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Abstract In this paper, the Active Constellation Extension (ACE) method of Peak-to-
Average Power Ratio (PAPR) reduction is studied for the application in Generalized Muli-
carrier (GMC) transmission using nonorthogonal subcarriers. It is shown, that GMC signaling
is advantageous for modern wireless communications due to its high spectral efficiency, how-
ever, it faces even higher PAPR than in the case of the conventional Orthogonal Frequency
Division Multiplexing (OFDM) transmission. The modification of the ACE method for the
GMC signals is presented, which takes into account overlapping of data symbol pulses and
of their subband spectra. Further improvements of the proposed method are suggested that
lead to the decrease of the computational complexity and to more efficacious PAPR reduc-
tion in comparison with the conventional ACE scheme. With these improvements, the PAPR
reduction for the GMC signaling is the same as for OFDM.

Keywords Multicarrier modulation · PAPR reduction · Active constellation extension

1 Introduction

Multicarrier (MC) transmission is in the focus of attention of researchers and designers as a
suitable technology for fast data transmission in time-dispersive channels (introducing time-
dispersion of the transmit signal impulses). The Orthogonal Frequency Division Multiplexing
(OFDM) is a representative of MC transmission techniques, and is used in both wireless and
wired telecommunications. Implementation of the MC modulation can be supported by the
Inverse Fast Fourier Transform (IFFT). Recently, MC modulation of non-orthogonal sub-
carriers, as well as utilization of various pulse shapes in OFDM systems have gained a lot
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e-mail: akliks@et.put.poznan.pl
URL: www.et.put.poznan.pl

H. Bogucka
e-mail: hbogucka@et.put.poznan.pl

123



324 A. Kliks, H. Bogucka

of attention [1–7]. In this paper, we concentrate on the so-called Generalized Multicarrier
(GMC) signaling based on non-orthogonal subcarriers and pulse shaping. The considered
transmission scheme offers high spectral efficiency, as it uses densely packed subcarriers,
and avoids the application of the guard period. Moreover, application of filtering shapes the
subband signal spectrum, so that the out-of-band spectral components decay to zero relatively
steeply. This allows to consider GMC technique as very promising for the application in dou-
bly-dispersive channels and in the opportunistic radio, because it minimizes the interference
generated by the secondary users to the primary users.

The drawback of the MC signaling is high Peak-to-Average Power Ratio (PAPR). In the
presence of nonlinear elements, e.g. power amplifiers, high PAPR results in the in-band dis-
tortions, out-of-band radiation, and in the Bit-Error Rate (BER) degradation. Thus, efficient
methods to lower the PAPR in MC transmission are required. Numerous techniques, either
based on coding, multiple signal representation, constellation modification or signal predis-
tortion have been studied, so far [8]. The Active Constellation Extension (ACE) method of
PAPR reduction has been proposed in Refs. [9–11] for the application in OFDM systems. It
offers important advantages over other PAPR reduction schemes, as it avoids the necessity
to transmit the side information, or to modify the reception algorithm. Moreover, it does not
degrade the Bit Error Rate (BER) performance. Finally, it is being proposed for future wire-
less standards, such as DVB-T2 [12]. Due to its advantageous properties, the ACE method
is one of the main candidates for application in future cognitive radios (with an opportunis-
tic spectrum access) that will be based on multicarrier (possibly non-contiguous) signaling.
Since the radio-transmission based on non-orthogonal MC waveforms also fits in the require-
ments yielded to the adaptive and intelligent radios, it is reasonable to adapt ACE method for
such systems with GMC signal representation. Thus, here below, we consider its necessary
modifications for the GMC signaling. Further refinements of this method are also introduced
to increase robustness to nonlinear distortions.

