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Abstract Accurate runoff and suspended sediment transport rate models are critical
for watershed management. In this study, a physiographic soil erosion–deposition
(PSED) model is used in conjunction with GIS, to simulate the runoff and sediment
transport process during storm events in a multi-watershed basin. This PSED model
is verified using three typhoon events and 33 storm events in Cho-Shui River Basin,
located in central Taiwan. Cho-Shui River Basin has 11 sub-watersheds displaying
a variety of hydrologic and physiographic conditions as well as high concentrations
of suspended sediment in river flow and a steep average channel bed slope of 2%.
The results show the capability, applicability, and accuracy of the PSED model for
multi-watershed basins.

Keywords Multi-watershed river basin · Physiographic soil erosion–deposition
model (PSED) · Discharge hydrograph · Suspended sediment transport rate · GIS

1 Introduction

Surface runoff is created when the precipitation rate is larger than the infiltration
rate of a soil. High velocity runoff results in both soil erosion and the transportation
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of the eroded soil into downstream rivers. Runoff and erosion are two critical factors
for designing hydraulic infrastructures such as reservoirs and weirs. Thus, accurate
estimation of runoff and sediment transport is essential when developing numerical
models of open channels, water quality, sediment erosion and deposition.

Although many rainfall-runoff models exist that can estimate runoff using the
rainfall data of a watershed, none can simulate sediment transport. On the other
hand, the prevalent empirical approaches used to simulate soil erosion, such as
Universal Soil Loss equation (USLE) (Wischmeier et al. 1958) and Revised Uni-
versal Soil Loss equation (RUSLE; Renard et al. 1991), cannot simulate the runoff
and the sediment transport of a watershed. Because sediment transport is related
to surface runoff and both interact with physiographic conditions, they should be
considered simultaneously in a simulation model. Many physically based models
have been developed to address this problem, such as ANSWERS (Beasley et al.
1980), CREAMS (Knisel 1980), GUESS (Rose et al. 1983), EPIC (Williams et al.
1984), WEPP (Nearing et al. 1989), AGNPS (Young et al. 1989), GUEST (Misra
and Rose 1990), and EUROSEM (Morgan et al. 1998). These models, based on
the conservation of mass and energy, result in partial differential equations used to
simulate runoff and sediment transport for independent rainfall events. However,
these models still use empirical approaches to estimate soil erosion during the event.
For example, EPIC and WEPP apply USLE to simulate soil erosion.

Dealing with hydrologic and physiographic parameters can be tedious when
implementing physically based models. For example, WEPP requires 50 parameter
inputs (Brazier et al. 2000) such as plant species, fractional vegetation cover, initial
saturation level, organic matter, interrill erodibility, effective hydraulic conductivity,
cation exchange capacity, etc. To handle large hydrologic and physiographic datasets,
GIS can be utilized. For example, some studies linked GIS with USLE (Bhattarai
and Dutta 2007; Mishra and Deng 2009; Chou 2010; Jain and Das 2010) or modified
form of USLE (Wang et al. 2009). Recently, many studies have used GIS to combine
rainfall-runoff models with sediment transport models and soil erosion models to
simulate runoff and sediment transport within a watershed (Murakami et al. 2001;
Wongsa et al. 2002; Sun et al. 2002; Paringit and Nadaoka 2003; Chen et al. 2004,
2006; Jain et al. 2005; Yuan et al. 2007). Despite using GIS, these models continue
to simplify the hydrologic and physiographic parameters. These simplifications result
in limitations associated with model applicability and accuracy. Consequently, these
models can only obtain accurate results for small watersheds with simple hydrologic
and physiographic conditions, and are inadequate for large river basins with multiple
watersheds containing complex rainfall patterns, soil types and land uses.

In this study, a physiographic Soil Erosion–Deposition Model (PSED) model is
developed to simulate rainfall-runoff and sediment transport processes during storm
events in a multi-watershed basin. The watershed contains 11 sub-watersheds which
display a variety of hydrologic and physiographic conditions. The erosion–deposition
model considers suspended sediment transport, bed load transportation, entrained
sediment, and deposited sediment in the continuity equations. Accordingly, no
simplification of physiographic parameters except homogenization of the landscape
in each computational cell is made using the proposed PSED model. Therefore,
the proposed model can provide accurate simulation results of runoff, suspended
sediment transport, and sediment yield of a multi-watershed river basin.

