Skip to main content

Advertisement

Log in

Fermentative hydrogen production from low-value substrates

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Hydrogen is a promising energy source that is believed to replace the conventional energy sources e.g. fossil fuels over years. Hydrogen production methods can be divided into conventional production methods which depend mainly on fossil fuels and alternative production methods including electrolysis of water, biophotolysis and fermentation hydrogen production from organic waste materials. Compared to the conventional methods, the alternative hydrogen production methods are less energy intensive and negative-value substrates i.e. waste materials can be used to produce hydrogen. Among the alternative methods, fermentation process including dark and photo-fermentation has gained more attention because these processes are simple, waste materials can be utilized, and high hydrogen yields can be achieved. The fermentation process is affected by several parameters such as type of inoculum, pH, temperature, substrate type and concentration, hydraulic retention time, etc. In order to achieve optimum hydrogen yields and maximum substrate degradation, the operating conditions of the fermentation process must be optimized. In this review, two routes for biohydrogen production as dark and photo-fermentation are discussed. Dark/photo-fermentation technology is a new approach that can be used to increase the hydrogen yield and improve the energy recovery from organic wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABR:

Anaerobic baffled reactor

AFBR:

Anaerobic fluidized bed reactor

CH4 :

Methane

CO2 :

Carbon dioxide

COD:

Chemical oxygen demand

CSTR:

Continuous stirring tank reactor

DF:

Dark fermentation

DO:

Dissolved oxygen

ΔG :

Gibbs free energy

H2 :

Hydrogen

H2 yield:

Hydrogen yield

HAc:

Acetic acid

HBu:

Butyric acid

HHV:

Higher heating value

HPr:

Propionic acid

HPR:

Hydrogen production rate

LHV:

Lower heating value

MFCs:

Microbial fuel cells

NPs:

Nanoparticles

OLR:

Organic loading rate

ORP:

Oxidation reduction potential

PBBR:

Pack bed biofilm reactor

PNSB:

Purple non-sulfur bacteria

TWW:

Textile wastewater

UASB:

Up-flow anaerobic sludge blanket

VFAs:

Volatile fatty acids

References

  • Alibardi L, Cossu R (2016) Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Manag 47:69–77

    CAS  PubMed  Google Scholar 

  • Amorim NCS, Alves I, Martins JS, Amorim ELC (2014) Biohydrogen production from cassava wastewater in an anaerobic fluidized bed reactor. Braz J Chem Eng 31:603–612

    Google Scholar 

  • Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119

    CAS  PubMed  Google Scholar 

  • Argun H, Kargi F (2010) Bio-hydrogen production from ground wheat starch by continuous combined fermentation using annular-hybrid bioreactor. Int J Hydrog Energy 35:6170–6178

    CAS  Google Scholar 

  • Argun H, Kargi F (2011) Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview. Int J Hydrog Energy 36:7443–7459

    CAS  Google Scholar 

  • Argun H, Kargi F, Kapdan IK, Oztekin R (2008) Biohydrogen production by dark fermentation of wheat powder solution: effects of C/N and C/P ratio on hydrogen yield and formation rate. Int J Hydrog Energy 33:1813–1819

    CAS  Google Scholar 

  • Arimi MM, Knodel J, Kiprop A, Namango SS, Zhang Y, Geißen SU (2015) Strategies for improvement of biohydrogen production from organic-rich wastewater: a review. Biomass Bioenerg 75:101–118

    CAS  Google Scholar 

  • Asada Y, Tokumoto M, Aihara Y, Oku M, Ishimi K, Wakayama T (2006) Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV. Int J Hydrog Energy 31:1509–1513

    CAS  Google Scholar 

  • Barros AR, de Amorim ELC, Reis CM, Shida GM, Silva EL (2010) Biohydrogen production in anaerobic fluidized bed reactors: effect of support material and hydraulic retention time. Int J Hydrog Energy 35:3379–3388

    CAS  Google Scholar 

  • Basak N, Jana AK, Das D, Saikia D (2014) Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: the present progress and future perspective. Int J Hydrog Energy 39:6853–6871

    CAS  Google Scholar 

  • Beckers L, Hiligsmann S, Lambert SD, Heinrichs B, Thonart P (2013) Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Bioresour Technol 133:109–117

