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Abstract
This study was conducted for identifying phylogenetic relationships between 15 scab-causing Streptomyces species including 
S. bottropensis, S. europaeiscabiei, S. scabiei, S. stelliscabiei and, other 11 Streptomyces sp. All of the strains were originally 
isolated from symptomatic potatoes in Erzurum Province, The Eastern Anatolia Region of Turkey. Some morphological and 
biochemical properties of the strains were defined in our former research. Then, 16 s rRNA regions of them were sequenced. 
After the sequence data assembly, phylogenetic analyzes were performed. The phylogenetic analyses revealed that the strains 
are involved in the same major group and, substantially similar to reference strains. Additionally, some subgroup formations 
were also recorded. Moreover, Repetitive element-based PCR (Rep-PCR), Enterobacterial repetitive intergenic consensus 
(ERIC-PCR), and BOX-PCR fingerprinting molecular typing methods were used for as molecular typing methods. According 
to our knowledge, this is the first report on phylogenetic relationships of scab-causing Streptomyces species from Turkey. 
However, the identification of most pathogenic strains remained at the species level.
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Introduction

Streptomyces are gram-positive, filamentous bacteria that 
form extensively branched substrate mycelium. It is also 
the ability to produce antibiotics or other industrially valu-
able secondary metabolites (Kumar et al. 2007; Elias et al. 
2022) and some of the genus members are used as biocon-
trol agents against plant disease (Simizu et al. 2009). Some 
Streptomyces species can also cause a plant disease called 
scab, which is an important problem for potato growers 
worldwide (Bukhalid and Loria 1997) and the disease signif-
icantly reduces the quality of tubers (Gutierrez et al. 2022).

Different phytopathogenic Streptomyces species, which 
are critical hazardous effects on potatoes have been reported 
all over the world, especially in USA and Canada (Wanner 
et al. 2009), Sweden (Natsume et al. 2018), China (Liang 

et al. 2019), Argentina, Mexico, Finland, South Korea, Japan 
etc. (Shuang et al. 2022).

Scab disease affects some other crops containing beet, 
carrot, radish, parsnip, and sweet potato (Hill and Lazarovits 
2005; Planckaert et al. 2021; Shuang et al. 2022). Moreover, 
scab-causing Streptomyces can damage some seedlings of 
monocotyledonous and dicotyledonous plants. Injuring of 
the plant is not necessary for symptoms to occur. Although 
the symptoms are generally visible on the damaged part of 
tubers, pathogens can be introduced from lenticels (Wanner 
2009). On potato tubers, scab symptoms are variable. Super-
ficial or raised brown spots and dark pits on the skin extend-
ing several millimeters into the potato tuber can be observed. 
The lesions may be small and discrete, or they may coalesce 
to cover larger areas of the tuber surface (Wanner 2006). 
Symptom type depends on plant varieties, infection time, 
the virulence of the pathogen, and environmental conditions.

Three marker genes, Nec1, TomA (Natsume et al. 2018), 
and thatxtomin synthesize (txtA, txtB) were found to be 
related to the pathogenicity of Streptomyces (Zhao et al. 
2022). Most of the studies recommended that Nec1 and 
TomA genes deal with pathogenicity, but these genes are not 
key factors of pathogenicity (Wanner 2009; Leiminger et al. 
2013). Some studies also suggest that different virulence 
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factors may participate in the pathogenicity of Streptomyces 
(Lapaz et al. 2017).

It is also well known that there are plenty of methods 
for disease control such as cultural, chemical and biologi-
cal control or resistant varieties. However, in general, com-
mercially insignificant varieties have resistance and none 
of them is completely resistant (Zadina et al. 1975; Hosny 
et al. 2014; Sarwar et al. 2018). Moreover, the resistance 
of the varieties can be alterably related to strains or species 
of pathogens and soil properties such as pH and moisture 
etc. (Haynes et al. 1997). Growers generally do not harvest 
infected tubers and tubers left in fields serve as inoculums 
for further vegetation (Pavlista 1996). The infected tuber can 
be accepted more effective than soil inoculums in transfer-
ring pathogens. Further, infected tubers significantly transfer 
novel scab formations of more virulent strains (Loria 2001).

