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Abstract We analyze continuous and discrete symmetries

of the maximum lifetime problem in two dimensional

sensor networks.We show how a symmetry of the network

and invariance of the problem under a given transformation

group G can be utilized to simplify its solution. We prove

that for a G-invariant maximum lifetime problem there

exists a G-invariant solution.Constraints which follow from

the G-invariance allows us to reduce the problem and its

solution to the subset of the sensor network. The subset we

call an optimal fundamental region of network with respect

to the action of the symmetry group G. We analyze in

detail solutions of the maximum network lifetime problem

invariant under a group of isometry transformations of a

two dimensional Euclidean plane.

Keywords Wireless sensor networks � Energy efficiency �
Symmetry group

1 Introduction

Let us denote by SKN a sensor network built of N sensors and

K data collectors. We split the set SKN into two subsets, the

set of data collectors CK and the set of sensors SN , such that

SKN ¼ CK [ SN . We identify elements pi of the network SKN
with points pi ¼ ðp1

i ; p
2
i Þ of a two dimensional plane R2,

where pi 2 CK for i 2 ½1;K� and pi 2 SN for i 2 ½K þ 1;

K þ N�. Each sensor pi 2 SN periodically generates the

amount Qi of data and sends it, possibly via other sensors,

to the data collectors. The data transmission cost energy

matrix Ei;j defines the energy required to send one unit of

data between two elements pi, pj of the network SKN . The

energy consumed by the pi sensor to send all of its data in

one cycle of the network lifetime is given by the formula

Eiðq; �pÞ ¼
XKþN

j¼1;j 6¼i

qi;jð�pÞEi;jð�pÞ; ð1Þ

where qi;jð�pÞ is the amount of data sent by the pi sensor to

the pj element of the network SKN and �p ¼ ðp1; . . .; pK ;

pKþ1; . . .; pKþNÞ defines location of the data collectors and

sensors in R2. By definition the data collectors pi are ele-

ments of the network SKN which do not send or retransmit

any data, i.e.,

8pi 2 CK 8pj 2 SKN qi;jð�pÞ ¼ 0:

From the above assumption it follows that for the data

collectors the energy given by (1) is equal to zero,

Eiðq; �pÞ ¼ 0, i 2 ½1;K�. Because the sensors have limited

energy resources, to extend the network lifetime we need to

find such weighted graph for the data transmitted in the

network that the energy consumed by the most overloaded

sensor would be minimal. Namely, if we assume that all

sensors have the same initial energy E0 and for a given data

transmission graph the most overloaded sensor consumes

in a one cycle Emax
i of energy, then ½E0=E

max
i � is the number

of cycles until this sensor runs out of energy. We define the

network lifetime as a number of cycles the data can be

transmitted in the network until the first sensor runs out of

energy [1, 2]. In this paper we will not discuss a particular

solution of the maximum network lifetime problem. We

analyze the structure of the solution when the sensor net-

work is invariant under discrete symmetry group. We

assume, that the initial parameters which define the
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problem are the data transmission cost energy matrix

Ei;jð�pÞ and the amount of data generated by each node

Qið�pÞ. We also assume, that the sensors can send their data

to any element of the network SKN , the data collectors can

receive any amount of data without costs, the initial energy

of each sensor and the maximum amount of data which the

sensor can send to other nodes of the network SKN is suffi-

ciently large that at least one solution of the problem exists,

i.e., there is no upper bound for qi;jð�pÞ. Under the above

assumptions the maximum lifetime problem for a sensor

network SKN can be written in the form

minqmaxifEiðq; �pÞgi2½Kþ1;NþK�;

Eiðq; �pÞ ¼ ðqETð�pÞÞi;i;
ðq� qTÞv0 � Qð�pÞ ¼ 0;

Ei;jð�pÞ� 0;Qið�pÞ� 0; qi;jð�pÞ� 0;

8
>>>><

>>>>:

ð2Þ

where the vector v0 has the form ð1; . . .; 1|fflfflffl{zfflfflffl}
KþN

Þ, Qð�pÞ ¼

ð�q
ðcÞ
1 ; . . .;�q

ðcÞ
K ;QKþ1ð�pÞ; . . .;QKþNð�pÞÞ and ET is a

transposition of the data transmission cost energy matrix E.

The undetermined numbers q
ðcÞ
k define the amount of data

received by the data collectors and satisfy the following

formulas q
ðcÞ
k ¼

P
i qi;kð�pÞ,

PK
k¼1 q

ðcÞ
k ¼

PN
n¼1 QKþnð�pÞ.

The first formula in (2) means, that we minimize the

objective function

f ðq; �pÞ ¼ max
i
fEiðq; �pÞgi2½Kþ1;KþN� ð3Þ

of the maximum network lifetime problem with respect to

the qi;j variables. The second formula defines the energy

consumed by each sensor to send all of its data in a one

cycle of the network lifetime. This equation is a matrix

form of (1). The third formula in (2) is a data transmission

flow conservation constraint, which states that the amount

of data Qið�pÞ generated by the pi sensor and the amount of

data received from other sensors
P

j qj;i must be equal to

the amount
P

j qi;j of data the pi sensor can send. In the

coordinates, for i 2 ½K þ 1;K þ N� it can be written in the

form
PKþN

j¼Kþ1 qi;j �
PKþN

j¼Kþ1 qj;i ¼ Qi and for k 2 ½1;K� it

defines the numbers q
ðcÞ
k ¼:

PKþN
j¼Kþ1 qj;kð�pÞ. The notation in

(2) indicates, that in general the functions Ei;jð�pÞ, Qið�pÞ and

the solutions qi;jð�pÞ may depend not only on the coordi-

nates of the transmitter pi and receiver pj but also on the

coordinates of other elements of the network SKN and thus

the functions may have a non-local character.