    CAS  PubMed  Google Scholar 

  • Bičáková O, Straka P (2012) Production of hydrogen from renewable resources and its effectiveness. Int J Hydrog Energy 37:11563–11578

    Google Scholar 

  • Brunstermann R, Widmann R (2010) Development of a combined bio-hydrogen- and methane-production unit using dark fermentation. In: 18th World hydrogen energy conference 2010 — WHEC 2010 parallel sessions book 2: hydrogen production technologies—part 1 proceedings of the WHEC, 16–21 May, Essen, Germany, 75-2:84–91. ISBN: 978-3-89336-652-1

  • Chandrasekhar K, Lee YJ, Lee DW (2015) Biohydrogen production: strategies to improve process efficiency through microbial routes. Int J Mol Sci 16:8266–8293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CY, Lee CM, Chang JS (2006) Feasibility study on bioreactor strategies for enhanced photohydrogen production from Rhodopseudomonas palustris WP3-5 using optical fiber assisted illumination system. Int J Hydrog Energy 31:2345–2355

    CAS  Google Scholar 

  • Chen CY, Yang MH, Yeh KL, Liu CH, Chang JS (2008) Biohydrogen production using sequential two-stage dark and photo fermentation processes. Int J Hydrog Energy 33:4755–4762

    CAS  Google Scholar 

  • Chu CY, Wang ZF (2017) Dairy cow solid waste hydrolysis and hydrogen/methane productions by anaerobic digestion technology. Int J Hydrog Energy 42:30591–30598

    CAS  Google Scholar 

  • Engineering ToolBox (2003) Fuels—higher and lower calorific values. https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html

  • Fang HHP, Liu H (2002) Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol 82:87–93

    CAS  PubMed  Google Scholar 

  • Fang HHP, Liu H, Zhang T (2005) Phototrophic hydrogen production from acetate and butyrate in wastewater. Int J Hydrog Energy 30:785–793

    CAS  Google Scholar 

  • Gadhe A, Sonawane SS, Varma MN (2015) Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater. Int J Hydrog Energy 40:4502–4511

    CAS  Google Scholar 

  • Ghosh S, Chowdhury R, Bhattacharya P (2018) A review on single stage integrated dark-photo fermentative biohydrogen production: insight into salient strategies and scopes. Int J Hydrog Energy 43:2091–2107

    CAS  Google Scholar 

  • Gupta M, Velayutham P, Elbeshbishy E, Hafez H, Khafipour E, Derakhshani H, El Naggar ME, Levin DB, Nakhla G (2014) Co-fermentation of glucose, starch, and cellulose for mesophilic biohydrogen production. Int J Hydrog Energy 39:20958–20967

    CAS  Google Scholar 

  • Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27:1185–1193

    CAS  Google Scholar 

  • Han H, Cui M, Wei L, Yang H, Shen J (2011) Enhancement effect of hematite nanoparticles on fermentative hydrogen production. Bioresour Technol 102:7903–7909

    CAS  PubMed  Google Scholar 

  • Hitit ZY, Lazaro CZ, Hallenbeck PC (2017) Increased hydrogen yield and COD removal from starch/glucose based medium by sequential dark and photo-fermentation using Clostridium butyricum and Rhodopseudomonas palustris. Int J Hydrog Energy 42:18832–18843

    CAS  Google Scholar 

  • Ismail I, Hassan MA, Rahman NA, Chen SS (2010) Thermophilic biohydrogen production from palm oil mill effluent (POME) using suspended mixed culture. Biomass Bioenerg 34:42–47

    CAS  Google Scholar 

  • Jeong TY, Cha GC, Yoo IK, Kim DJ (2007) Hydrogen production from waste activated sludge by using separation membrane acid fermentation reactor and photosynthetic reactor. Int J Hydrog Energy 32:525–530

    CAS  Google Scholar 

  • Jung KW, Kim DH, Shin HS (2012) Continuous fermentative hydrogen and methane production from Laminaria japonica using a two-stage fermentation system with recycling of methane fermented effluent. Int J Hydrog Energy 37:15648–15657