It is well known that there are difficulties arising from 
some reasons for the taxonomy of Streptomycetes (Hatano 
et al. 2003; Kim et al. 2012). Therefore, taxonomy and rela-
tionships between scab-causing Streptomyces spp. have been 
studied in different ways. Numerical analyses of phenotypic 
data, fatty acid analyses, and DNA-DNA hybridization 
(Bouchek-Mechice et al. 2000) are some of these. 16S rRNA 
gene analysis is also another method with little doubt. The 
method has some drawbacks like unconformity with DNA-
DNA relatedness or heterogeneity among copies within a 
genome (Kim et al. 2012). Nevertheless, Phylogeny based on 
16S rRNA gene sequences has been considered a powerful 
and promising tool in prokaryote systematic for elucidating 
phylogenetic relationships among prokaryotic organisms 
(Stackebrandt et al. 1997) and has been used for as well-
known identification of Streptomycetes (Kreuze et al. 1999). 
In addition to these methods, PCR-based molecular methods 
have been the center of attraction of scientists. Especially, 
PCR-based methods of fingerprinting have beneficial role 
in the existence of repetitive sequences that are distributed 
bed throughout the genome of distinct bacterial species. 
For instance, Rep-PCR has been commonly exploited to 
assessment of the strain specific motifs provided from PCR 
amplification repetitive DNA fragments exist in bacterial 
genomes. As an alternative version of Rep-PCR is the ampli-
fication of genomic DNA situated among the ERIC-PCR 
sequences. These sequences are shared along the extragenic 
regions of the genomes of numerous bacteria (Tajima et al. 
2000). On the other hand, BOX-PCR fingerprinting is use-
ful method for typing of diverse bacterial species and it is 
thought as advantageous complementary instrument for 
epidemiological researches of members of various type of 
genus (Tacão et al. 2005).

Our former research showed existence of different 
Streptomyces species causing common scab symptoms 
on potato in Turkey. This study was designed to the 
research the relationships between 15 phytopathogenic 

Streptomyces spp., which belong to distinct morpho-
logic groups via 16S rRNA, Rep-PCR, ERIC-PCR and 
BOX-PCR.

Materials and methods

Bacterial strains

All the strains were isolated from symptomatic potato tubers 
in Erzurum Province, Turkey. Identification of the strains 
by classical and molecular methods, and characterization 
of the pathogenicity island (PAI) was performed in our for-
mer research (Karagoz 2013; Karagoz and Kotan 2017). 
Morphological, biochemical properties, and PAI profiles of 
strains are presented in Table 2.

Pathogenicity assays

Two different pathogenicity tests were performed. First, 
potato tuber, cv. marfona, was peeled and sterilized. Disks 
(2 cm2 X 0.5 cm thick) cut from tubers were situated in Petri 
dishes. Then, strains grown on oatmeal (OM) agar plates 
were cut and located upside down on the disks. And then, 
the pathogenicity test of Conn et al. protocol (1998) was 
performed on the Streptomyces species (Conn et al. 1998). 
Other pathogenicity tests were performed on radish seeds. 
Briefly, radish seeds were washed and sterilized with 5% 
sodium hypochlorite for 2 min. Sterilized seeds were placed 
on Petri plates including 1% water agar. Then, germinated 
seeds were dipped in bacterial spore suspension at a concen-
tration of ~ 109 CFU / ml. Inoculated seedlings were trans-
ferred to tubes containing 1% water agar. Symptoms were 
evaluated after two weeks (Schaad et al. 2001). Necrosis for-
mation and abnormal growth like dwarfing or hypertrophy 
are recorded as positive pathogenicity. Tests were repeated 
three times.

Sequencing of 16S rRNA genes

16S rRNA gene was amplified by using primers 16S1F and 
16S1R. Primer pairs was given in Table 1. The reaction mix-
ture was used according to the Wanner 2006 method. PCR 
was performed with an Eppendorf gradient PCR thermocy-
cler using the following conditions: an initial denaturation 
at 95 °C for 5 min, 40 cycles consisting of 94 °C for 20 
sn, annealing at 59 °C for 30 sn, and extension at 72 °C 
for 2 min. Products were run on 1.5% agarose gel. Finally, 
sequencing was carried out via the dideoxy-chain termina-
tion method (Intergen, C.O, Ankara, TURKEY).
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ERIC, REP and BOX PCR analyses