In [3] there were identified five power-aware metrics for

data transmission in mobile ad-hoc networks, which can be

used to define a network lifetime. The definition (2) of

network lifetime problem is equivalent to the minimization

of the ‘‘maximum node cost’’, the fifth metric defined in [3].

In this paper we discuss two types of symmetries of the

maximum network lifetime problem and the impact of

these symmetries on the solution of (2). We show how a

symmetry of the problem (2) and a symmetry of the set SKN
can be used to simplify the solution of (2) and reduce it to

some subset of SKN . The first type of symmetry is related to

an invariance of the problem (2) under a continuous group

of transformation GSpace of the two dimensional plane R2

onto itself in which the sensor network SNK is embedded.

Under a transformation g 2 GSpace the elements p of the

network SKN are moved to another location gðpÞ 2 S
0K
N of the

plane R2. We assume, that the numbers of sensors N and

data collectors K under these transformation remain

unchanged. If the Eq. (2) are invariant under transforma-

tions group GSpace, then there arises a question whether

their solutions qi;jð�pÞ for SNK and q0i;jð �p0Þ for S
0N
K coincide.

We show in Sect. 3, that it is indeed the case. We call this

type of symmetry the space symmetry, because it exhibits

the global properties of the functions Ei;jð�pÞ, Qið�pÞ, qi;jð�pÞ
and the whole problem in R2. For example, if the matrix

elements Ei;jð�pÞ are functions of the Euclidean distance

between points pi and pj of SNK network, for simplicity we

assume that Qið�pÞ are constant functions, then the problem

(2) is invariant under group of isometries of the Euclidean

plane R2 [4]. Invariance of Ei;jð�pÞ under isometry trans-

formation means that the cost of data transmission between

two elements of SKN does not depend neither on the direc-

tion of the data transmission nor location of the network SKN
in R2. This property is called an isotropy property of the

problem (2) in R2. The second type of symmetry is related

to an invariance of (2) under transformations group of the

finite set SKN . In this paper we consider a bijective trans-

formations of the set SKN onto itself. By definition, such

transformations g are permutations, i.e. gðpiÞ ¼ pgðiÞ, and

form a subgroup of symmetric group P of the set SKN [5].

Because we do not want to mix the sensors and data col-

lectors we assume that the group G acts separately on the

sets CK and SN , which means that

G � PðCKÞ �PðSNÞ: ð4Þ

Thus, in this paper we consider transformation groups G of

the network SKN which are subgroups of the symmetric

group PðCKÞ �PðSNÞ. In general, symmetries of the

functions Ei;jð�pÞ and Qið�pÞ and the whole problem (2) do

not have to be related with the shape of the set SKN . We can

establish the relation by requiring that, for a given sym-

metry group G of the set SKN , we will consider only a G-

invariant functions Ei;jð�pÞ, Qið�pÞ and search for a G-in-

variant solution of (2). If this is the case, the problem (2)

we call a problem with an internal symmetry group,

because it is related to the shape of the set SKN .
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2 Related work

Symmetries quite naturally appeared in a several well

known optimization and combinatorial problems such as

partitioning or coloring problems. Examples of solving

linear programming problems with symmetries can be

found in [6]. A review of results and techniques for solving

a symmetric constraint programming problems can be

found in [7]. Existence of symmetries in a given opti-

mization problem facilitates searching for a solution of it.

Usually such problem splits into |G| identical parts, where

|G| is an order of a symmetry group, and it is enough to

solve the problem only for an one part. Solving the given

problem on a reduced set of parameters is called a sym-

metry breaking procedure, because the reduced problem

looses its symmetry [6, 7]. In this paper we utilize the

technique of a symmetry breaking to simplify solution of

the G-invariant maximum lifetime problem in sensor net-

works. A symmetry breaking of G-invariant problem (2) is

performed by reduction of its solution to the subset of SKN ,

the optimal fundamental region F�
0 for the action of the

group G. Because a selection of a fundamental region F for

given symmetry group G is not unique, and the problem

cannot be reduced for every fundamental region, we show

in this paper how to construct the optimal one and we

investigate its properties. It is not always evident that for a

given optimization problem with a symmetry group G there

exists a G-invariant solution of it. The main result of this

paper is a theorem, which states that for a considered G-

invariant maximum lifetime problem there exists a sym-

metric (G-invariant) solution. In this paper we investigate

in detail properties of the isometry invariant solutions of

the problem in two dimensional sensor networks. It seems,

that the presented paper is a first attempt of analyzing

symmetries and utilize methods of solving the optimization

problems in sensor networks by means of their symmetry

groups.

3 A space symmetry of the maximum network
lifetime problem

We consider a group of a one-to-one transformations of the

two dimensional plane R2 onto itself. Elements g of the

group, denoted as GSpace, transform points p of R2 to some

other points g(p) in R2. Because SKN 	 R2, the nodes of the

network located at the points pi are also transformed under

g to the points gðpiÞ of R2. The transformed network gðSKNÞ
by an element g of GSpace we denote by S

0K
N . We assume,

that the functions Ei;jð�pÞ and Qið�pÞ in (2) are invariant

under transformations of the group GSpace, which means

that 8g 2 GSpace we have

Ei;jðgð�pÞÞ ¼ Ei;jð�pÞ;
Qiðgð�pÞÞ ¼ Qið�pÞ;

�
ð5Þ

where gð�pÞ ¼ ðgðp1Þ; . . .; gðpKþNÞÞ, pi 2 R2, i 2 ½1;K þ N�
and �p is defined in (1).