The study area is Cho-Shui River Basin, the longest river which is located in the
central western region of Taiwan with a basin area of 3,155 km2. This PSED model
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is verified using three typhoon events, Typhoon Herb (1996), Typhoon Zeb (1998),
and Typhoon Nari (2001), and 33 storm events in 1998. Observed runoff hydrographs
and suspended sediment transport rates are compared with that of the model outputs
to verify the proposed PSED model.

2 Physiographic Soil Erosion–Deposition (PSED) Model

The PSED model combines an overland runoff model and a soil erosion–deposition
model. The details of these two models are described as follows.

2.1 Overland Runoff Model

The overland runoff model determines the transportation of the overland flow in the
watershed. The continuity equation can be expressed as (Chen et al. 2006):

Ai
∂hi

∂t
=

∑

k

Qi,k (hi, hk) + Pei (t) (1)

where t is time; Ai is the area of the cell i; hi and hk are surface water elevation of cell
i and k, respectively; Oi,k is the discharge flowing into cell i from the adjacent cell k;
Pei is the effective rainfall volume per second or effective rainfall intensity multiplied
by the area of cell i. The effective rainfall volume can be obtained using the following
equation (Chow et al. 1988):

P′ = (P − 0.2S)2

(P + 0.8S)
(2)

S = 25400
CN

− 254 (3)

where P is the depth of the total precipitation (mm); P′ is the depth of excess
precipitation or direct runoff (mm); S is less than or equal to the potential maximum
retention (mm); CN is curve number which depends on soil type and land use.

If no flow barrier exists, the flow between adjacent cells can be calculated using
the Manning equation. The following equations are used to calculate the flow, Qi,k,
from cell k to cell i.

Qi,k = hk − hi

|hk − hi| · � · √|hk − hi| f or
∂ Qi,k

∂hi
≤ 0 (4)

Qi,k = � · √|hk − hi| f or
∂ Qi,k

∂hi
> 0 (5)

where hi,k is the elevation of water table at the boundary of cell i and k; and the flow
parameter � = Aw R2/3/

(
n
√

�x
)
, �x is the distance between centroid of cell i and

k; n is Manning’s roughness coefficient; Aw is the cross-section area of the boundary
between two cells; and R is the hydraulic radius at the boundary.
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Flow barriers, such as roads, embankments, field ridges, and banks, are treated
as broad crested weirs. Two conditions may exist: free overfall weir and submerged
weir. The following equations describe each condition (hk > hi).

(A) Free overfall weir (hi − hw) < 2
3 (hk − hw):

Qi,k = μ1b
√

2g(hk − hw)3/2 (6)

(B) Submerged weir (hi − hw) ≥ 2
3 (hk − hw):

Qi,k = μ2b
√

2g(hi − hw)(hk − hi)
1/2 (7)

where hw is the elevation of weir crest, that is the elevation of road, bank top, or
ground; b is the effective width of the weir, or the length of the border between
two adjacent cells; g is acceleration due to gravity; μ1 and μ2 are weir discharge
coefficients for free overfall weir and submerged weir, respectively. Tsai and Tsai
(1997) suggested μ1 = 0.36∼0.57 and μ2 = 2.6μ1. In this study, we use μ1 = 0.46 and
μ2 = 1.20.

Applying a finite difference scheme, Eq. 1 can be expressed as:

hm+1
i = hm

i +

(∑
k

Qm
i,k + Pm

ei

)

Ai
· �t (8)

where the superscript, m, represents the time index, tm, for the variables, Q, P, and h;
�t is time increment between tm and tm+1. The relationship between flow, Qi,k, and
water table elevations, hi and hk, for two adjacent cells is expressed by either Eqs. 4
and 5 or 6 and 7. The water depth of cell i, Di, can be obtained by Di = hi − zi, zi is
the bed elevation of cell i. With the equations listed thus far and any physiographic
and hydrologic data, the water table hydrograph of each cell can be obtained.

