Skip to main content
Log in

Compensation schemes and performance analysis of jointly nonlinear amplifier and timing errors for CP-OFDM based cognitive radio networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The principal objective of cognitive radio (CR) networks is to configure and share dynamically the spectrum resources in order to avoid user interference and congestion. This goal is limited by the effect of errors synchronization between primary and secondary users. In this paper, we study the impact of the asynchronism on the cyclic prefix-based orthogonal frequency division multiplexing modulation (CP-OFDM) including nonlinear HPA model. The considered system includes a reference primary user perfectly synchronized with its reference base station and Nsu interfering secondary users. We provide a new theoretical aspect of interference analysis in the context of the OFDM based CR network. Furthermore, on the basis of this analysis, we derive the accurate expression of bit error rate in the presence of a Rayleigh flat fading channel. Finally, to solve the problems of asynchronism and nonlinearity, a hybrid iterative method of compensation and parallel interference cancellation have been developed based on these two conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mahmoud, H. A., Yucek, T., & Arslan, H. (2009). Ofdm for cognitive radio: Merits and challenges. IEEE Wireless Communications, 16(2), 6–15.

    Article  Google Scholar 

  2. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio for flexible mobile multimedia communications. In IEEE international workshop on mobile multimedia communications (MoMuC’99), pp. 3–10.

  3. Dardari, D., Tralli, V., & Tralli, V. (2000). A theoretical characterization of nonlinear distortion effectsin OFDM systems. IEEE Transactions on Communications, 48(10), 1755–1764.

    Article  Google Scholar 

  4. Dakhli, M., Zayani, R., Belkacem, O. B., & Bouallegue, R. (2014). Theoretical analysis and compensation for the joint effects of HPA nonlinearity and RF crosstalk in VBLAST MIMO OFDM systems over Rayleigh fading channel. EURASIP Journal on Wireless Communications and Networking, 2014(6)1, 15 p.

  5. Zayani, R., Shaiek, H., Roviras, D., & Medjahdi, Y. (2015). Closed-form ber expression for(qam or oqam)-based ofdm system with hpa nonlinearity over rayleigh fading channel. IEEE Wireless Communications Letters, 4(1), 38–41.

    Article  Google Scholar 

  6. Elmaroud, B., Abbad, M., & Aboutajdine, D. (2016). BER analysis of asynchronous and nonlinear FBMC based multi-cellular networks. In IEEE 27th annual international symposium on personal, indoor, and mobile radio communications (PIMRC).

  7. Wang, X. C. X., Chen, H. H., & GuiZani, M. (2008). Cognitive radio network management. IEEE Vehicular Technology Magazine, 3(1), 28–35.

    Article  Google Scholar 

  8. Lajnef, H., Dakhli, M. C., Hizem, M., & Bouallegue, R. (2016). The impact of the nonlinear distortion on OFDM and FBMC signals based cognitive radio applications over Rayleigh fading channel. In IWCMC 2016, pp. 1141–1145.

  9. Saeedi-Sourck, H., Wu, Y., Bergmans, J. W., & Sadri, S. (2011). Sensitivity analysisof offset QAM multicarrier systems to residual carrier frequency and timing offsets. Signal Processing, 91(7), 1604–1612.

    Article  MATH  Google Scholar 

  10. Medjahdi, Y. (2012). Modelisation des interfrence et analyse des performances des systmes OFDM/FBMC pour les communications sans fil asyn-chrones, Ph.D. Thesis, Le CNAM.

  11. Aissa, S. B., Hizem, M., & Bouallegue, R. (2017). Interference analysis for asynchrounous OFDM/FBMC based cognitive radio networks over Rayleigh fading channel. In Networks wireless, Springer, vol. 23, pp. 1–14.

  12. Hamdi, K. A., & Shobowale, Y. M. (2009). Interference analysis in downlink OFDM considering imperfect intercell synchronization. IEEE Transactions on Vehicular Technology, 58(7), 3283–3291.

    Article  Google Scholar 

  13. Medjahdi, Y., Terré, M., Le Ruyet, D., & Roviras, D. (2014). Interference tables: A useful model for interference analysis in asynchronous multicarrier transmission. Eurasip.

  14. Hassan, M. H., & Hossain, M. J. (2013). Cooperative beamforming for CR systems with asynchronous interference to primary user. In IEEE ICC 2013, pp. 5679–5683.

  15. Lajnef, H., Dakhli, M. C., Hizem, M., & Bouallegue, R. (2017). Interference analysis for asynchronous OFDM in multi-user cognitive radio networks with ,nonlinear distortions. In AdHocNow2017, LNCS 10517, pp. 382–393.

  16. Kobayashi, M., Boutros, J., & Caire, G. (2001). Successive interference cancellation with SISO decoding and EM channel estimation. IEEE Journal on Selected Areas in Communications, 19(8), 1450–1460.

    Article  Google Scholar 

  17. Moussaoui, M., Zaizouni, M., & Rouvaen, M. (2007). Another approach for partial parallel interference cancellation. Wireless Personal Communications, 42(4), 587–606.

    Article  Google Scholar 

  18. Divsalar, D., Simon, M., & Raphaeli, D. (1998). Improved parallel interference cancellation for CDMA. IEEE Transactions on Communications, 46, 258268.

    Article  Google Scholar 

  19. Al-Junaid, A. F., & Al-kamali, F. S. (2016). Efficient wireless transmission scheme based on the recent DST-MC-CDMA. Wireless Networks, 22(3), 813–824.