2 GMC Signals and High Peak Power Problem

The GMC representation of signals is considered in various publications, however there is
no unique definition of such signals. Below, we define the discrete GMC signal s(n) in the
same manner as in most of the papers, e.g. as in Refs. [1–3]:

s(n) =
∑

l∈Z

M−1∑

m=0

clm glm(n), (1)

where s(n)(n ∈ Z) is the discrete-time signal belonging to the complex Hilbert space of
square-summable sequences �2(Z), {clm}(l ∈ Z , m = 0, . . ., M − 1) are the so-called
frame coefficients, here considered as data symbols, M is the number of subcarriers, Z is the
set of integers, and {glm(n)} is a sequence of basis functions, defined as [1–3,13]:

glm(n) = g(n − l N ) exp[ j2πm(n − l N )/M]. (2)

Above, N is the time spacing between M parallel symbols (in samples) modulating M sub-
carriers, and g(n) is the pulse shape also called the synthesis window as it is used for the
synthesis of signal s(n) as described by (1) Let us note that expression (1) is the Gabor
discrete signal expansion (synthesis) of s(n) [1]. In fact, the Gabor-frames theory provides a
good tool to analyze GMC signals as we define them [13]. The basis functions {glm(n)} are
also called the Gabor atoms, and constitute the frame if the so-called frame condition holds
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[13,14], i.e. A ‖s(n)‖2 ≤ |〈s(n), glm(n)〉|2 = B ‖s(n)‖2 ,∀s(n) ∈ �2 (Z), where A and B
are real values called the frame bounds, such that 0 < A ≤ B < +∞. The frame theory is
described in sufficient details in [14]. The necessary (but not sufficient) condition for {glm(n)}
to be a Gabor frame is that N/M ≤ 1. In such a case glm(n) are sufficiently densely placed
in the Time-Frequency (TF) plane, and the dual Gabor frame {wlm(n)} exists [1,3,13], what
means that we can inverse formula (1) and calculate the Gabor frame coefficients {clm} for a
given s(n). The frame coefficients {clm} constitute the TF representation of the signal s(n),
therefore this inverse operation is called Gabor-analysis of the s(n) signal, and is defined as:

clm =
∑

n∈Z

s(n)w∗
lm(n), (3)

where wlm(n) = w(n − l N ) exp[ j2πm(n − l N )/M], w(n) is the so-called analysis window
(because it is used for the abovementioned analysis), and ()∗denotes complex conjugate.
Moreover, (3) describes the Discrete Gabor Transform (DGT). The existence of the dual
Gabor frame allows to restore the data symbols at the GMC receiver. Therefore, in the
reminder of the paper we will only consider N/M ≤ 1. Let us note, that if the pulse shape
is chosen to be rectangular, and N = M, {clm} are Fourier coefficients, and GMC modu-
lation becomes OFDM. However—if the window shape is rectangular and N < M , overlap-
ping between neighboring pulses exists. Consequently, the OFDM transmission cannot be
realized. In a general case however, g(n) is not rectangular, {glm(n)} are not orthogonal,
and overlap both in the time and in the frequency domain. Below in the paper, overcritical
sampling, i.e. N/M < 1, rather than critical sampling, i.e. N/M = 1, will be considered.
(Overcritical sampling condition should not be confused with the non-critical sampling con-
dition of N/M > 1, e.g. considered in Ref. [6], which is applied to increase the subcarrier
spacing). Although it results in a redundant signal expansion, i.e. the number of Gabor coef-
ficients is higher than the number of signal samples, it is usually preferred since the Gabor
atoms can be chosen with desirable properties such as good TF localization, which is not
possible in the case of critical sampling. Based on the Balian-Low theorem [13], good TF
localization of atoms (concentrated around the (l, m) coordinates on the discrete TF plane)
results in reduced Inter-Symbol (ISI) and Inter-Carrier interference (ICI), and allows to omit
the guard period necessary in the case of OFDM [1–5]. The illustration of the example TF
localization of atoms is presented in Fig. 1. An interested reader is referred to [2,3,14–17]
for details on Gabor frames theory.

It has been shown in [4] that formula (1) is describing the operation of the Discrete-
Fourier-Transform synthesis-filter bank, which can be efficiently implemented by the means

Fig. 1 The illustration of
overlapping atoms representing
the GMC signal on
time-frequency plane; T —time
distance between atoms,
F—frequency distance between
atoms
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of IFFT and the polyphase filter bank (as long as M is a power of 2, what is the case for our
considerations). The polyphase filtering is implemented after IFFT with lower complexity
than the pulse-shaping in every GMC subband (at the input of IFFT) [2]. Detailed analysis
of the GMC signal generation, as well as its applicability to multi-standard transceivers can
be found in Ref. [1–3].