Lemma 1 Let GSpace be a transformation group of two

dimensional plane R2, Ei;jð�pÞ and Qið�pÞ be GSpace-invariant

functions in R2, then any solution qð�pÞ of the maximum

lifetime problem (2) is GSpace-invariant.

Proof To prove the invariance of qi;jð�pÞ under transfor-

mation group GSpace we show that 8 g 2 GSpace, the equa-

tions qi;jðgð�pÞÞ ¼ qi;jð�pÞ are satisfied. Since the functions

Qið�pÞ are GSpace-invariant, the feasible set given by the

second equation in (2) is GSpace-invariant

ðq0 � q0TÞv0 ¼ Qðgð�pÞÞ ¼ Qð�pÞ:

The invariance of the feasible set under GSpace means that

the scopes of the parameters q and q0 in (2) for both net-

works SKN and S
0K
N are the same. From the condition (5) and

the invariance of a feasible set it follows that the function

f ðq; �pÞ, given by (3), is GSpace-invariant with respect to the

�p variable

8g 2 GSpace f ðq; �pÞ ¼ f ðq; gð�pÞÞ:

From the above it follows that f ðq; �pÞ is a constant function

for any g 2 GSpace and any solution qi;jð�pÞ of (2), as a

minimal value of f ðq; �pÞ, satisfies

8g 2 GSpace qi;jðgð�pÞÞ ¼ qi;jð�pÞ;

which is GSpace-invariance condition for qð�pÞ. h

As an example of the application of the above lemma,

let us consider the data transmission cost energy matrix

Ei;jð�pÞ to be a function of the Euclidean distance

dðpi; pjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1

i � p1
j Þ

2 þ ðp2
i � p2

j Þ
2

q
; ð6Þ

between two elements pi; pj of the network SKN , i.e.,

Ei;jð�pÞ ¼: Ei;jðdðpi; pjÞÞ: ð7Þ

The group which leaves invariant the metric (6) is a direct

sum of two continuous abelian groups GSpace ¼ O2 � T , the

orthogonal group O2 and the translation group T in R2 [4]. If

Qð�pÞ is invariant under O2 � T and Ei;jð�pÞ is of the form (7),

then we know from the Lemma 1 that the solution of (2) is

also GSpace-invariant, which means that it is a function of the

distance d and the GSpace-invariant functions Qð�pÞ
qi;jð�pÞ ¼ qi;jðd;Qð�pÞÞ:

Further analysis of the Eq. (2) allows us to deduce that the

solution of (2) must be a linear function in Qið�pÞ. In the

Wireless Netw (2017) 23:975–984 977
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above example we see, that simple analysis of symmetries

of the functions Eð�pÞ and Qð�pÞ and the structure of the

Eq. (2) allows us to predict general form of its solution

which greatly facilitates searching for it. This is especially

important when the approximation algorithms are applied

to solve the problem.

4 An internal symmetry of the sensor network

As an internal symmetry group G of a sensor network SKN
we consider a one-to-one transformations of SKN onto

itself. Such groups are subgroups of a symmetric group

PðSKNÞ. Because we cannot mix the sensors and the data

collectors, the group G must be a direct sum of two

subgroups PðSNÞ and PðCKÞ, which transform sensors

into sensors and data collectors into data collectors, see

(4). For an action of g 2 G on elements pi of the network

SKN

gðpiÞ ¼ pgðiÞ;

we have the following transformation rules for E and Q

gðEi;jÞ ¼ EgðiÞ;gðjÞ;

gðQiÞ ¼ QgðiÞ:

(

In a matrix representation of G, the elements g 2 G act on

SKN as a linear transformations 8i2½1;KþN� pi ¼
PKþN

j¼1 gi;j pj,

which induces the following transformations on the matrix

E and the vector Q

E0 ¼ gEg�1; Q0 ¼ gQ; ð8Þ

In the coordinates the formulas (8) can be written in the

form E0
i;j ¼

P
k;l gi;kEk;lg

�1
l;j and Q0

i ¼
P

j gi;jQj. The next

proposition shows that the problem (2) is covariant under

action of the group PðCKÞ �PðSNÞ. It means, that for any

transformation (8) of Ei;j and Qi, by an element

g 2 PðCKÞ �PðSNÞ, there exist two solutions q and q0 of

(2) which are related by the transformation g.

Proposition 1 Let V and V 0 be the set of all solutions of

the maximum lifetime problem (2) for ðSKN ;E;QÞ and

ðS0K
N ;E0;Q0Þ sensor networks, where S

0K
N ¼ gðSKNÞ and

g 2 G ¼ PðCKÞ �PðSNÞ, then the diagram

ðE;QÞ �! V

#g "g�1

ðE0;Q0Þ �! V 0
ð9Þ

is commutative.

In (9) the horizontal arrows mean assignment for given

E and Q a solution to the problem (2).

