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Abstract In this work, we apply a novel statistical meth-
od, multiset canonical correlation analysis (M-CCA), to
study a group of functional magnetic resonance imag-
ing (fMRI) datasets acquired during simulated driving
task. The M-CCA method jointly decomposes fMRI
datasets from different subjects/sessions into brain ac-
tivation maps and their associated time courses, such
that the correlation in each group of estimated activa-
tion maps across datasets is maximized. Therefore, the
functional activations across all datasets are extracted
in the order of consistency across different dataset.
On the other hand, M-CCA preserves the uniqueness

Y.-O. Li (B) · T. Adali
Department of Computer Science and Electrical
Engineering, University of Maryland Baltimore County,
1000 Hilltop Circle, Baltimore, MD 21250, USA
e-mail: liyiou1@umbc.edu, Yiou.Li@ucsf.edu

T. Adali
e-mail: adali@umbc.edu

T. Eichele
Department of Biological and Medical Psychology,
University of Bergen, Jonas Lies Vei 91,
5011 Bergen, Norway

V. D. Calhoun
The Mind Research Network, 1101 Yale Boulevard N.E,
Albuquerque, NM 87106, USA
e-mail: vcalhoun@unm.edu

V. D. Calhoun
Department of Electrical and Computer Engineering,
University of New Mexico, Albuquerque, NM, USA

V. D. Calhoun
Department of Psychiatry, Yale University School
of Medicine, New Haven, CT, USA

of the functional maps estimated from each dataset
by avoiding concatenation of different datasets in the
analysis. Hence, the cross-dataset variation of the func-
tional activations can be used to test the hypothesis
of functional-behavioral association. In this work, we
study 120 simulated driving fMRI datasets and iden-
tify parietal-occipital regions and frontal lobe as the
most consistently engaged areas across all the subjects
and sessions during simulated driving. The functional-
behavioral association study indicates that all the es-
timated brain activations are significantly correlated
with the steering operation during the driving task.
M-CCA thus provides a new approach to investigate
the complex relationship between the brain functions
and multiple behavioral variables, especially in natu-
ralistic tasks as demonstrated by the simulated driving
study.
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1 Introduction

Driving is a naturalistic behavior in which multiple
brain networks are involved. Brain function during
driving has been studied through fMRI [1–4] and PET
[5], using the conventional hypothesis-driven analysis
based on the general linear model (GLM). On the
other hand, data-driven methods such as independent
component analysis (ICA) and canonical correlation
analysis (CCA) have been successfully applied to the
estimation of brain activation in fMRI data [6, 7]. Com-
pared with conventional fMRI analysis based on GLM,
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data-driven methods do not require pre-specified re-
sponse model and hence can identify multiple active
brain regions due to intrinsic connectivity as well as
task activation in more flexible ways. Therefore, data-
driven methods are especially attractive for analyz-
ing brain function during naturalistic and spontaneous
states, such as simulated driving, movie watching, and
functional connectivity during the resting state.

Data-driven approach has been applied to study
brain networks during driving and identified multi-
ple neural correlates as well as their modulation with
driving speed [8, 9]. The estimated time courses of
the identified brain regions provide information about
the temporal modulation of the corresponding brain
networks, which is not particularly predictable and
thus can not be obtained through a hypothesis-driven
method such as GLM. Such a study typically involves
processing of a group of subjects/sessions and the in-
ference of group level brain activations. When multiple
datasets are analyzed by data-driven methods indepen-
dently, the results do not necessarily have a intrinsic
correspondence, even if the datasets are collected using
the same experimental paradigm. Hence, keeping the
coherency among the estimated brain activations across
different datasets is the key issue in a data-driven analy-
sis of group fMRI data.

Toward this end, ICA has been extended to handle
group data in two different ways. In one approach,
spatial or temporal concatenation is first applied to
group datasets and ICA is used to estimate indepen-
dent sources within the aggregated sub-space contain-
ing the common features. Methods in this category
include: Group ICA [10], tensorial ICA [11], and a
unified multi-dataset maximum likelihood ICA model
[12]. In an alternative approach, a corresponding
source model is constructed among the latent sources
across different datasets, and the independence be-
tween different groups of corresponding sources are
maximized by linear demixing vectors specific to each
dataset. Methods in this category include independent
vector analysis (IVA) and M-CCA. IVA achieves in-
dividual decomposition without dataset concatenation
and controls cross-subject correspondence by incorpo-
rating a joint density on sources in each independent
vector with higher-order dependence [13]. However,
the corresponding sources in IVA density model as-
sume no second-order dependence, which could be
impractical because in group study, second-order
dependence is typically significant in characterizing
source correspondence.

To achieve individual decomposition while incor-
porating second-order dependence across the corre-
sponding sources, we propose a joint source separation

scheme on multiple datasets by M-CCA [14] such that
sources are extracted from the datasets by maximizing
the between-set source correlations. The method uses
multiple stages, where in each stage, a linear projection
is found for each multi-dimensional dataset such that
correlation among the group of projected data i.e.,
the extracted sources, is maximized, and the sources
extracted at different stages are constrained to be un-
correlated within each dataset.