    CAS  Google Scholar 

  • Júnior ADNF, Wenzel J, Etchebehere C, Zaiat M (2014) Effect of organic loading rate on hydrogen production from sugarcane vinasse in thermophilic acidogenic packed bed reactors. Int J Hydrog Energy 39:16852–16862

    Google Scholar 

  • Kapdan I, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582

    CAS  Google Scholar 

  • Kars G, Gunduz U, Rakhely G, Yucel M, Eroglu I, Kovacs LK (2008) Improved hydrogen production by hydrogenase—deficient mutant strain of Rhodobacter sphaeroides O.U.001. Int J Hydrog Energy 33:3056–3060

    CAS  Google Scholar 

  • Keskin T, Giusti L, Azbar N (2012) Continuous biohydrogen production in immobilized biofilm system versus suspended cell culture. Int J Hydrog Energy 37:1418–1424

    CAS  Google Scholar 

  • Kotay SM, Das D (2008) Biohydrogen as a renewable energy resource—prospects and potentials. Int J Hydrog Energy 33:258–263

    Google Scholar 

  • Kothari R, Singh DP, Tyagi VV, Tyagi SK (2012) Fermentative hydrogen production—an alternative clean energy source. Renew Sustain Energy Rev 16:2337–2346

    CAS  Google Scholar 

  • Lay CH, Kuo SY, Sen B, Chen CC, Chang JS, Lin CY (2012) Fermentative biohydrogen production from starch-containing textile wastewater. Int J Hydrog Energy 37:2050–2057

    CAS  Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185

    CAS  Google Scholar 

  • Li X, Wang YH, Zhang SL, Chu J, Zhang M, Huang MZ (2009) Enhancement of phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5 using a novel strategy—shaking and extra-light supplementation approach. Int J Hydrog Energy 34:9677–9685

    CAS  Google Scholar 

  • Li YC, Chu CY, Wu SY, Tsai CY, Wang CC, Hung CH, Lin CY (2012) Feasible pretreatment of textile wastewater for dark fermentative hydrogen production. Int J Hydrog Energy 37:15511–15517

    CAS  Google Scholar 

  • Lin CY, Wu SY, Lin PJ, Chang JS, Hung CH, Lee KS, Lay CH, Chu CY, Cheng CH, Chang AC, Wu JH, Chang FY, Yang LH, Lee CW, Lin YC (2011a) A pilot-scale high-rate biohydrogen production system with mixed microflora. Int J Hydrog Energy 36:8758–8764

    CAS  Google Scholar 

  • Lin PJ, Chang JS, Yang LH, Lin CY, Wu SY, Lee KS (2011b) Enhancing the performance of pilot-scale fermentative hydrogen production by proper combinations of HRT and substrate concentration. Int J Hydrog Energy 36:14289–14294

    CAS  Google Scholar 

  • Lin YH, Juan ML, Hsien HJ (2011c) Effects of temperature and initial pH on biohydrogen production from food-processing wastewater using anaerobic mixed culture. Biodegradation 22:551–563

    CAS  PubMed  Google Scholar 

  • Lin CY, Lay CH, Sen B, Chu CY, Kumar G, Chen CC, Chang JS (2012) Fermentative hydrogen production from wastewaters: a review and prognosis. Int J Hydrog Energy 37:15632–15642

    CAS  Google Scholar 

  • Liu H, Fang HHP (2002) Hydrogen production from wastewater by acidogenic granular sludge. Water Sci Technol 47:153–158

    Google Scholar 

  • Liu BF, Ren NQ, Xie GJ, Ding J, Guo WQ, Xing DF (2010) Enhanced bio-hydrogen production by the combination of dark- and photo-fermentation in batch culture. Bioresour Technol 101:5325–5329

    CAS  PubMed  Google Scholar 

  • Lo YC, Chen SD, Chen CY, Huang TI, Lin CY, Chang JS (2008) Combining enzymatic hydrolysis and dark-photo fermentation processes for hydrogen production from starch feedstock: a feasibility study. Int J Hydrog Energy 33:5224–5233