2.2 Soil Erosion–Deposition Model

To simulate the erosion and deposition processes in the study area, sediment trans-
port rate and bed load sediment variation are obtained from the bed load transport
rate formula, continuity equations of suspended sediment and bed load (Chen et al.
2006).

∂Vsi

∂t
=

∑

k

QSCi,k + Qsei − Qsdi + RDTi (9)

(1 − λ)
∂Vdi

∂t
=

∑

k

QSBi,k − Qsei + Qsdi − RDTi (10)

where Vsi is the volume of suspended sediment in cell i(Vsi = Ai × Di × Ci); C is
the volumetric concentration of suspended sediment; λ is porosity; Vdi is the volume
of the predetachment erosion layer in cell i; QSCi,k and QSBi,k are transport rates of
suspended sediment and bed load, respectively, from cell k to adjacent cell i; RDTi is
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the rainfall detachment rate of cell i; Qsei is the entrained rate of cell i; and Qsdi is the
deposition rate of cell i.

(1) Rainfall detachment rate

Erosion resulting from rainfall detachment is based on soil type, vegetation, and
water depth. When the water depth exceeds a depth of three times the diameter of
a raindrop, raindrops are considered to have no direct impact on the soil surface
and the rainfall detachment rate is considered zero (Mutchler and Young 1975).
Raindrop diameter is correlated with the rainfall intensity and is calculated by Ma’s
formula as follows (Ma 1995).

d50 = 1.560I0.096 (11)

where d50 is the median diameter of raindrops (mm); and I is rainfall intensity
(mm/hr).

When the flow depth is less than three times the diameter of raindrop, the rainfall
detachment rate is calculated as follows,

RDTi = α · Iβ · Ai (12)

where α and β are yet to be determined. Hu et al. (1995) suggested that the value of
α should be between 18.36 and 21.72 and β be between 0.81 and 1.29. In this study,
α = 20 and β = 1.0.

(2) Entrained and deposition sediment

Itakura and Kishi (1980) suggested that the sediment entrainment rate (qse) of the
channel bed can be expressed as:

qse = 0.008
√

sgd

[
0.14

ρ

ρs

(
14

√
τ∗ − 0.9√

τ∗

)
− ωs√

sgd

]
(13)

Where s = (ρs − ρ)/ρ is the submerged specific gravity of the sediment; ρs and ρ

are density of the sediment and the clear water, respectively; d is the diameter of
sediment; ωs is the fall velocity of sediment; τ ∗ is dimensionless bed shear stress
(= u2∗

/
sgd); and u∗ is the shear velocity. The deposition rate of sediment, qsd, is

expressed as follows,

qsd = ωs Ca (14)

where Ca is the volumetric concentration of suspended sediment near the channel
bed. Ca can be approximated by the suspended sediment concentration at the 5%
depth from the channel bed (Shimizu et al. 1990). The entrained sediment rate and
deposition rate can be expressed as:

Qsei = qse · Ai · c′ (if cell i is a land cell) (15a)

Qsei = qse · Ai (if cell i is a river cell) (15b)

Qsdi = qsd · Ai (16)

where c′ is the crop management factor based on land use type (Chen et al. 2004).
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(3) Bed load transport rate

Sediment transport occurs when the shear stress exerted on the bed material
exceeds the critical shear stress. In this study, the equation to calculate the bed load
transport rate is as follows (Chen et al. 2006):

γ DS f = 0.047(γs − γ )d + 0.25
(

γ

g

)1/3 (
γs − γ

γs

)2/3

q2/3
b (17)

where S f is the friction slope; γ s and γ are specific weight of sediment and clear
water, respectively; qb is the bed load transport rate per unit bed width.

Additionally, the bed load discharge between two adjacent cells can be expressed
as follows.

QSBi,k = qbi,k · b · c′ (if cell i is a land cell) (18a)

QSBi,k = qbi,k · b (if cell i is a river cell) (18b)

(4) Volumetric concentration of suspended sediment and bed variation

Applying a finite difference scheme, Eq. 9 can be approximated as follows.