Proof Since any permutation can be written as a product

of transpositions, it is enough to prove (9) for the

transpositions

8i6¼r;r0 gðpiÞ ¼ pi; gðprÞ ¼ pr0 ; pr; pr0 2 SN or pr; pr0 2 CK :

ð10Þ

The feasible set, defined by the second equation in (2), for

i 2 ½K þ 1;K þ N� we write in the form

hiðq; �pÞ ¼ 0; i 2 ½K þ 1;K þ N�;

where hiðq; �pÞ ¼
PKþN

j¼1 ðqi;j � qj;iÞ � Qi. The transposi-

tions (10) swap the functions hi for i 2 ½K þ 1;K þ N�, i.e.,

gðhrÞ ¼ hr0 ; gðhiÞ ¼ hi; i 6¼ r; r0;

which means that the feasible set is G-invariant. For

i 2 ½1;K�, the feasible set hiðq; �pÞ ¼ 0 is trivially G-in-

variant because of the identity Qi ¼ q
ðcÞ
i . The transpositions

(10) exchange the energies consumed by the r-th and r0-th
sensors gðErÞ ¼ Er0 and other sensor energy levels remain

unchanged gðEiÞ ¼ Ei, for i 6¼ r; r0, where Ei is given by

(1). From this it follows that the objective function of the

maximum lifetime problem given by (3) is invariant under

(10). The invariance of f(q, E, Q) under PðCKÞ �PðSNÞ
means that 8g 2 G and for E0 ¼ gðEÞ;Q0 ¼ gðQÞ; q0 ¼
gðqÞ the functions are equal, f ðq;E;QÞ ¼ f ðq0;E0;Q0Þ, and

have the same minimal value with respect to the q variable

min
q

f ðq;E;QÞ ¼ min
q0

f ðq0;E0;Q0Þ:

From the above equation it follows that, if qi0;j0 2 V 0 is a

solution of (2) for E0, Q0 then the matrix

qi;j ¼ g�1ðqi0;j0 Þ 2 V

is a solution of (2) for E, Q.

In the next section, based on the result of the Proposi-

tion 1 we show that for a G-invariant functions Ei;j and Qi,

where G is a subgroup of PðCKÞ �PðSNÞ, there exists a

G-invariant solution of (2).

4.1 The G invariant solution of the maximum

network lifetime problem

The G-invariance of Ei;j and Qi means that for any trans-

formation (8) we have

EgðiÞ;gðjÞ ¼ Ei;j;

QgðiÞ ¼ Qi:

(

In the following theorem we construct a G-invariant solu-

tions of (2).

Theorem 1 Let G be a symmetry group of the set SKN ,

which transforms sensors into sensors and data collectors

978 Wireless Netw (2017) 23:975–984
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into data collectors, E and Q be a G-invariant functions in

(2), then there exists a G-invariant solution q of (2), i.e.,

8g2G gqg�1 ¼ q: ð11Þ

Proof We assume that for a given G-invariant matrix E

and a vector Q there exists, not necessary a G-invariant,

solution of (2). We denote it by q0. From the Proposition 1

we know that

8gm 2 G qm ¼ gmq0g
�1
m

are solutions of (2) for the same E and Q. Since, for any

solution gm of (2) the minimal value of the objective function

(3) must be the same, i.e. 8m;m0 f ðqmÞ ¼ f ðqm0 Þ, then any

linear combination of gm, i.e., qðk0; . . .; kM�1Þ ¼
1

k0þ���þkM�1

PM�1
m¼0 kmqm;, where km�0,

P
m km[0, M¼ jGj,

is also a solution of (2).

In particular, the matrix

q ¼ 1

jGj
X

gm2G
gmq0g

�1
m ð12Þ

is the solution of (2) and it is G-invariant, which means that

8gn 2 G gnqg
�1
n ¼ 1

jGj
X

gm2G
ðgngmÞq0ðgngmÞ�1

¼ 1

jGj
X

gm0 2G
gm0q0g

�1
m0 ¼ q;

where we used the fact that the left action of G on itself is

transitive. h

5 Reduction of the maximum network lifetime
problem to the subset of SKN

By definition a G-invariant solution of the maximum net-

work lifetime problem (2) satisfies the constraint (11). This

constraint reduces the number of variables qi;j and by this

simplifies the solution of (2). Additionally, we would like

to relate the shape of the network SKN and its symmetry with

the invariance of solutions of (2). This would allow us to

determine the solution of (2) based on the shape of the

network SKN . One can easily relate the shape of the network

SKN with a symmetry of the data transmission cost energy

matrix Ei;jð�pÞ by requiring that the matrix elements Ei;jð�pÞ
are functions of the distance dðpi; pjÞ between points of SKN .

Transformations which preserve the distance (6) form a

group of isometries of an Euclidean plane R2. Every

isometry of a real Euclidean space is a composition of a

translation and an orthogonal transformation [4]. For a

finite set SKN in R2 every isometry is an orthogonal trans-

formation g 2 O2, since there is no translation which

transforms a finite set onto itself. In this section we

consider as a symmetry group G of the sensor network SKN
subgroups of the orthogonal group O2 and assume that the

functions Ei;jð�pÞ and Qið�pÞ are O2-invariant.

The data transmission cost energy matrices Eð�pÞ, which

are functions of the distance between elements of the sensor

network are widely used in data transmission models in

sensor networks. One may ask, what is the general form of

the O2-invariant data transmission cost energy matrix E

which is a distance between transmitter and receiver. The

matrix E ¼
P

n knd
an , which is a linear combination of

powers of the matrix d, see (6), is trivially O2-invariant. If

9n : an 6¼ 1, then the costs of data transmission between two

nodes depend on distances between other nodes. Such data

transmission cost energy matrices have non-local character

and have no applications. Because the matrix Ei;j ¼
dðpi; pjÞa, for any real number a is also triviallyO2-invariant,

we write the more general form of the O2-invariant data

transmission cost energy matrix Ei;j which is a function of

the distance between transmitter and receiver

Ei;jð�k; �aÞ ¼
X

n

kndðpi; pjÞan ; ð13Þ

where �k ¼ ðk1; . . .Þ, �a ¼ ða1; . . .Þ and kn; an are non-nega-

tive real numbers. Most of the data transmission models in

sensor networks utilize the data transmission cost energy

functions of the form (13). As an example, let us consider

the cost function Ei;j ¼ dðpi; pjÞ2 þ k1dðpi; pjÞ4
. The first

component describes the cost of data transmission in the

vacuum and the second component appears when the net-

work is in an industrialized environment [8]. By inserting

in (13), the distance function in one dimension

di;j ¼ ji� jj, kn 
 cn 1
n!, an ¼ aþ n, a� 2, c� 0, we obtain

the data transmission cost matrix Ei;j 
 ji� jjaecji�jj utilized

in [2].