All the isolates were also characterized by genomic finger-
printing. For this purpose; ERIC, REP and BOX primer sets 
were used. PCR reactions were prepared according to the 
former research with some modifications (Versalovic et al. 
1994). The primer sets used are presented in Table 1. Briefly, 
the reaction mixture including; 5 ul 10X PCR buffer with-
out MgCl2, 2,0 mM MgCl2, 0,4 mM each dNTP’s, 5U Taq 
DNA polymerase, 0,5 µM each primer and 50 ng template 
DNA was made up to 50 µl with PCR grade water. PCR was 
conducted with thermocycler using the following conditions: 
initial denaturation at 95 °C for 7 min, 30 cycles consist-
ing of 94 °C for 1 min and annealing at 40, 40 and 55 °C 

for 1 min, for REP, ERIC and BOX primers, respectively; 
extension at 72 °C for 8 min; a final extension at 72 °C for 
15 min. After the PCR, the tubes were cooled at 4 °C. Then 
PCR products were separated with 1,5% agarose gel and 
visualized.

Phylogenetic analysis

Sequences data were edited and analyzed, using the BioEdit 
Sequence Alignment Editor 7.0.4.1 software (Hall 1999). 
All sequence data obtained was confirmed by BLAST 
searching and was deposited in GenBank® (accession num-
bers are given in Fig. 1 with brackets). The evolutionary 
history was inferred using the Neighbor-Joining method. 

Table 1   Primers used in this 
study

Primers Reference

16S rRNA 16S1F (5’ CAT​TCA​CGG​AGA​GTT​TGA​TCC 3’)
16S1R (5’ AGA​AAG​GAG​GTG​ATC​CAG​CC 5’)

Wanner 2006

ERIC-PCR ERIC 1R (5'-ATG​TAA​GCT​CCT​GGG​GAT​-3')
ERIC 2 (5'- AAG​TAA​GTG​ACT​GGG​GGT​ GAGC-3')

Versalovic et al. 1994

REP-PCR REP 1R (5'-IIIICGICGICATCIGGC-3')
REP 2 (5'-ICGICTT​ATC​IGGC​CTA​C-3')

Versalovic et al. 1994

BOX-PCR BOXA1R (5'-CTA​CGG​CAA​GGC​GAC​GCT​G ACG-3') Ogutcu et al. 2009

Fig. 1   Phylogenetic tree of scab-causing Streptomyces spp. based on 16S rRNA regions sequences. (GenBank® accession numbers are presented 
in brackets)
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The bootstrap consensus tree deduced from 1000 replicates 
is provided to represent the evolutionary history of the 
taxa analyzed. The evolutionary distances were figured out 
using the Maximum Composite Likelihood technique. All 
positions including gaps and missing data were removed. 
There were 1399 positions in the last dataset. Evolutionary 
analyses were realized in MEGA 6 software (Tamura et al. 
2013). 16S rRNA sequence of the reference (S. bottropensis 
NR_115571.2, S. europaeiscabiei NR_116533.1, S. scabiei 
NC_013929.1, and S. stelliscabiei NR_025294.1) and the 
out group (Kitasatospora aureofaciens NR_042792.1 and 
Kitasatospora setae NR_112431.1) strains were obtained 
from GenBank®. The banding patterns formed by ERIC- 
PCR, REP- PCR and BOX-PCR were examined by using 
Paleontological Statistics Software (PAST). According to 
the PAST software, the related dendrograms were carried 
out using an unweighted pair group method with arithmetic 
mean (UPGMA). Hammer et al. (2001) were used as a refer-
ence guideline to analyze for constructed phylogenetic trees 
of ERIC- PCR, REP- PCR and BOX-PCR data (Fig. 2, 3, 4).

Results and discussion

When the obtained data were analyzed, all the strains uti-
lized in this study have positive pathogenicity on potato 
discs and radish seedlings. As well known, pathogenicity 
test results of tuber slice and radish seedling assays are not 
parallel at all times (Conn et al. 1998). For this reason, the 
results were confirmed by both pathogenicity tests. These 

tests were successfully used in different studies. Although 
there are exceptions, the results of the pathogenicity tests are 
generally parallel (Hasani and Taghavi 2014; Lapaz et al. 
2017).

