might be explained by the fact that in the former,
individual synapses, whereas in the latter, glutamate release
from all synapses of the hippocampal slice were simulta-
neously investigated. Nevertheless, the exact conditions
under which the activation of P2Y receptors by endogenous
ligands gain significance remain to be identified.

Functional data suggest that the release of glutamate in
the spinal cord is modulated by inhibitory P2Y receptors.
The activation of P2Y receptors causes blockade of the
N-type calcium channels in dorsal root ganglion (DRG)
cells [202], and this effect may decrease the release of
glutamate from DRG terminals in the spinal cord and
thereby partly counterbalance the algogenic effect of ATP
[203, 204]. This assumption is supported by the findings
that the P2Y1/12/13 receptor agonist ADP-β-S inhibits
polysynaptic, but not monosynaptic excitatory postsynaptic
potentials in the hemisected spinal cord and exhibits
antinociceptive potential in the tail flick test [204].

Recent studies revealed that modulators released from
glial cells also regulate neurotransmitter release from
nearby nerve terminals by the activation of P2 receptors.
Hence mechanical stimulation of astrocytes in hippocampal
cell culture leads to the generation of Ca2+ waves in
astrocytes, which spread by the release of ATP and
subsequent activation of P2 receptors and lead to the
depression of excitatory synaptic transmission between
neurons [205]. This glia-driven synaptic depression is
partly mediated by ATP itself acting on P2Y receptors
and partly by adenosine acting on A1 adenosine receptors
[205]. A similar mechanism has also been demonstrated in
intact hippocampal slices, where ATP released from
neurons and astrocytes acts on P2Y1 receptors to excite
interneurons, resulting in increased synaptic inhibition
within intact hippocampal circuits [206]. On the other
hand, to our knowledge there is no information regarding
whether the release of GABA and other inhibitory amino
acids is subject to modulation via inhibitory P2 receptors.

Potential therapeutic utilization of P2 receptors involved
in the regulation of neurotransmitter release

P2X and P2Y receptors involved in the regulation of
neurotransmitter release offer attractive, although not yet
utilized sites for pharmacotherapy in nervous system
diseases. For instance, facilitatory P2X receptors present
on axon terminals could be activated not only during
normal neuronal activity, but also during pathological
situations, when cellular damage provides an ATP-rich
extracellular milieu nearby the receptors. Thus, P2X
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receptors present on the sympathetic nerve terminals
supplying the heart seem to be endogenously activated by
ATP by myocardial ischemia [118, 119] and could
contribute to ischemia-induced arrhythmia and ischemic
heart dysfunction. Therefore, inhibition of these facilitatory
P2X receptors might have therapeutic relevance in ischemic
heart disease. The pathological activation of CNS P2X
receptors, regulating the release of glutamate during
ischemic-like conditions, was also recently described
[207]. Increased activation of P2X receptors could contrib-
ute to ischemia-evoked glutamate release and thereby to
glutamatergic excitotoxicity and resultant neuronal death;
therefore, inhibition of these receptors could be a promising
approach to treat ischemia-related neurodegenerative dis-
eases. An analogous mechanism could play a role in the
spinal cord during the sensitization process leading to
various forms of sensory neuropathy; therefore, attenuation
of increased glutamate release from the central terminals of
primary sensory neurons by the inhibition of P2X receptors
is a potential pathway which could be utilized in neuro-
pathic pain. Since inhibitory P2Y receptors are frequently
coexpressed on nerve terminals that are equipped with P2X
receptors, activation of P2Y receptors could have a similar
effect as the inhibition of P2X receptors. Therefore P2Y
receptor agonists might also have therapeutic value in the
areas described above. However, one should bear in mind
that different subtypes of P2X and P2Y receptors affect
various other aspects of physiological and pathological
neuronal functions, which could also modify their potential.

Conclusion

In conclusion, substantial advances have been obtained in
the identification and characterization of neurotransmitter
release modulating P2 receptors in recent years. It appears
that almost all major neurotransmitters of the nervous system
are subject to neuromodulation by nucleotide-sensitive P2
receptors. Although there are exceptions to this rule, in
general the release of different transmitters is subject to a
dual modulation similar to modulation of other transmitters
of the CNS and PNS: facilitatory modulation is conveyed by
ionotropic P2X receptors, whereas inhibitory modulation is
mediated by G protein-coupled metabotropic P2Y receptors.
Amongst P2X receptors, P2X1, P2X2, P2X3, P2X2/3, P2X1/5,
P2X4/6, and P2X7 receptors were identified to be responsible
for facilitatory modulation in different areas of the CNS and
PNS. In addition, P2Y receptors (P2Y1, P2Y4) could also
mediate facilitation of transmitter release in certain areas.
Inhibitory modulation of neurotransmitter release is mediated
by P2Y12 and P2Y13 receptors; however, individual P2Y
receptor subtypes involved in these interactions are far from
fully explored yet. It appears that not only neuronal, but also

glia-derived ATP play a role in the modulation of neuro-
transmitter release. The intensity of P2 receptor-mediated
modulation, the balance between the facilitatory and inhib-
itory modulation and the participating individual receptor
subtypes, however, varies between individual transmission
sites, depending on the expression pattern of P2 receptors
and the factors determining the nucleotide levels in the
vicinity of release of modulatory P2 receptors. Therefore,
further progress is necessary in order to obtain a precise
mapping of P2 receptor-mediated modulation of neurotrans-
mitter release. The in vivo relevance of most of the in vitro
observations on presynaptic P2 receptors awaits further
investigation. Finally, physiological and pathological situa-
tions where presynaptic P2 receptors become endogenously
activated by released nucleotides need to be identified.
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