Because a finite subgroup of the orthogonal group O2 is

either a dihedral group DM or a rotation group RðMÞ [4, 5],

we consider these groups as symmetries of the sensor

network SKN and the functions Ei;j and Qi. We show, that in

both cases solution of the problem (2) can be reduced to

subset of SKN , which we call an optimal fundamental region

F�
0 in SKN . For the dihedral symmetry group DM the optimal

fundamental region can be easily determined. In case of the

rotation group RðMÞ the optimal fundamental region must

be determined for a particular distribution of elements of

SKN over the plane R2. Existence of a reduction of the

maximum network lifetime problem (2) to the optimal

fundamental region will be proven under two assumptions.

We assume, that two sensors cannot exchange the data

qi;j 6¼ 0 ) qj;i ¼ 0; pi; pj 2 SN ; ð14Þ

which means that if the sensor pi sends some data to the

sensor pj, then the sensor pj cannot send any data to pi.
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Second assumption is that we consider only a G-invariant

Ei;j matrices having the property

dðpi; pjÞ� dðpi0 ; pj0 Þ ) Ei;j �Ei0;j0 ; ð15Þ

which means that for such matrices the cost of data

transmission grows whenever the distance between ele-

ments of the network SKN grows.

5.1 The sensor network with a dihedral symmetry

group

The dihedral group DM is a symmetry group of a regular

polygon with M sides. It is a semidirect product RðMÞ
oSðMÞ

of the rotation group RðMÞ and the reflection group SðMÞ. It

consists of 2M elements, M reflections fSmgM�1
m¼0 and M

rotations fRmgM�1
m¼0 . Because any rotation can be repre-

sented as a product of even reflections then the dihedral

group can be generated by M reflections, DM ¼ hSmiM�1
m¼0 .

For a given finite set SKN with the symmetry group DM , a

subset F of SKN is called a fundamental region for DM , if

SKN ¼
S

g2DM
gðFÞ [6]. This requirement means that the set

SKN is a union of jDM j ¼ 2M subsets Fm ¼ gmðFÞ, i.e.,

SKN ¼
S

m2½0;2M�1� Fm. To block the transmission between

sensors from different sets g(F), we require that on the

reflection lines Xm, m 2 ½0;M � 1� there are no sensors

placed. This requirement can be written in the following

form

8p2SN Stðp;DMÞ ¼ fg 2 DM : gðpÞ ¼ pg ¼ fIg;

which means that the stabilizer of any point p of the set SN
is trivial.

A fundamental region F of the SKN set can be selected in

many ways. Among fundamental regions in SKN there is

only one optimal region for which the DM-invariant

problem (2) can be reduced. We show that to optimize the

data transmission and to extend the network lifetime the

sensors from the optimal fundamental region do not send

data outside the region. This means that the solution to the

maximum lifetime problem can be factorized into 2M

identical functions, each function represents the solutions

to the problem in gmðFÞ 	 SKN , m 2 ½0; 2M � 1�. We denote

by S0 and S1 the elements of the dihedral group DM which

are a reflection along the X-axis and the X1 line respec-

tively. By V0 We denote the region between X-axis,

X0 � 0, and the reflection line X1 � 0. The two half-lines

X0 � 0 and X1 � 0 belong to V0. There exists only one

fundamental region F0 which is a subset of V0. From the

set F0, by the following sequence of transformations Fm ¼
SmðFm�1Þ for m 2 ½1;M � 1� and FMþm ¼ S�1

m ðFMþm�1Þ
for m 2 ½0;M � 1�, where Sm are reflections of DM , we can

generate jGj ¼ 2M sets Fm and represent the network SKN as

a sum of them, SKN ¼
S2M�1

m¼0 Fm. We show that the fun-

damental region F0 is an optimal one, in the sense that

there exists a DM-invariant solution qi;j of (2) for which

qi;j 6¼ 0 ) pi; pj 2 Fm and the matrix qi;j can be factorized

into 2M identical sub-matrices, a one sub-matrix for each

region Fm. In other words, we show that the regions Fm are

closed for data transmission and inside each of them the

data transmission paths are identical, so it is enough to find

the solution of (2) in one of them, for example in F0. Note

that, the reduction of the DM-invariant problem (2) to the

minimal fundamental domain F0 of SKN is also possible

when the data collectors are located on the reflection lines

Xm. Let us denote by oV0 the border of the sector V0. The

set oV0 is a sum of two half-lines X0 � 0 and X1 � 0. By C0

and C1 we denote the set of data collectors which are

located on the half-line X0 � 0 and X1 � 0 respectively.

The fundamental domain F0 we write as the sum of three

subsets F0 ¼ F0
0 [ C1 [ C1, where F0

0 is a set of elements

of the sensor network SKN which lie inside V0. An example

of optimal fundamental region F0 ¼ F0
0 [ C0 [ C1 for D4

group is shown in the Fig. 1. In the set F0
0 there are seven

sensors and one data collector, three data collectors are

located at the border of V0 and lie in the sets C0 and C1.