It is worth mentioning that the symbol-based transmission has been assumed in this paper.
Thus, one TF-block that consists of λ consecutive blocks of M-subcarriers corresponds to one
GMC-symbol in the time domain appearing at the output of the bank of the polyphase filters.
In other words, λM time-frequency data symbols clm are transformed into one GMC symbol
in the similar way as M data symbols in frequency domain are transformed into one time
domain symbol in the OFDM case. Let us now consider transmission of random data symbols
clm . Thus, the transmit signal s(n) described by (1) is also random. (It has to be noticed that
in a case of randomly generated data symbols perfect reconstruction could be impossible
[13,15] and some residual interference between neighboring pulses will exist. However, in
this paper we do not consider any methods neither for interference cancellation nor for data
precoding, which will be suitable for elimination of the effect of this phenomenon. Instead,
it is assumed that such method will be applied at the receiver in order to reconstruct the
transmit data perfectly.). For the purpose of the comparison of our PAPR reduction methods
considered for the GMC scheme with the respective methods proposed for OFDM, let us
define the PAPR of the s(n) signal in the same way as it is done for OFDM, i.e. for a block
of samples representing M parallel symbols modulating M subcarriers. In case of the GMC
modulation this block consists of N samples. Thus, for n = i N + k, s(n) = si (k), and for
the i th block of samples si = [si (0), si (1), . . . , si (N − 1)], PAPR is defined as:

∀i : P AP R[si ] = ‖si‖2∞
E

{‖si‖2
2

}
/N

, (4)

where ‖·‖q denotes the q-norm of the enclosed vector, and E{·} denotes the expected value.
For the GMC signal, the pulse-shaping implemented by the polyphase filtering mentioned
above, increases the peak power at the output of the polyphase filter-bank due to the involved
convolution of the input signal samples. Thus, depending on the distribution of phases of
the input data symbols, GMC signals can have higher instantaneous PAPR and consequently
worse PAPR distribution than the OFDM signal. This effect is visible in Figs. 3, 4, 5, and 6,
where the experimental Complementary Cumulative Distribution Function (CCDF) of PAPR
is presented for both OFDM and GMC signals oversampled by the factor of 4. Overcritical
sampling further increases the PAPR value due to the summation of densely overlapping
atoms in the GMC modulator.

3 ACE and its Modification for GMC Signals

Originally, the idea of the ACE has been presented for the OFDM transmission in Ref. [9].
It is based on the amplitude predistortion of some data symbols at the input of the IFFT
(the modulator) to decrease the PAPR at its output. Only the outer constellation symbols can
be predistorted in order to keep the constellation minimum distance fixed, what assures no
degradation of the BER performance at the receiver. The constellation side-points can be
predistorted (moved) only along the half-lines in the outer direction, while the constellation
corner-points can be moved in larger quadrant area, as illustrated in Fig. 2 for the 16-QAM
signal.
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Fig. 2 ACE-method
predistortion options for 16QAM

In the ACE algorithm, the set S of the peaks is determined at the output of the modulator
as well as the set Sidx of their discrete-time indices. A peak is defined as a sample, whose
amplitude is higher than the predefined threshold T1. The threshold level depends on the
Power Amplifier (PA) characteristic, and should be chosen to minimize nonlinear distor-
tions. In Ref. [10,11], it is proposed to compute a metric for every data symbol cm, 0 ≤ m ≤
M − 1, and every sample from set S, which reflects the contribution of the mth symbol to the
appearance of peaks. Once the metrics are calculated, L constellation outer symbols (either
their real, imaginary part or both) of the highest metric values are multiplied by the scaling
parameter α > 1, and the vector of data symbols containing those modified ones modulates
the orthogonal subcarriers again.

The drawback of the ACE method is the increase of the transmitted power due to the
amplitude amplification of the selected symbols. However, this increase of the signal power
depends on the number of predistorted symbols L , and the threshold level T1, and can be
easily controlled by α and L . (In Ref. [11] it has been shown that for L = 0.1M and for the
considered values of T1, the increase of the average signal power does not exceed 0.5 dB,
what constitutes 11% of the original average signal power). It also naturally results in BER
performance improvement, even when compared with the transmission not liable to nonlinear
distortions. This is because the increase the power of some constellation points causes that
they are more robust to errors when compared with the transmission in which ACE is not
applied.