    Article  Google Scholar 

  20. Shibahara, K., Masuda, A., Kawai, S., & Fukutoku, M. (2015). Multi-stage successive interference cancellation for spectrally-efficient super-Nyquist transmission. In IEEE ECOC 2015.

  21. Miridakis, N. I., & Vergados, D. D. (2013). A survey on the successive interference cancellation performance for single-antenna and multiple-antenna OFDM systems. IEEE Communications Surveys & Tutorials, 15(1), 312–333. FIRST QUARTER.

    Article  Google Scholar 

  22. Hamouda, W., & Li, M. (2007). An adaptive MMOE-PIC detector for asynchronous DS-CDMA communications. Wireless Personal Communications, 42(4), 607–618.

    Article  Google Scholar 

  23. Jiang, C., Zhang, H., Han, Z., Cheng, J., Ren, Y., & Hanzo, L. (2016). On the outage probability of information sharing in cognitive vehicular networks. In Proceedings of IEEE international conference on communications (ICC 2016), Kuala Lampur, Malaysia.

  24. Hu, Z., Wei, N., et al. (2017). Outage analysis of coded-cooperation cognitive multi-relay network with direct link over Nakagami-m fading channels. Trans. Emerg. Telecommun. Technol., 28(12), e3218.

    Article  Google Scholar 

  25. Lajnef, H., Dakhli, M. Cherif, Hizem, M., & Bouallegue, R. (2016). The effect of the nonlinear distortion on OFDM based cognitive radio systems over rayleigh fading channel. In WAINA, 2016 international. IEEE, 2016, pp. 427–430.

  26. Saleh, A. A. M. (1981). Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers. IEEE Transactions on Communications, 29, 1715–1720.

    Article  Google Scholar 

  27. Dakhli, M., Zayani, R., & Bouallegue, R.. (2012). Compensation for nonlinear distortion in MIMO OFDM systems using MMSE receiver. In IEEE 15th international conference on communication systems, ICCS (Singapore 2012).

Download references

Acknowledgements

This research is supported by Innov’Com laboratory. Part of the work was presented at the 16th International Conference on Ad Hoc Networks and Wireless (Adhoc-Now 2017) published in the Springer Lecture Notes in Computer Science (LNCS) [15].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanen Lajnef.

Appendix 1

Appendix 1

When \(l=0\):

$$\begin{aligned} \delta (l)|^{{t}_{2}}_{{t}_{1}} &= {} \frac{t}{A} \left[ 1+ 2\sum _{n=1}^{K-1} {G}_{n}^{2}cos \Big (\frac{2\pi }{KT}n\tau \Big )\right] \nonumber \\ &\quad \> +\frac{KT}{\pi A} \Bigg \{ \sum _{n=1}^{K-1}\sum \limits _{m=1}^{K-1} (-1)^{n+m}\frac{G_{n}G_{m}}{n+m} sin\Big (\frac{2\pi }{KT}\big ((n+m)t-n\tau \big )\Big ) \nonumber \\ &\quad+\>\sum _{n=1}^{K-1} \sum _{m=1}^{K-1} (-1)^{n+m}\frac{G_{n}G_{m}}{n-m} sin\Big (\frac{2\pi }{KT}\big ((n-m)t-n\tau \big )\Big ) \nonumber \\ &\quad\> +\sum _{n=1}^{K-1} (-1)^{n}\frac{G_{n}}{n} \Big [sin\Big (\frac{2\pi }{KT}n\tau \Big ) sin\Big (\frac{2\pi }{KT}n(t-\tau )\Big ) \Big ] \Bigg \} \Bigg | _{t=t_1}^{t_2} \end{aligned}$$
(38)

If \(l\ne 0\),

$$\begin{aligned} \delta (l)|^{{t}_{2}}_{{t}_{1}} &= \frac{T}{j2\pi lA} e^{j\frac{2\pi }{T}lt} \nonumber \\ &\quad+\frac{KT}{j2\pi A} \left \{ \sum _{n=1}^{K-1}(-1)^n G_{n} \left [ \frac{1+e^{-j\frac{2\pi }{KT}n\tau }}{n+KL}e^{j\frac{2\pi }{KT}(n+KL)t} \right.\right.\nonumber \\ &\left.\quad-\frac{1+e^{j\frac{2\pi }{KT}n\tau }}{n-KL}e^{-j\frac{2\pi }{KT}(n-KL)t} \right ]\nonumber \\ & \quad+\frac{KT}{j2\pi A}\sum _{n=1}^{K-1} \sum _{m=1}^{K-1} (-1)^{n+m}G_{n}G_{m}\left[ e^{-j\frac{2\pi }{KT}n\tau } \left(\frac{e^{j\frac{2\pi }{KT}(n+m+Kl)t}}{n+m+KL}+\frac{e^{j\frac{2\pi }{KT}(n-m+Kl)t}}{n-m+KL}\right) \right.\nonumber \\ &\left. \quad-e^{j\frac{2\pi }{KT}n\tau } \left(\frac{e^{-j\frac{2\pi }{KT}(n+m-Kl)t}}{n+m-KL}+\frac{e^{-j\frac{2\pi }{KT}(n-m-Kl)t}}{n-m-KL}\right ) \right] \Bigg | _{t=t_1}^{t_2} \end{aligned}$$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lajnef, H., Cherif Dakhli, M., Hizem, M. et al. Compensation schemes and performance analysis of jointly nonlinear amplifier and timing errors for CP-OFDM based cognitive radio networks. Wireless Netw 25, 2173–2185 (2019). https://doi.org/10.1007/s11276-018-1805-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1805-1

Keywords

Navigation