Cm+1
i =

(∑
k

Qm
SCi,k

+ Qm
sei − Qm

sdi + Rm
DTi

)

Ai Dm+1
i

· �t (19)

where, QSCi,k is the discharge of suspended sediment between two adjacent cells and
can be determined by the flow direction of Qi,k. If water flows from cell k to cell
i, QSCi,k = ∣∣Qi,k

∣∣ × Ck. If water flows from cell i to cell k, QSCi,k = − ∣∣Qi,k
∣∣ × Ci. In

addition, Qsei, Qsdi, RDTi, and Di can be obtained from Eqs. 15a, 15b, 16, 12, and 9,
respectively.

Similarly, Eq. 10 can be approximated using finite difference as follows:

�zi =

(∑
k

Qm
SBi,k

+ Qm
sei − Qm

sdi − Rm
DTi

)

Ai (1 − λ)
· �t (20)

zm+1
i = zm

i + �zi (21)

where, �zi is the change in bed elevation (a positive value represents deposition and
a negative value represents erosion). The bed load discharge, QSBi,k , between two
adjacent cells is determined by the direction of Qi,k. If the bed load is flowing into
cell i, the value of QSBi,k is positive and can be obtained using Eq. 18a and 18b; the
value is negative if water flows out of cell i.

3 Study Area: Chou-Shui River Basin, Taiwan

Chou-Shui River Basin is located in the central western region of Taiwan with a
basin area of 3,155 km2. At 186 km in length, the Chou-Shui River is the longest
river in Taiwan. Due to significant erosion resulting from the soil type liable to
erode and steep slope of the main river channel, Chou-Shui River is also known
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Fig. 1 Chou-Shui River Basin with 11 subwatersheds

for high turbidity levels. The elevation of its source is 3,200 m above sea level
(a.s.l.) and the average channel bed slope is 1.72%. Before the river flows west into
the Taiwan Strait, it collects water from 11 sub-watersheds: Wushe, Wanda, Kashe,
Danda, Chunda, Chenyoulan, Chingshui, Donpuru, Chingshuigo, Shuili, and Chou-
Shui River mainstream watersheds (Fig. 1).

4 Application of GIS

Due to the variation in topography, landform, vegetation, and land use in the basin,
the runoff process caused by rainfall and the induced erosion may be different
spatially. Therefore GIS is used to discretize the study area into sub-watersheds and
computational cells based on topography, landform, vegetation and landuse. GIS is
also used to calculate and analyze the hydrologic and physiographic factors of each
cell.

Each sub-watershed is defined based on the digital elevation model (DEM)
provided by the Center for Space and Remote Sensing Research at the National
Central University, in Taiwan (Fig. 2). The ground resolution is 40 m × 40 m. Based
on the DEM, flow direction analysis, and accumulated discharge analysis (Chen et al.
2004), the main river channels and ridges between any two sub-watersheds can be
determined and then Chou-Shui River Basin is divided into 11 sub-watersheds. Each
sub-watershed consists of two clusters of cells. One represents the river cells, and the
other represents the land cells.
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Fig. 2 Digital elevation model (DEM) of Chou-Shui River Basin

Hence, ArcGIS™ (ArcView� and Arc/Info�) is used, along with some extension
modules (spatial analysis, hydrologicmodel, 3D Analyst, Network Analyst) and the

Fig. 3 Computational cells of Chou-Shui River Basin
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Object-Oriented Programming Language (Avenue), to handle the large hydrologic
and physiographic datasets. The data consists of slope, area, average elevation,
centroid coordinate, precipitation, μ1, μ2, b , c′, d, n, CN, α, β, λ.

After defining the main river channels, the width of river cells are assigned based
on the measured cross-sections in the field. In addition, land cells are assigned
according to soil type, land use, and road system. Subsequently, small, long and
narrow cells were integrated into one cell and large cells were further discretized into
multiple cells with the appropriate sizes such that enough information is contained
for the simulation model. As a result, there are 6,421 cells of Chou-Shui River Basin
with 11 sub-watersheds (Fig. 3). The average size of each computational cell is about
0.49 km2.

5 Hydrologic and Physiographic Data

Hydrologic data are used as input for the simulation model as well as for model
verification. There are 34 rain gauges and 10 river gauging stations in the study area
(Fig. 4). Since the rain gauges are not uniformly distributed, we apply the Thiessen
polygon method (Tseng and Chou 2000) to determine the control area of each rain
gauge (Fig. 5).