Let us summarize pros and cons of the ACE method. Firstly, there is no need to transmit the
side information or to modify the receiver structure since only the outer constellation points
are modified; in other words, ACE methods ensures backward compatibility with existing
transceivers. Then, all of the subcarriers can be used for the transmission of data- or pilot
symbols; none of them is devoted for PAPR reduction as in some other methods proposed.
Since the minimum distance between the constellation points is not reduced, and the distance
between the outer constellation points and the neighboring ones is occasionally increased
(at the expense of higher transmit power), the BER of the whole link is not degraded. As it
will be shown in the next sections, the amount of the added power as well as the ways of
its utilization can be parametrically steered in order to further improve the overall system
performance. Due to some power increase of selected pulses on time-frequency plane the
amount of out-of-band emission can be also slightly higher when compared with the original
signal, since the potential sidelobes of the transmit pulse will carry more energy. However,
the in-band average power is also increased in such a case, and the ratio between the in-band
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power and out-of-band power is not degraded. The goal of the ACE method is to minimize the
possibility of signal spectrum broadening caused by the presence of non-linear devices. Thus,
finally, the application of the ACE method even reduces the level of out-of-band emission
comparing with the system where no PAPR reduction methods is applied. It is also worth
mentioning that the transmit pulse shapes should be designed in such a way, that the sidelobes
of the transmit pulse were below a required power level defined by the spectrum mask.

Application of the ACE method to GMC signals defined in the previous section requires
incorporation of the Gabor-atom pulse shape, its duration Ng (in samples) and the TF dis-
tance between atoms in the metric definition. This is because the GMC-modulated signals
interfere with the neighboring (in the TF plane) signals to the degree depending on the pulse
shape. The decision concerning predistortion of data symbols should be made for the whole
block of symbols consecutively arriving in the considered GMC symbol and modulating the
subcarriers (unlike in the case of OFDM and conventional ACE, where this decision can be
made for each OFDM symbol separately). Thus, in our case the ACE metric is defined as:

μlm = −
∑

n∈Sidx

cos(ϕlmn) · |s(n)|p, (5)

where p is the parameter of the method, and ϕlmn is the difference between the phase of
the nth output peak sample s(n) and the phase of clm glm(n), which is the contribution of
the input data symbol clm to this peak. (It is easy to note, that every input data symbol clm

multiplied by glm(n) forms a component in (1), and thus, contributes to the output sample
s(n)). The metric value indicates to what degree modification of the input symbol clm can
positively affect the decrease of peaks. Note, that in (5) the peak amplitude is taken into
account. Let us also note, that S and Sidx theoretically contain infinite number of elements
(in general n ∈ Z ). If we consider the symbol based transmission, i.e. the finite range of the
time samples, S contains a number of elements from the whole GMC symbol, unlike in the
case of the standard OFDM, when the ACE method can be implemented for distinct OFDM
symbols and n ∈ [0, . . ., M − 1]. Moreover, as we can note from (5), in the GMC scheme,
the metric is calculated for all symbols transmitted in the GMC time-frequency block, i.e.
for all pairs of (l, m) indices while in OFDM the index l does not matter. In practice, the
duration of the pulse shape g(n) and atoms glm(n) is finite, and we may implement (5) for
one GMC time domain symbol in a symbol-based transmission [2]. Moreover, overlapping
of GMC time-domain symbols can be neglected, if we assume that there is a appropriate
gap between consecutive GMC symbols, analogously as the guard period between symbols
in the OFDM scheme. It is worth mentioning that by inserting the gap between consecutive
GMC symbols we do not destroy the main feature and advantage of GMC transmission, i.e.
overlapping of the neighboring atoms in time-frequency domain. Indeed, the neighboring
pulses on TF place overlap each other, whereas there is no overlapping between the border
pulses of two subsequent GMC time symbols. Let us note that:

cos(ϕlmn) = Re{exp( jϕn) exp[− jϕclm glm (n)]}, (6)

where ϕclm glm (n) and ϕn are the phase angles of clm glm(n) and s(n) respectively. Moreover,
exp( jϕn) = s(n)/|s(n)| and exp(− jϕclm glm (n)) = c∗

lm g∗
lm(n)/|clm glm(n)|. Thus, the μlm

metric for the GMC signals can be calculated as:

μlm = Re

⎧
⎨

⎩
∑

n∈Sidx

− s(n)

|s(n)| · c∗
lm g∗

lm(n)

|clm glm(n)| |s(n)|p

⎫
⎬

⎭. (7)
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When the set S is zero-padded (to achieve the cardinality equal to the order of DGT), we
obtain:

μlm = −Re

{
c∗

lm

|clm | DGT g∗
norm

[
s̃ ◦ |s̃|p−1]

}
, (8)

where DGT g∗
norm is the operator of the DGT, which uses the following Gabor frame of

normalized window functions:
{
g∗

lm(n)/|glm(n)|} as the analysis frame, s̃ is the vector of
peak samples and zeros padded to positions where peaks do not occur, and “◦” denotes the
element-wise multiplication of vectors. The metric computation by the means of DGT is
relatively low complex because it may use the FFT preceded by the bank of the polyphase
filters [2].

4 ACE Refinements for Enhanced Efficiency

Below, further modifications of the ACE method are presented, which aim at the enhance-
ment of its performance expressed in terms of the CCDF of PAPR (considered random for
the random data symbols).

4.1 Incorporation of the Near-Threshold Samples (NTS)

The ACE method can cause the peak re-growth as a consequence of the modification of the
constellation shape, particularly, in a GMC transmitter with overlapping symbols. Thus, new
peaks can occur, which fall in the nonlinear range of the amplitude input-output character-
istic of the PA. We suggest a method to overcome this effect by adding the Near-Threshold
time-domain Samples (NTS) to the set S, and by weighting them appropriately:

μlm = −
⎛

⎝
∑

n∈Sidx

cos(ϕlmn) · |s(n)|p +
∑

n∈SNTidx

γn cos(ϕlmn)

⎞

⎠ (9)

where SNTidx is the set of indices of the near-threshold samples (with amplitudes between
the thresholds T1 set for the peaks and T2 set for the near-threshold samples, T1 > T2), and
γn is the weighting function defined as γn = A · |s(n)|p/B , i.e. similarly as the weighting
function of peaks above T1 (equal to |s(n)|p). The parameters A and B should be tuned to
the actual values of T1 and T2.

4.2 Flexible Scaling Parameter

Our idea of further enhancement of the ACE method is to make the scaling parameter α

flexible, in such a way that it was an increasing function of L highest metrics:

∀(l, m) ∈ SACE : αlm = fα(μlm), (10)

where SACE is the set of pairs of the (l, m) indices, for which μlm belongs to the set of L
highest metrics. In the same time, we want to ensure that the increase of the transmitted
signal power remains unchanged when compared to ACE with constant α. For this purpose,
let us assume, that the set of possible values of αlm is finite. Moreover, let the sequence of
αlm values be the arithmetic progression with the first element equal to 1 and the common
difference ζ , so that:
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∀(l, m) ∈ SACE∃!i ∈ [1, L] : αlm = αi = 1 + (i − 1)ζ, clm = ci . (11)

The value of ζ can be found by solving the following equation, resulting from the above-
mentioned constant added-power constraint:

∑

(l,m)∈SACE

α2 · c2
lm =

L∑

i=1

α2
i c2

i , (12)

where ci is the input symbol (one of the clm symbols) to be predistorted by αi , and α (with
no index) is the original constant scaling parameter. By solving (12) and calculating αlm

according to (11) we obtain αlm values sorted in the ascending order. We are also able to
define the increasing bijective relation between αlm and μlm , so that the highest value of
αlm is applied to the symbol of the highest μlm , the second highest αlm is mapped to the
symbol of the second highest μlm , and so on. Note, that we have also considered the directly
proportional relation between αlm and μlm for the scaling parameter flexibility, but in the
simulation experiments, the relation αlm = fα(μlm) defined by (11) and (12) has turned to
be more effective in PAPR reduction.