Morphological and biochemical test results and marker 
genes (Nec1, TomA, and TxtAB) in PAI of the strains were 
determined in our former research (Karagoz 2013). Mor-
phological and biochemical test results (Table 2) are mostly 
fitted in the literature with a few exceptions. Some variations 
were observed like resistance to chemicals and antibiotics. 
Marker genes generally exist in the strains. KS229, KS541, 
and KS573 strains lack TxtAB, KS177 and KS542 strains 
lack TomA, and KS465 strain lacks Nec1 genes according 
to PCR results. PAI profiles of strains were presented in 
Table 2. According to the literature knowledge, it is reported 
that various pathogenic Streptomyces species can be defi-
cient in Nec1 or TomA. Many researchers have mentioned 
that Nec1 and TomA genes are relevant to pathogenicity 
but they are not basic determinants of pathogenicity. (Lerat 
et al. 2009; Park et al. 2003; Leiminger et al. 2013; Dees 
et al. 2013). Besides, the existence of Nec1 and TomA genes 
was also reported in non-pathogenic strains (Wanner 2009). 
Production of thaxtomin was defined as the primary patho-
genicity determinant of pathogenic Streptomyces species on 
potatoes in many studies (Wanner 2007a, b, 2009; Flores-
Gonzalez et al. 2008; Leiminger et al. 2013). In some stud-
ies, however, pathogen Streptomyces species, which lack of 
thaxtomin production ability were also reported (Flores-
Gonzalez et al. 2008). Additionally, another study screened 
that 17% of pathogen strains used in the study did not 

Fig. 2   Dendrogram generated from ERIC-PCR banding pattern of 15 Streptomyces strains. The similarity analysis was performed with Bray–
Curtis and UPGMA method
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contain any of the marker genes. Researchers suggest that 
different virulence factors may participate in pathogenicity 
(Lapaz et al. 2017) and our findings support this approach.

For the phylogenetic analysis, 16S rRNA genes, 
expected ~ 1531  bp size, were cloned by PCR and 
1399 bp.16S rRNA gene sequences, between positions 
in 50 and 1448, were assembled. Coordinated sequence 

data were analyzed by BLAST. All strains showed 99% 
similarity with the members of the genus Streptomyces. 
As a result of phylogenetic analyzes, two major groups 
were obtained. While the out-group strains, Kitasatospora 
aureofaciens and Kitasatospora setae, constitute the first 
group, all the Streptomyces species constitute the second 
group. Formations of some subgroups are also recorded in 

Fig. 3   Dendrogram generated from REP-PCR banding pattern of 15 Streptomyces strains. The similarity analysis was performed with Bray–Cur-
tis and UPGMA method

Fig. 4   Dendrogram generated from BOX-PCR banding pattern of 15 Streptomyces strains. The similarity analysis was performed with Bray–
Curtis and UPGMA method



	 World Journal of Microbiology and Biotechnology (2024) 40:122122  Page 6 of 11

Ta
bl

e 
2  

P
ro

pe
rti

es
 a

nd
 P

A
I p

ro
fil

es
 o

f t
he

 st
ra

in
s

Sp
or

e 
co

lo
r; 

G
. g

re
y,

 W
: w

hi
te

, P
: p

al
e 

or
an

ge
. S

po
re

 m
or

ph
ol

og
y;

 S
: s

pi
ra

l, 
R

. r
ec

tifl
ex

ou
s. 

Ph
en

ol
: 1

%
, C

hr
ys

ta
l v

io
le

t: 
0,

5 
µg

/m
l, 

St
re

pt
om

yc
in

 2
0 

µg
/m

l, 
Pe

ni
ci

lli
n 

10
 IU

/m
l, +

 : 
po

si
tiv

e,
 -:

 
ne

ga
tiv

e

St
ra

in
 n

um
be

r
Id

en
tifi

ca
tio

n 
re

su
lt

Sp
or

e 
co

lo
r

Sp
or

e 
m

or
ph

ol
-

og
y

M
el

an
oi

d 
pi

gm
en

t
pr

od
uc

tio
n

St
re

pt
om

yc
in

Pe
ni

ci
lli

n
C

hr
ys

ta
l 

vi
ol

et
Ph

en
ol

N
aC

l (
%

)
M

in
im

um
 

gr
ow

th
 o

f 
pH

G
ro

w
th

 
at

 3
7 

ºC
PA

I p
ro

fil
es

Ne
c1

to
m

A
tx

tA
B

PY
I

TY
R

​
5

6
7

K
S1

96
S.

 sc
ab

ie
i

G
S

 +
 

 +
 

–
–

–
–

–
–

–
5,

0
 +

 
 +

 
 +

 
 +

 
K

S1
76

S.
 st

el
lis

ca
bi

ei
G

S
 +

 
 +

 
–

 +
 

–
–

–
–

–
5,

5
 +

 
 +

 
 +

 
 +

 
K

S4
64

S.
 e

ur
op

ae
is

ca
bi

ei
G

S
 +

 
 +

 
–

 +
 

–
 +

 
–

–
–

5,
0

 +
 

 +
 

 +
 

 +
 

K
S5

73
S.

 b
ot

tro
pe

sn
si

s
G

S
 +

 
 +

 
–

 +
 

–
 +

 
 +

 
 +

 
–

4,
0

 +
 

 +
 

 +
 

–
K

S6
13

St
re

pt
om

yc
es

 sp
.