Coupling the DEM (Fig. 2) with the cell map (Fig. 3), the geometric properties
of each cell, such as slope, area, average elevation, etc., were obtained. In addition,
GIS was used to handle physiographic data such as land use and vegetation which

Fig. 4 Locations of rain gauges and river gauging stations in the Chou-Shui River Basin
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Fig. 5 Rain gauge control areas (obtained by Thiessen polygon method)

Fig. 6 Land use distribution of the Chou-Shui River Basin



Simulation of Runoff and Suspended Sediment Transport Rate 803

Table 1 Manning’s roughness
coefficients for various land
uses (Chen et al. 2004)

Land uses Manning’s Crop management
roughness factor c′

Meadow 0.35 0.15
Lawns 0.25 0.05
Without conservation treatment 0.2 1.00
River and reservoir 0.035 0.00
Paddy field 0.10 0.10
Crop or xerophytic vegetation 0.35 0.25
Orchard 0.40 0.20
Wood or forest land 0.45 0.01
Bush 0.35 0.01
Industrial and business area 0.10 0.01

affect the value of Manning’s roughness coefficient in the overland runoff model
as well as the bed load transport rate and suspended transport rate in the Soil
erosion–deposition model. Coupling the land use map (Fig. 6) with the cell map,
the physiographic properties of land use and vegetation of each cell were obtained.
Based on these physiographic properties, Manning’s roughness coefficient and crop
management factor (Table 1) can be assigned for each cell. Figure 7 shows the soil
type distribution for the study area. Additionally, upon coupling the soil map with the
cell map, the representative soil particle diameter was obtained for each cell (Soil
Survey Division Staff 1993). The representative diameter of soil particles in river
cells is based on field measurement of river bed materials (Water Resource Planning
Institute 2001).

Fig. 7 Soil type distribution of the Chou-Shui River Basin
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6 Calculation Procedures of GIS and PSED Model

In summary, the procedures used to calculate water depth, suspended volumetric
concentration, and sediment yield with the proposed PSED model, in conjunction
with GIS, are as follows,

1. Use GIS to define subcatchments. Each subcatchment is further partitioned into
multiple cells based on the appropriate resolution. These cells are characterized
as land cells and river cells based on their properties.

2. Use GIS to analyze the hydrological and physiographical data including precip-
itation, vegetation, land uses, geometry, topology, elevation, weir coefficients,
and particle diameters. Then save the results of the analysis in the database.

3. Prepare the input files for the PSED model using the database from step 2.
4. Calculate the overland flow using Eq. 8 to obtain the water elevation in each cell.

�t = 1 second in all simulated rainfall events.
5. Simulate the soil erosion–deposition to obtain the volumetric concentration, bed

variation, and bed elevation of each cell using Eqs. 19, 20, and 21, respectively.
6. Repeat step 4 using the bed elevation obtained from the step 5 until the end of

the storm event.

7 Simulation Conducted

To verify the feasibility of this PSED when applied to a multi-watershed river basin to
estimate flow discharge and sediment yield, two main case studies were considered.
First, the simulations of flow discharge for three typhoon storm events, Typhoon
Herb in 1996, Typhoon Zeb in 1998, and Typhoon Nari in 2001, were compared with
the discharge measurements obtained from the river gauging stations in the Cho-Shui
river basin to verify the accuracy of the discharge hydrographs simulated with the
PSED. The suspended sediment concentration were also measured in river gauging
stations, suspended sediment concentration multiplied by discharge is suspended
sediment transport rate. Based on measured discharge and suspended sediment
concentration, the relationship between flow discharge and sediment transport rate
was obtained. Then, a total of 33 storm events in 1998 were simulated to compare the
PSED calculated suspended sediment transport rate with the relationship between
flow discharge and sediment transport rate generated with measured data at each
river gauging station in the Cho-Shui river basin.