    CAS  Google Scholar 

  • Maeda I, Miyasaka H, Umeda F, Kawase M, Yagi K (2003) Maximization of hydrogen production ability in high-density suspension of Rhodovulum sulfidophilum cells using intracellular poly(3-hydroxcbutyrate) as sole substrate. Biotechnol Bioeng 81:474–481

    CAS  PubMed  Google Scholar 

  • Mohan SV (2008) Fermentative hydrogen production with simultaneous wastewater treatment: influence of pretreatment and system operating conditions. J Sci Ind Res 67:950–961

    CAS  Google Scholar 

  • Mohan SV, Babu VL, Sarma PN (2007) Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): effect of organic loading rate. Enzyme Microb Technol 41:506–515

    CAS  Google Scholar 

  • Morsy FM (2017) Synergistic dark and photo-fermentation continuous system for hydrogen production from molasses by Clostridium acetobutylicum ATCC 824 and Rhodobacter capsulatus DSM 1710. J Photochem Photobiol B 169:1–6

    CAS  PubMed  Google Scholar 

  • Nath K, Das D (2004) Biohydrogen production as a potential energy resource—present state-of-art. J Sci Ind Res 63:729–738

    CAS  Google Scholar 

  • Nath K, Muthukumar M, Kumar A, Das D (2008) Kinetics of two stage fermentation process for the production of hydrogen. Int J Hydrog Energy 33:1195–1203

    CAS  Google Scholar 

  • Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 67:597–611

    CAS  Google Scholar 

  • Oh YK, Kim SH, Kim MS, Park S (2004a) Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnol Bioeng 88:689–698

    Google Scholar 

  • Oh YK, Seol EH, Kim MS, Park S (2004b) Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int J Hydrog Energy 29:1115–1121

    CAS  Google Scholar 

  • Özgür E, Peksel B (2013) Biohydrogen production from barley straw hydrolysate through sequential dark and photofermentation. J Clean Prod 52:14–20

    Google Scholar 

  • Ozkan E, Uyar B, Ozgur E, Yucel M, Eroglu I, Gunduz U (2012) Photofermentative hydrogen production using dark fermentation effluent of sugar beet thick juice in outdoor conditions. Int J Hydrog Energy 37:2044–2049

    CAS  Google Scholar 

  • Ozmihci S, Kargi F (2010) Bio-hydrogen production by photo-fermentation of dark fermentation effluent with intermittent feeding and effluent removal. Int J Hydrog Energy 35:6674–6680

    CAS  Google Scholar 

  • Ozturk Y, Yucel M, Daldal F, Mandacı S, Gunduz U, Turker L (2006) Hydrogen production by using Rhodobacter capsulatus mutants with genetically modified electron transfer chains. Int J Hydrog Energy 31:1545–1552

    Google Scholar 

  • Pandey A, Gupta K, Pandey A (2015) Effect of nanosized TiO2 on photofermentation by Rhodobacter sphaeroides NMBL-02. Biomass Bioenerg 72:273–279

    CAS  Google Scholar 

  • Pandu K, Joseph S (2012) Comparisons and limitations of biohydrogen production processes: a review. Int J Adv Eng Technol 2:342–356

    Google Scholar 

  • Park MJ, Jo JH, Park D, Lee DS, Park JM (2010) Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses. Int J Hydrog Energy 35:6194–6202

    CAS  Google Scholar 

  • Pasupuleti SB, Sarkar O, Mohan SV (2014) Upscaling of biohydrogen production process in semi-pilot scale biofilm reactor: evaluation with food waste at variable organic loads. Int J Hydrog Energy 39:7587–7596

    CAS  Google Scholar 

  • Rafieenia R, Girotto F, Peng W, Cossu R, Pivato A, Raga R, Lavagnolo MC (2017) Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions. Waste Manag 59:194–199

    CAS  PubMed  Google Scholar 

  • Rai PK, Singh SP (2016) Integrated dark- and photo-fermentation: recent advances and provisions for improvement. Int J Hydrog Energy 41:19957–19971

    CAS  Google Scholar 

  • Redwood MD, Macaskie LE (2006) A two-stage, two-organism process for biohydrogen from glucose. Int J Hydrog Energy 31:1514–1521