P
R

–
 +

 
–

 +
 

 +
 

 +
 

 +
 

 +
 

 +
 

4,
0

 +
 

 +
 

 +
 

 +
 

K
S2

27
St

re
pt

om
yc

es
 sp

.
G

R
–

 +
 

–
 +

 
–

 +
 

 +
 

 +
 

 +
 

4,
0

 +
 

 +
 

 +
 

 +
 

K
S1

77
St

re
pt

om
yc

es
 sp

.
G

S
–

 +
 

–
 +

 
–

–
 +

 
–

–
5,

0
 +

 
 +

 
–

 +
 

K
S3

08
St

re
pt

om
yc

es
 sp

.
G

S
 +

 
 +

 
–

 +
 

–
–

–
–

–
5,

0
 +

 
 +

 
 +

 
 +

 
K

S5
41

St
re

pt
om

yc
es

 sp
.

G
S

–
 +

 
 +

 
 +

 
 +

 
 +

 
 +

 
 +

 
 +

 
4,

0
 +

 
 +

 
 +

 
–

K
S6

06
St

re
pt

om
yc

es
 sp

.
G

R
–

 +
 

 +
 

 +
 

–
 +

 
 +

 
 +

 
–

4,
5

–
 +

 
 +

 
 +

 
K

S2
29

St
re

pt
om

yc
es

 sp
.

G
S

–
–

–
 +

 
–

 +
 

 +
 

 +
 

 +
 

5,
0

 +
 

 +
 

 +
 

–
K

S4
65

St
re

pt
om

yc
es

 sp
.

G
R

–
 +

 
–

–
–

–
–

–
–

5,
0

 +
 

–
 +

 
 +

 
K

S5
25

St
re

pt
om

yc
es

 sp
.

W
R

 +
 

 +
 

–
 +

 
–

–
–

–
–

4,
0

 +
 

 +
 

 +
 

 +
 

K
S5

42
St

re
pt

om
yc

es
 sp

.
W

R
–

 +
 

–
 +

 
 +

 
 +

 
 +

 
 +

 
 +

 
4,

0
 +

 
 +

 
–

 +
 

K
S5

61
St

re
pt

om
yc

es
 sp

.
G

R
 +

 
 +

 
–

 +
 

 +
 

 +
 

–
–

–
5,

0
–

 +
 

 +
 

 +
 



World Journal of Microbiology and Biotechnology (2024) 40:122	 Page 7 of 11  122

the second group. S. scabiei and S. europaeiscabiei were 
defined as closely related. Positions of S. scabiei KS196 
and S. europaeiscabiei KS464 found to be very close to 
each other and reference strains (S. scabiei NC_013929.1 
and S. europaeiscabiei NR_116533.1). S. stelliscabiei 
KS176 and S. bottropensis KS573 are located in closed 
positions which are related to reference strains (S. stellis-
cabiei NR_025294.1 and S. bottropensis NR_115571.2). 
Phylogenetic tree of scab-causing Streptomyces spp. based 
on 16S rRNA gene sequences are presented in Fig. 1. Phy-
logenetic tree derived from 16S rRNA sequence of strains 
generally show similarity with previous studies. While 
position of S. scabiei and S. europaeiscabiei were defined 
very close, the distance of other strains to them and each 
other was also recorded as similar (Bouchek-Mechiche 
et al. 2000; Kim et al. 2012; Park et al. 2003). According 
to our results, Turkish strains are generally closer to each 
other.