8 Results and Discussion

Since the available river gauging station discharge observations are more complete
for typhoon storm events, the discharge hydrographs of three typhoon storm events
which have relatively more intense rainfall and longer duration were simulated first.
These simulated hydrographs were compared to the observed discharge hydrographs
obtained from five river gauging stations in the Cho-Shui river basin (Figs. 8, 9
and 10). These five stations were: (1) Yu-Feng bridge station upstream of Cho-Shui
river (located in the watershed of the Cho-Shui river mainstream); (2) Nei-Mao-Pu
station (located in the watershed of the Chen-You-Lan river); (3) Tung-Tou station
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Fig. 8 The comparison between simulated and observed flow discharge at different river gauging
stations for Typhoon Herb

(located in the watershed of the Chin-Shui river); (4) Chang-Yun bridge station
downstream of the Cho-Shui river; and (5) Tzu-Chiang bridge station (located in
the watershed of Cho-Shui river mainstream).
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Fig. 9 The comparison between simulated and observed flow discharge at different river gauging
stations for Typhoon Zeb (observed flow discharge data for Tzu-Chiang bridge station are not
available)

Based on the observed discharge hydrographs, the spatially distributed rainfall
and heterogeneous physiographic properties at different watersheds lead to sig-
nificantly different discharge hydrographs for different river gauging stations, even
for an identical typhoon storm event. For example, the shapes of the observed
discharge hydrographs for Typhoon Herb at each station were single-peaked. How-
ever, for Typhoon Zeb, the observed discharge hydrograph at the Yu-Feng bridge
station was multi-peaked, but at the Tung-Tou station the shape was single-peaked.
Similar features can be seen for Typhoon Nari. At the Yu-Feng station, the shape
of the hydrograph was single-peaked; however, hydrographs with double peaks were
observed at the Chang-Yun bridge and Tung-Tou stations. This phenomenon implies
that estimating flow discharge and sediment yield using simplified models (assuming
homogeneous physiographic and hydrological parameters) in a multi-watershed river
basin will not be reliable. The average relative root-mean-square errors of simulated
discharge for river gauging stations with measured data are 10.13%, 16.74% and
8.28% in Typhoon Herb, Zeb and Nari, respectively.
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Fig. 10 The comparison between simulated and observed flow discharge at different river gauging
stations for Typhoon Nari (observed flow discharge data for Nei-Mao-Pu and Tzu-Chiang bridge
station are not available)

As shown, the shapes of simulated flow discharge hydrographs using the PSED
model were in good agreement with observed discharge hydrographs at each station
in different watersheds. The simulated timing and value of flood peaks were similar
to the observed values, and the shapes of the simulated hydrographs agree with
the observed data. This indicates that the PSED model is capable of describing
the processes of runoff during rising and recession segments. According to the
results shown thus far, the PSED model can be used to simulate reliable discharge
hydrographs at each sub-watershed.

9 Comparisons Between Simulated and Measured Suspended Sediment
Transport Rates

The PSED model can also be used to simulate suspended sediment concentration.
In this study, data from Typhoon Herb were used to simulate suspended sediment
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Fig. 11 The simulation of suspended sediment transport rate at each river gauging station for
Typhoon Herb
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transport rates (Qs) at different stations (Fig. 11). Based on these results, the
occurrence of intense rainfall would lead to not only greater flow discharge, but
also higher sediment discharge. Moreover, the most significant sediment transport
occurred while the flow discharge was the greatest.

In general, however, data of measured suspended sediment concentrations at river
gauging stations are sparse, especially during Typhoon and storm events. There are
generally no continuous suspended sediment concentration measurements during
these events. Therefore, validating the simulated suspended sediment concentrations
directly is difficult. In order to verify the simulated suspended sediment concentra-
tion hydrographs using the PSED in the Cho-Shui river basin, an alternative method
was used in this study. This method used the relationship between observed flow
at normal discharge levels and sediment transport rate obtained from each river
gauging station to validate the simulated relationship at the same station. Although
there are ten river gauging stations in the Cho-Shui river basin, extensive data of
sediment transport rate measurements were only available for five stations (i.e. Yu-
Feng bridge, Nei-Mao-Pu, Tung-Tou, Chang-Yun bridge, and Tzu-Chiang bridge
stations). However, significant changes in the physiographic properties occurred in
the Cho-Shui river basin after the violent Chi-Chi earthquake devastated Taiwan on
September 21th, 1999. The impact of this earthquake led to increases in soil erosion
and sediment yield and resulted in significant changes in the original relationship
between flow discharge and sediment transport rate (Chen et al. 2003). Therefore
only the data measured before September, 1999 were used in this study to generate
observed relationship. As for simulations using the PSED, sediment transport rate
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was simulated using data from 33 storm events occurring in 1998. The simulated
results were then compared with field data at the five aforementioned river gauging
stations.