5 Simulation Results and Conclusions

Below in Figs. 3, 4, 5, and 6, simulation results are presented for the QPSK and 16QAM
GMC signal, for which M > N have been chosen (overcritical sampling). The symbol-based
transmission has been considered with a number of subcarriers M = 64, and the number of

Fig. 3 CCDF(PAPR0) plots obtained for the GMC QPSK transmission for various pulse-shaping windows
(i.e. Gaussian, Hanning, Kaiser and rectangular), M = 64, N = 48, Ng = 72 and for OFDM with no PAPR
reduction and applying ACE (constant α, no NTS inclusion); β—Kaiser window parameter
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Fig. 4 CCDF(PAPR0) plots obtained for the proposed ACE method improvements for the QPSK-GMC (with
Gaussian pulse-shape) and OFDM, M = 64, N = 48, Ng = 72

Fig. 5 CCDF(PAPR0) plots obtained for the proposed ACE method improvements for the 16-QAM-GMC
(with Gaussian pulse-shape) and OFDM, M = 64, N = 48, Ng = 72
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Fig. 6 CCDF(PAPR0) plots obtained for the proposed ACE method improvements for the 16-QAM-GMC
(with Gaussian pulse-shape) and OFDM, M = 64, N = 36, Ng = 96

transmitted blocks (of M parallel symbols) equal to 512. (Thus, the total number of sym-
bols in the GMC time-domain symbol equals: 64×512 = 32,768.) It has been assumed that
subsequent GMC symbols are separated by a guard margin and thus, the signals from consec-
utive symbols do not overlap. Note, that GMC signaling is characterized by flexibility in the
pulse shape selection. Optimization of the pulse shape depends on the optimization criterion,
e.g. minimization of ISI or ICI, or other. Figure 3 shows that application of the Gaussian
pulse-shape results in the lowest PAPR out of all considered synthesis windows for the GMC
transmission. In Figs. 4, 5, and 6, we present simulation results for the Gaussian pulse, which
has also good time-frequency localization, what results in minimum ISI and ICI. The duration
of this pulse shape is limited to Ng samples. The following near-optimal settings of the ACE
method have been applied: the number of predistorted symbols L p = 15% of the number TF
data symbols, the γn function (appearing in (9)) parameters: A = 0.5, B = 2, T2 = 0.8. T1,
and T1 = 3.9 dB above the signal average power (as in [10]). The relation αlm = fα(μlm)

defined by (11) and (12) has been also adopted for the scaling parameter α. For comparison,
the results obtained for the OFDM with the same number of subcarriers M are presented.
The experimental CCDF of PAPR has been estimated for the transmit signals oversampled
by the factor of 4.

One can observe that without the application of any PAPR reduction method,
CCDF(PAPR0) = Pr(PAPR>PAPR0) for a GMC system is much higher than for the relevant
OFDM system. Application of the ACE metric modified for the GMC signal (as defined by (5)
and (8)) lowers the CCDF(PAPR0) noticeably. Further ACE refinements (described in Sec.
IV) improve the situation even more. The application of flexible α lowers the CCDF(PAPR0)

when compared with the results obtained for constant α. Additionally, when of the NTS are
included in the metric definition, a noticeable decrease of CCDF(PAPR0) is observed for
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OFDM, while for GMC signaling smaller decrease can be noted in the lower range of PAPR0

values, i.e. below 9 dB (see “NTS Incl.” curves in Figs. 4, 5, and 6).
The above-discussed results for GMC signaling are similar to the ones obtained for OFDM

with the original-ACE PAPR reduction (PAPR reduced by approximately 2.5 dB), despite
much higher initial PAPR inherent for the GMC signal resulting from overcritical sampling
and relatively long pulse duration (Ng > N ), particularly in the last considered case (Fig. 6).

The method we have presented above together with its modifications and refinements can
be applied to any pulse-shaped non-orthogonal multicarrier signal, also with the pulse shape
other than Gaussian (Fig. 3). With our proposed improvements of the ACE, the GMC trans-
mission becomes attractive for future modern communication systems, such as opportunistic
radio, because its major disadvantage (very high PAPR) is removed.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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