The following proposition shows that the DM-invariant

problem (2) over DM-invariant network SKN , with the data

transmission cost energy matrix Ei;j having the property

(15), can be reduced to the region F0.

Proposition 2 Let DM be a symmetry group of the set SKN
with trivial stabilizer for each sensor pi 2 SN , F0 	 V0 a

fundamental region in SKN for the group DM with the sets

C0, C1 of data collectors which lie on the half-line X0 � 0

and X1 � 0 respectively, then the solution of a DM-invari-

ant problem (2) with E satisfying (15) can be reduced to

F0.

Proof From the Theorem 1 we know that for a DM-in-

variant problem (2) there exists a DM-invariant solution.

We show, that the DM-invariant solution qi;j of (2) can be

factorized to 2M copies, and each copy is identical to the

solution of (2) in the region F0. For a given reflection

Sm 2 DM we write the set SKN as sum of three subsets

Fig. 1 Minimal fundamental region F0 ¼ F0
0 [ C0 [ C1 for the

dihedral group D4
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SKN ¼ ðSKNÞ
ð1Þ
m [ Cm [ ðSKNÞ

ð2Þ
m , where Cm is a set of data

collectors which lie on the reflection line Xm and ðSKNÞ
ðaÞ
m ,

a ¼ 1; 2 are sets of sensor network SKN elements which lie

on both sides of Xm. On the reflection line Xm there is a set

of data collectors isometric to the set C0 [ C1 for M odd,

C0 [ C0 for M even and m even, and C1 [ C1 for M even

and m odd. The elements of ðSKNÞ
ðaÞ
m we denote by pa:i,

a ¼ 1; 2, where Smðp1:iÞ ¼ p2:i. The invariance of the

solution q of (2) under transformation SmqðSmÞ�1 ¼ q can

be written in the form

q1:i;2:j ¼ q2:i;1:j;

q1:i;1:j ¼ q2:i;2:j;

q1:i;2:i ¼ q2:i;1:i ¼ 0;

q1:j;2:j ¼ q2:j;1:j ¼ 0;

8
>>><

>>>:
ð16Þ

for all pa:i 2 ðSKNÞ
ðaÞ
m , a ¼ 1; 2. The second equation in (16)

follows from the requirement (14). From the geometric

properties of the reflection symmetry we have

dðp1:i; p1:jÞ� dðp1:i; p2:jÞ, and because of the assumption

(15), we get the set of inequalities E1:i;1:j �E1:i;2:j and

E2:i;2:j �E2:i;1:j. From these inequalities it follows that for a

DM-invariant solution q of (2) for which

q1:i;2:j ¼ q2:i;1:j 6¼ 0, we can find a solution q0 for which

q01:i;2:j ¼ q01:j;2:i ¼ 0 and q01:i;1:j ¼ q02:i;2:j ¼ q1:i;2:j. This means

that we can construct a DM-invariant solution q0 of (2) for

which there is no data transmission across the reflection

line Xm and inside the sets ðSKNÞ
ð1Þ
m , ðSKNÞ

ð2Þ
m the data trans-

mission is given by the same solution. From the definition

of the maximum network lifetime problem (2) and the

property (15) of the data transmission cost energy matrix E

it follows, that to optimize the data transmission the sen-

sors always send their data to the nearest data collector

8 pn 2 SN ; pk 2 CK ; qn;k 6¼ 0 ) 8pk0 2 CK

dðpn; pkÞ� dðpn; pk0 Þ:

This means that the data collectors cannot receive any data

from senors which lie behind the reflection line Xm. These

properties are valid for any reflection Sm, m 2 ½0;M � 1� of

DM and from this it follows that the data is not sent across

any reflection line Xm, m 2 ½0;M � 1�. Because of the

symmetry, inside each of the 2M regions the solutions of

(2) are identical and can be represented by a solution in F0.

h

In Fig. 2, the dashed arrows indicate the optimal data

transmission path between sensors which lie on both sides

of the reflection line Xm.

In Proposition 2 the assumption that the set of all data

collectors which lie on the reflections lines is DM-invariant

can be omitted. If we add to the set CðXÞ ¼
SM�1

m¼0 ðSmðC0Þ [
SmðC1ÞÞ in SKN an arbitrary set ~CðXÞ of data collectors, then

the solution of the problem (2) in SKN [ ~CðXÞ can be fac-

torized also into 2M parts, but the solutions in each part are

different due to the difference of the data collector sets on

various reflection lines.

5.2 The sensor network with a rotation symmetry

group

A rotation group in R2 is a cyclic group generated by M

elements RðMÞ ¼ hRmiM�1
m¼0 , where Rm denotes a rotation by

the angle am ¼ 2p
M
m. We assume that the rotations are around

the point p0 ¼ ð0; 0Þ 2 R2. The point p0 is unique for which

the stabilizer is non-trivial and it is equal to the whole group

RðMÞ, Stðp0;R
ðMÞÞ ¼ RðMÞ. From this reason, we assume that

at the point p0 there is no element of the network SKN . If it is

necessary to consider a sensor network with an element

located at p0, then we will build a RðMÞ-invariant sensor

network SKN [ Cð0Þ, whereCð0Þ is a set which consists of a one

element located at p0, a data collector. Let us denote by V0

the area between X-axis, X� 0, and the half-line

p2 ¼ tan½a1�p1, p1 � 0, where a1 ¼ 2p
M

and ðp1; p2Þ 2 R2. For

the set SKN there exists only one fundamental region F0 in SKN
which is a subset ofV0. By rotation of F0 by elements ofRðMÞ