Based on the relationship between observed flow discharge and sediment trans-
port rate, a single flow discharge value could possibly correspond to different sed-
iment transport rates. Generally, the relationship between observed flow discharge
and sediment transport rate indicates that: (1) the distribution of sediment transport
rates corresponding to large flow discharges is more concentrated; and (2) the vari-
ation of observed sediment transport rates with medium and small flow discharges
are larger. Since for large flow discharge the variation of sediment transport rate is
relatively small, the estimated errors would also be small compared to those with
medium and small flow discharge rates. To avoid overestimating or underestimating
sediment transport rates for medium and small flow discharges, a regression analysis
was conducted, for various ranges of suspended sediment volumetric concentrations,
to generate relationships between flow discharges and suspended sediment transport
rates (Chen et al. 2006). This regression analysis was conducted for the five bridge
stations (Figs. 12, 13, 14, 15 and 16).

Generally, the variance associated with sediment transport rate or sediment con-
centrations for smaller flow discharge is relative high, i.e. the distribution of observed
data is scattered; however, the variance associated with sediment transport rate or
sediment concentrations for large flow discharge is relative small, i.e. the distribution
of observed data is more concentrated (American Society of Civil Engineers 1975).
For example, the correlation coefficients of the regression equations are larger than
0.8 for high flow discharge but not for the equations with small flow discharge and low
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Fig. 14 Relationship between flow discharge and sediment transport rate for various suspended
sediment concentrations at the Tung-Tou station

sediment concentration. These results indicate that regression equations are capable
of describing the relationship between flow discharge and sediment transport rate.
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The simulated relationships calculated with the PSED model using 33 storm
events in 1998 are compared to the regression equations calculated from observed
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Fig. 17 Comparisons between simulated and observed flow discharge versus sediment transport
rate relationships at the Yu-Feng bridge station (star denotes the simulated concentrations larger
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field data (Figs. 17, 18, 19, 20 and 21). Due to the lack of measured data under
severe conditions of high flow discharge and high sediment concentration, part of
the simulation results fell outside the extended part of the regression equation
where the simulated concentrations larger than the greatest measured value were
denoted by a “star” in Figs. 17–21. Besides these outlying simulated values, the
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Fig. 19 Comparisons between simulated and observed flow discharge versus sediment transport
rate relationships at the Tung-Tou station
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relationships between simulated flow discharge and sediment transport rate are
in good agreement with the regression equations generated with observed data,
especially when the flow discharges are relatively large. Since the results show
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that the simulated suspended sediment concentration is reasonable, the resulting
calculation of suspended transport rate should also be reliable.

10 Conclusion

In this study, the coupling of a physiographic rainfall-runoff model, using GIS, and
the physical processes of soil erosion and deposition in watershed is used to develop
the PSED model for the calculation of flow discharge and suspended sediment
transport rate at a multi-watershed river basin. Based on the simulations of three
typhoon storm events, the shapes and the peak values of the simulated discharge
hydrographs are similar to the measured flow discharges at each river gauging
station, even though the shape of the runoff discharge hydrographs in each watershed
may differ. A regression analysis was conducted between measured flow discharge
and sediment transport rate to obtain the relationship between flow discharge and
sediment transport rate at various ranges of suspended sediment concentrations.
These relationships were then treated as benchmark and compared directly with the
simulated results of the PSED model. The model simulations were conducted with
the data from 33 storm events occurring in 1998. The distributions of simulated flow
discharge versus suspended sediment transport rate are in good agreement with the
regression equations generated with the measured data. These results indicate that
the PSED model is able to simulate flow discharge and suspended transport rate
for a multi-watershed river basin, and would be useful for the planning of hydraulic
engineering and watershed management.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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