    CAS  Google Scholar 

  • Sağır E, Yucel M, Hallenbeck PC (2018) Demonstration and optimization of sequential microaerobic dark- and photo-fermentation biohydrogen production by immobilized Rhodobacter capsulatus JP91. Bioresour Technol 250:43–52

    PubMed  Google Scholar 

  • Sagnak R, Kargi F (2011) Hydrogen gas production from acid hydrolyzed wheat starch by combined dark and photofermentation with periodic feeding. Int J Hydrog Energy 36:10683–10689

    CAS  Google Scholar 

  • Salem AH, Mietzel T, Brunstermann R, Widmann R (2017) Effect of cell immobilization, hematite nanoparticles and formation of hydrogen-producing granules on biohydrogen production from sucrose wastewater. Int J Hydrog Energy 42:25225–25233

    CAS  Google Scholar 

  • Salem AH, Brunstermann R, Mietzel T, Widmann R (2018a) Effect of pre-treatment and hydraulic retention time on biohydrogen production from organic wastes. Int J Hydrog Energy 43:4856–4865

    CAS  Google Scholar 

  • Salem AH, Mietzel T, Brunstermann R, Widmann R (2018b) Two-stage anaerobic fermentation process for bio-hydrogen and bio-methane production from pre-treated organic wastes. Bioresour Technol 265:399–406

    CAS  PubMed  Google Scholar 

  • Sargsyan H, Trchounian K, Gabrielyan L, Trchounian A (2016) Novel approach of ethanol waste utilization: biohydrogen production by mixed cultures of dark- and photo-fermentative bacteria using distillers grains. Int J Hydrog Energy 41:2377–2382

    CAS  Google Scholar 

  • Shi XY, Yu HQ (2006) Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulatus. Int J Hydrog Energy 31:1641–1647

    CAS  Google Scholar 

  • Singh L, Wahid ZA, Siddiqui MF, Ahmad A, Rahim MHA, Sakinah M (2013) Application of immobilized upflow anaerobic sludge blanket reactor using Clostridium LS2 for enhanced biohydrogen production and treatment efficiency of palm oil mill effluent. Int J Hydrog Energy 38:2221–2229

    CAS  Google Scholar 

  • Su H, Cheng J, Zhou J, Song W, Cen K (2009) Combination of dark- and photo-fermentation to enhance hydrogen production and energy conversion efficiency. Int J Hydrog Energy 34:8846–8853

    CAS  Google Scholar 

  • Tao Y, Chen Y, Wu Y, He Y, Zho Z (2007) High hydrogen yield from a two-step process of dark-and photo-fermentation of sucrose. Int J Hydrog Energy 32:200–206

    CAS  Google Scholar 

  • Trchounian K, Sawers RG, Trchounian A (2017) Improving biohydrogen productivity by microbial dark- and photofermentations: novel data and future approaches. Renew Sustain Energy Rev 80:1201–1216

    CAS  Google Scholar 

  • Vatsala TM, Raj SM, Manimaran A (2008) A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial co-culture. Int J Hydrog Energy 33:5404–5415

    CAS  Google Scholar 

  • Winter CJ (2005) Into the hydrogen energy economy-milestones. Int J Hydrog Energy 30:681–685

    CAS  Google Scholar 

  • Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y (2001) Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng 91:58–63

    CAS  PubMed  Google Scholar 

  • Zagrodnik R, Laniecki M (2015) The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation. Bioresour Technol 194:187–195

    CAS  PubMed  Google Scholar 

  • Zhang ML, Fan YT, Xing Y, Pan CM, Zhang GS, Lay JJ (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenerg 31:250–254

    CAS  Google Scholar 

  • Zhao W, Zhang Y, Du B, Wei D, Wei Q, Zhao Y (2015) Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria. Bioresour Technol 142:240–245

    Google Scholar 

  • Zong W, Yu R, Zhang P, Fan M, Zhou Z (2009) Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass Bioenerg 33:1458–1463

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed H. S. Hassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A.H.S., Mietzel, T., Brunstermann, R. et al. Fermentative hydrogen production from low-value substrates. World J Microbiol Biotechnol 34, 176 (2018). https://doi.org/10.1007/s11274-018-2558-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2558-9

Keywords

Navigation