RmðF0Þ ¼ Fm;

we can obtain M regions, Fm 	 Vm, m 2 ½0;M � 1�, where

Vm ¼ RmðV0Þ, such that SKN ¼
SM�1

m¼0 Fm and
TM�1

m¼0 Fm ¼
f;g. We describe the properties of a RðMÞ-invariant solution

of (2) in terms of orbits of the symmetry group RðMÞ. The

orbit of the point p 2 SKN under action of the group RðMÞ is a

subset of SKN

Orbðp;RðMÞÞ ¼ fp 2 SKN : p ¼ gðpÞ; g 2 RðMÞg:

Since we assumed that p0 62 SKN , then any fundamental

region F for RðMÞ can be defined as a set of orbits F ¼
SKN=
 RðMÞ ; where for p1 6¼ p2 2 SKN , p1 
 RðMÞp2 , 9g 2
RðMÞ : gðp1Þ ¼ p2. The points of the set Fm we denote by

pm:i, where the number m 2 ½0;M � 1� indexes the ele-

ments of the i-th orbit. We will count the points pm:i on the

Fig. 2 The dashed arrows optimal data transmission path between

two sensors
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i-th orbit anticlockwise starting from the X-axis, X� 0. The

numbers m 2 ½0;M � 1� and i uniquely identify the points

of the set SKN . For the set SKN [ Cð0Þ, i 2 ½0; NþK
M

�, and for SKN ,

i 2 ½1; NþK
M

�. The effect of rotation of the point pn:i by the

angle am ¼ 2p
M
m, m 2 ½0;M � 1� can be written by the

formula

Rmðpn:iÞ ¼ pðnþmÞ:i;

where nþ m denotes ðnþ mÞjmodM . For p0:0 2 Cð0Þ,

Rmðp0:0Þ ¼ p0:0. The invariance of the solution of (2) under

Rk rotation can be rewritten in the form

RkqR
�1
k ¼ q ) qðmþkÞ:i;ðnþkÞ:j ¼ qm:i;n:j: ð17Þ

The following proposition states that for RðMÞ-invariant

maximum lifetime problem (2) for the sensor network SKN
there exists aRðMÞ-invariant solution for which there is no data

transmission between sensors which lie on the same orbit.

Proposition 3 Let q be a solution of RðMÞ-invariant

problem (2) for the SKN network, then the sensors from the

same orbit do not transmit data to each other, i.e.,

8i;m;n pm:i; pn:i 2 SN qm:i;n:i ¼ 0:

Proof From the Theorem 1 we know that for RðMÞ-in-

variant maximum lifetime problem (2) there exists a RðMÞ-
invariant solution q. For such solution, if the sensor pm:i
sends qm:i;n:i of data to the pn:i sensor then, from (17) we

know that for k ¼ m� n, the pð2m�nÞ:i sensor sends the

same amount of data qð2m�nÞ:i;m:i ¼ qm:i;n:i to the pm:i sensor.

Because any amount of data which is sent by the pm:i sensor

to the sensor on the same orbit ‘‘returns’’ to it, then we can

find a RðMÞ-invariant solution q0 of (2) for which

8i;m;n q0m:i;n:i ¼ 0. h

In the next proposition we prove that if the requirement

(15) for the data transmission cost energy matrix Ei;j is

satisfied, then there exists a RðMÞ-invariant solution q of (2)

for which a sensor from one orbit sends its data to the

nearest sensor from another orbit.

Proposition 4 Let q be a solution of RðMÞ-invariant

problem (2) for SKN [ Cð0Þ sensor network with Ei;j satisfy-

ing (15), then for any sensor pm:i and any element pn:j of

SKN [ Cð0Þ from different orbits, i 6¼ j, the only non zero

element of the matrix qm:i;n:j has the property

8i 6¼j;m;n qm:i;n:j 6¼ 0 ) 8pn0 :j2SN
dðpm:i; pn:jÞ� dðpm:i; pn0:jÞ:

Proof Let us assume that for RðMÞ-invariant solution q of

(2) the pm:i sensor sends to the sensor or to the data collector

pn:j the amount qm:i;n:j of data, i 6¼ j. From (17) we know that

the same amount of data is sent from the pðmþkÞ:i sensor to the

pðnþkÞ:j sensor or to the data collector, k 2 ½0;M � 1�. As a

result, each element of a sensor network from the j-th orbit

receives the same amount of data qm:i;n:j from a one sensor

from the i-th orbit. Due to the assumption that the data

transmission cost energy matrix Ei;j satisfies (15), the min-

imum energy of sending the amount of data qm:i;n:j by the pm:i

sensor from the i-th orbit to the element pn:j 2 SKN [ Cð0Þ

from the j-th orbit is achieved when the distance between

pm:i and pn:j is minimal, i.e., it has the property 8pn0 :j2SKN[Cð0Þ

dðpm:i; pn:jÞ� dðpm:i; pn0:jÞ. h

In Fig. 3 the dashed arrows indicate the optimal data

transmission path between sensors pm;i from the i-th orbit

and sensors or data collectors pm;j from the j-th orbit,

m 2 ½0;M � 1�.
Because the rotation group RðMÞ is abelian the constrains

RmqR
�1
m ¼ q, m 2 ½0;M � 1� which satisfy the RðMÞ-invari-

ant solutions of (2) are not very restrictive. In general, from

the rotation invariance we cannot determine the optimal

fundamental region F�
0 in SKN , i.e., a region to which the

problem (2) can be reduced. The next three propositions

describe the size and location of the optimal fundamental

region F�
0 in SKN . Let us denote by V�

0 two sub-regions of V0

such that

V0 ¼ V�
0 [ Vþ

0 ;

where the points ofV�
0 lie on or between theX-axis,X� 0 and

the half-line p2 ¼ tan½a1

2
�p1, p1 � 0. The region Vþ

0 lie above

of V�
0 . The Fig. 4 shows the location of the regions V


0 in V0.