γ, α and 1435 variable regions were also analyzed. Some 
variations were observed. Especially γ variable regions 
have high-value variations in positions 174–202. α Vari-
able region has some variations position in 974–999. It was 
observed that a few variations in 1435 variable regions posi-
tion in 1435–1438. Variations in γ, α and 1435 regions of 
strains are given in Table 3. As a result of the analyzes, 
the γ region was shown to possess high variability poten-
tial than α and 1435 regions. Different formations generally 
were defined in γ region. S. scabiei is also different from S. 
europaeiscabiei in this region. It is known that S. scabiei 
and S. europaeiscabiei 16S rRNA regions very similar with 
just 1 bp mismatch. Mostly similar sequences with former 
research were detected in γ, α and 1435 regions of strains 
except for S. stelliscabiei KS176 and S. bottropensis KS573. 
Some differences were encountered in γ, α and 1435 regions 
of S. stelliscabiei KS176 and S. bottropensis KS573, when 
compared to literature (Wanner 2006). We think that some 

Table 3   Genetic variations in γ, α and 1435 variable regions of the strains

* GenBank® accession numbers are given in brackets

Strains γ—variable region 
Position in
174–202

α—variable region 
Position in
974–999

1435 vari-
able region 
Position in
1435–1438

KS196 S. scabiei (KR422360.2)* CGA​CAC​TCT​CGG​GCA​TCC​GAT​GAG​
TGTGG​

ACA​CCG​GAA​ACG​GCC​AGA​GAT​GGT​
CG

GTAA​

KS464 S. europaeiscabiei (KR422361.2) CAA​CAC​TCT​CGG​GCA​TCC​GAT​GAG​
TGTGG​

ACA​CCG​GAA​ACG​GCC​AGA​GAT​GGT​
CG

GTAA​

KS176 S. stelliscabiei (KR476475.2) CTA​TCG​CCT​TGG​GCA​TCC​TT-GGT​
GAT​CG

ACA​CCG​GAA​AGC​ATC​AGA​GAT​GGT​
GC

TTGT​

KS573 S. bottropensis (KR476476.2) ACA​CTT​CTG​CTC​TCA​TGG​GC-AGG​
GGT​TA

ACA​CCG​GAA​AGC​ATC​AGA​GAT​GGT​
GC

TTGT​

KS613 Streptomyces sp. (KR476479.2) ACA​CTT​CTG​CTC​TCA​TGG​GC-AGG​
GGT​TA

ACA​CCG​GAA​AGC​ATC​AGA​GAT​GGT​
GC

TTGT​

KS227 Streptomyces sp. (KR476481.2) ACA​CTC​TGT​CCC​GCA​TGG​GA-CGG​
GGT​TA

ATA​CCG​GAA​AGC​ATC​AGA​GAT​GGT​
GC

TTGT​

KS177 Streptomyces sp. (KR476482.2) ACA​CTC​TGT​CCC​GCA​TGG​GA-CGG​
GGT​TA

ATA​CCG​GAA​AGC​ATC​AGA​GAT​GGT​
GC

TTGT​

KS308 Streptomyces sp. (KR476483.2) ACA​CTC​TCT​CGG​GCA​TGG​GAT​GAG​
TGTGG​

ACA​CCG​GAA​ACG​GCC​AGA​GAT​GGT​
GC

GTAA​

KS541 Streptomyces sp. (KR476485.2) CTA​CCC​GCT​TGG​GCA​TCC​AA-GCG​
GTT​CG

ACA​CCG​GAA​AGC​ATT​AGA​GAT​GGT​
GC

TTGT​

KS606 Streptomyces sp. (KR476486.2) ATA​CTT​TCC​CTC​TCA​TGG​GG-GAA​
GGT​TA

CGC​CCG​GAA​AGC​CGT​AGA​GAT​GGT​
GC

TTGT​

KS229 Streptomyces sp. (KR476487.2) CTA​CGC​GCT​CAG​GCA​TCT​GAT​GCG​
CGTGG​

ACA​CCG​AAA​AAC​TTT​GGA​GAC​AAG​
GC

TTGT​

KS465 Streptomyces sp. (KR476488.2) ACA​CTC​TGT​CCC​GCA​TGG​GA-CGG​
GGT​TA

ATA​CCG​GAA​AGC​ATC​AGA​GAT​GGT​
GC

TTGT​

KS525 Streptomyces sp. (KR476490.2) ACA​CTG​CCA​CGG​GCA​TCT​GT-GGT​
GGT​TA

CGC​CCG​GAA​AGC​ATC​AGA​GAT​GGT​
GC

TTGT​

KS542 Streptomyces sp. (KR476491.2) ACA​CTC​CTG​CTC​TCA​TGG​GC-AGG​
GGT​TA

ACA​CCG​GAA​AGC​ATC​AGA​GAT​GGT​
GC

TTGT​

KS561 Streptomyces sp. (KR476492.2) ACA​CCG​GCT​TCC​GCA​TGG​GA-GCT​
GGT​TG

ATA​CCG​GAA​AGC​ATT​AGA​GAT​GGT​
GC

TTGT​
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changes in 16S rRNA sequence could be possible depending 
on conditions (locations and climates etc.) because of their 
genetic variation potential. These strains were identified 
by classical methods (given in Table 2.) and PCR analyzes 
were also performed by using specific primer pairs Stel3/
T2st2 and Stel3/Aci2 (Wanner 2006) for S. stelliscabiei and 