The regions V�
m can be obtained by rotating V�

0 by

elements of the group RðMÞ, V�
m ¼ RmðV�

0 Þ. The next

proposition shows, that the sensors which lie in Vm can

send their data to the data collectors or other sensors only

when they lie in Vm or in the neighboring regions V�
m
1.

Proposition 5 Let q be a solution of RðMÞ-invariant

problem (2) for SKN [ Cð0Þ network with Ei;j satisfying (15),

then the sensors pm:i from the region Vm can send their data

to the elements pm0:i of the sensor network SKN [ Cð0Þ only

when they lie in Vm [ V�
m
1, i.e.,

Fig. 3 The dashed arrows optimal data transmission path between

elements of SKN which lie on different orbits
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8i 6¼j pm:i 2 Vm; qm:i;m0:j 6¼ 0;) pm0:j 2 Vm [ Vþ
m�1

or pm0:j 2 Vm [ V�
mþ1:

Proof For a sensor pm:i 2 Vþ
m from the i-th orbit which

sends qm:i;n:j of data to the sensor pn:j 2 Vn from the j-th

orbit, i 6¼ j, we can find a sensor pm0:j from the j-th orbit

which pm0:j 2 Vm [ V�
mþ1; and dðpm:i; pm0:jÞ ¼ minn0

dðpm:i; pn0:jÞ. Because of (15) we can find RðMÞ-invariant

solutions q of (2), for which the sensors from the set Vþ
m

send their data to the sensors or data collectors from

Vm [ V�
m�1. Similarly, sensors pm:i from the set V�

m can send

their data to the elements of the sensor network from the

subset Vm [ Vþ
m�1 	 SKN [ Cð0Þ and the proposition is

proven.

From the Proposition 4 we know that there exists a

RðMÞ-invariant solutions q of (2) for which a sensor from a

given orbit sends its data only to a one sensor or a data

collector from another orbit. The following proposition

describes conditions under which a fundamental region F0

for RðMÞ is the optimal one.

Proposition 6 Let F0 be a fundamental region in SKN and

the set F0 [ Cð0Þ fulfills the requirement

8p0:i 2 F0 [ Cð0Þ; 8j dðp0:i; p0:jÞ ¼ min
m

dðp0:i; pm:jÞ;

m 2 ½0;M � 1�, then the solution of the RðMÞ-invariant

problem (2) for SKN [ Cð0Þ with Ei;j satisfying (15) can be

restricted to the set F0 [ Cð0Þ.

Proof From the Proposition 4 we know that there exists

RðMÞ-invariant solutions q of (2) for which sensors send

their data to the nearest sensor or data collector from other

orbits. We select the sensor p0:1 2 SKN [ Cð0Þ from the first

orbit of RðMÞ and build a set F0 [ Cð0Þ by picking up a one

element p0;j from each orbit, such that

8i dðp0:1; p0:iÞ ¼ min
m

dðp0:1; pm:iÞ:

If all elements p0:i of a constructed set F0 [ Cð0Þ have the

property, that from the inequality 8j dðp0:i; pm0:jÞ ¼

minm dðp0:i; pm:jÞ it follows that pm0:j 2 F0 [ Cð0Þ, then from

the Proposition 4 we know that the set is closed for data

transmission. This means that for p0:i 2 F0; pm;j 62 F0

) q0:i;m:j ¼ 0. Because F0 is a fundamental region, then

SKN ¼ [M�1
m¼0RmðF0Þ, and the solution of (2) splits into

M copies, one for each region RmðF0Þ [ Cð0Þ. h

The next proposition describes the location of the opti-

mal fundamental region F�
0 for RðMÞ-invariant solutions of

(2) in the set SKN .

Proposition 7 Let q be a solution of RðMÞ-invariant

problem (2) for SKN network with Ei;j satisfying (15), then

the optimal fundamental region F�
0 is a subset of

Vþ
1 [ V0 [ V�

M�1.

Proof Follows from the Proposition 5. h

It is easy to see that the Proposition 5 is also valid if we

consider a sensor network with a data collector located at

the point p0, i.e., for the SKN [ Cð0Þ network.

6 Conclusions

We have analyzed a continuous and discrete symmetries of

the maximum lifetime problem in two dimensional sensor

networks SKN built of K data collectors and N sensors. We

showed that, invariance of the problem under a continuous

group of transformations G implies that the solution is also

G-invariant and can be expressed in terms of the symmetry

group invariants. As we showed, this fact greatly facilitates

searching for a strict or approximate solution of the

problem.

In this paper, we also investigated properties of the

solutions of the maximum lifetime problem for sensor

networks SKN invariant under transformation groups G

which are subgroups of the symmetric group

PðCKÞ �PðSNÞ, where CK and SN are subsets of SKN
which consist of the data collectors and sensors respec-

tively. We showed that for such groups a G-invariant

maximum lifetime problem has a G-invariant solution. In

this paper we analyzed in detail invariance of the sensor

network and solutions of the problem under group of

isometry transformations O2 in R2. Constrains which

follow from the O2-invariance of a solution allowed us to

reduce it to a subset, an optimal fundamental region of the

network. The fact that, the G-invariant maximum lifetime

problem and its solution can be factorized and reduced to

the fundamental region of the symmetry group G can be

utilized to design sensor networks with symmetries and

with known solution in the optimal fundamental region of

the network.

Fig. 4 Location of the regions V

0 in V0
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