S. bottropensis, respectively in our former studies (Karagoz 
2013; Karagoz and Kotan 2017). Specific DNA bands were 
observed for both S.stelliscabiei and S. bottropensis. Moreo-
ver, the ERIC primer set formed reproducible and distinct 
fingerprints containing 3–9 fragments between 100 and 
3000 bp. REP PCR demonstrated that Streptomyces strains 
have different patterns with 2–8 fragments ranging from to 
100 3000 bp. For BOX-PCR fingerprint showed 2–11 frag-
ments in the size of 100-3000 bp (Figs. 5, 6, 7).

Numerous methods use for determining to the molecu-
lar diversity of scab-causing Streptomyces species. ERIC-
PCR, REP-PCR and BOX-PCR have unique and promising 
discriminatory methods and a rapid and relatively simple 
comparative methods, making them beneficial for procedure 
epidemiological studies (Bakshi et al. 2018). In this study, 

ERIC-PCR, REP-PCR and BOX-PCR were also used as dis-
criminatory methods. As it is expected, the analyzes of the 
ERIC-PCR, Rep-PCR, and BOX-PCR data showed distinct 
phylogenetic patterns. All the three methods precisely dem-
onstrated that KS196 S. scabiei and KS464 S. europaeisca-
biei, closely related species, positioned and classified mutual 
group. On the other hand, the other strains were determined 
in various phylogenetic positions according to the exploited 
PCR methods. Among these methods, when we compared 
ERIC-PCR and 16S rRNA PCR results, the phylogenetic 
patterns have high level of similarity between each other. In 
both analyses, closely related strains were situated in similar 
positions. It was observed that Rep-PCR, and BOX-PCR 
methods were insufficient to locate the strains determined 
to be related according to ERIC-PCR and 16S rRNA PCR 
analyses. Considering all the data, it is thought that ERIC-
PCR method may be useful in phylogenetic analyzes of 
Streptomyces species as an auxiliary tool.

Consequently, 15 different scab-causing Streptomyces 
species from Turkey were identified and analyzed based 
on 16S rRNA sequences. The results in the current study 

Fig. 5   ERIC-PCR band profiles 
of Streptomyces strains with 
ERIC 1R and ERIC 2 primers. 
Lanes 1, Marker; 2, KS196; 3, 
KS464; 4, KS176; 5, KS573; 6, 
KS613; 7, KS227; 8, KS177; 9, 
KS308; 10, KS541; 11, KS606; 
12, KS229; 13, KS465; 14, 
KS525; 15, KS542; 16, KS561

Fig. 6   REP-PCR band profiles 
of Streptomyces strains with 
REP 1R and REP 2 primers. 
Lanes 1, Marker; 2, KS196; 3, 
KS464; 4, KS176; 5, KS573; 6, 
KS613; 7, KS227; 8, KS177; 9, 
KS308; 10, KS541; 11, KS606; 
12, KS229; 13, KS465; 14, 
KS525; 15, KS542; 16, KS561
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clearly showed that ERIC-PCR, Rep-PCR, and BOX-PCR 
fingerprinting molecular typing methods are useful and 
safe methods for the investigation of Streptomyces strains 
isolated from symptomatic potato tubers. According to our 
knowledge, this is the first report on phylogenetic analysis 
of scab-causing Streptomyces species in Turkey. However, 
most of the pathogenic strains remain to be identified at the 
species level.

Conclusion

According to the literature, there are numerous unknown 
local pathogenic microorganisms. Hence, it is important 
to know pathogenic isolates in soil systems to struggle and 
overcome to these problems for sustainable agricultural 
productivity. Therefore, when more pathogenic strains are 
identified for species level, it will be helpful for control of 
the various pathogenic strains in agroecosystems.
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