Figure 1 illustrates the generative models of different
data-driven group analysis methods, where (a) group
ICA and (b) tensorial ICA are representative group
analysis models based on data concatenation, (c) IVA
and (d) M-CCA are models incorporating source cor-
respondence. IVA and M-CCA model the statistical
dependence between the corresponding sources in a
complementary manner. That is, IVA models source
correspondence by higher order statistical depen-
dence while M-CCA models source correspondence by
second-order correlation.

One important property of the M-CCA method is
that it is robust to the increasing number of datasets
incorporated into the joint analysis [15]. Since M-
CCA models the latent sources in each dataset inde-
pendently, it preserves the distinction of the source
estimates for each dataset. Therefore, M-CCA is a
promising candidate method for group inference from
large number of datasets and study of brain function
variations across different subjects.

In this work, a group of fMRI datasets from sim-
ulated driving are jointly separated by the M-CCA
method, resulting in multiple brain networks. To draw
inference from the rich information resulting from the
group analysis, first, group level activation maps are
obtained from the set of jointly extracted sources, i.e.,
the group of corresponding sources. This is done by
a rank-one approximation using principal component
analysis. Secondly, the cross-dataset variability, i.e.,
the eigenvector corresponding to the most significant
principal component, is used to perform second level
analysis to study the association with the behavioral
factors recorded during the driving task using a multi-
ple linear regression. M-CCA identifies four functional
brain networks in order of cross-dataset consistency
and their corresponding time courses. A regression
analysis of each cross subject variation profile with
the behavioral factors reveals significant association
between functional activations to the steering behavior
during simulated driving task.

This paper is organized as follows. In Section 2, we
briefly introduce the modeling assumption of group
fMRI data for M-CCA to achieve joint source sepa-
ration, the two-sample intra-class structure to model
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Fig. 1 Comparison of group analysis models: a group ICA and
b tensorial ICA are representative group analysis models based
on data concatenation, c IVA and d M-CCA are models in-
corporating source correspondence. IVA and M-CCA model

the statistical dependence between the corresponding sources in
a complementary manner. That is, IVA models source corre-
spondence by higher order statistical dependence while M-CCA
models source correspondence by second order correlation.

the heterogeneous correlation structure within a group
of corresponding sources, and the calculation of cross-
dataset variation for behavior association study. In
Section 3, we simulate group datasets to test the perfor-

mance of the proposed method and introduce the sim-
ulated driving experiment and scheme for group fMRI
data analysis. The experimental results on simulated
datasets and driving fMRI datasets are presented in
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Section 4. In Section 5, we conclude our work with a
discussion on the M-CCA method for group analysis.

2 Theory

2.1 Joint Estimation of Brain Sources by M-CCA
Using Eigenvalue Maximization

We assume the following generative model for joint
BSS on a group of mixtures:

(i) For a group of M datasets, each dataset, xm =
[x(1)

m , x(2)
m , . . . , x(K)

m ]T , m = 1, 2, . . . , M contains
linear mixtures of K sources given in the source
vector sm = [s(1)

m , s(2)
m , . . . , s(K)

m ]T , mixed by a non-
singular matrix Am, i.e.,

xm = Amsm, (1)

where xm, sm are K-dimensional random vectors,
whose samples form the mixture dataset and
source dataset respectively, Am is a K × K non-
singular square matrix;
In group fMRI data analysis, the dataset from
subject m, xm, contains the scanned brain vol-
ume at time points 1, 2, ...K where the samples
of variable x(k)

m are drawn from all the voxels
in the scanned volume image at time k. On the
other hand, each variable s(k)

m in sm contains one
estimated spatial independent source for subject
m and the corresponding column in Am contains
the time course of the spatial source.

(ii) The correlation matrix of the concatenated source
vector s = [sT

1 , sT
2 , . . . , sT

M]T are composed of diag-
onal blocks, i.e.,

R � E{ssT} =

⎡
⎢⎢⎣

I �1,2 . . . �1,M

�2,1 I . . . �2,M

. . .

�M,1 �M,2 . . . I

⎤
⎥⎥⎦

where �m,n = diag([r(1)
m,n, r(2)

m,n, . . . , r(K)
m,n]) for

m, n ∈ {1, 2, . . . , M} is a diagonal matrix with the
correlation values of the corresponding sources in
sm and sn on its diagonal. In other words, the latent
sources across different datasets are correlated
only at the same index. Those correlated sources
form the group of corresponding sources.

Based on the above model, the groups of corre-
sponding sources can be jointly separated in multiple
steps by M-CCA [15]. In step k, the overall correlations

among the extracted sources is maximized with respect
to a group of demixing vectors:

{w(k)
1 , w(k)

2 , ..., w(k)

M } = arg max
w

{
λmax

(
R̂k

)}
,

where λmax represents the greatest eigenvalue
of its matrix argument and R̂k = E{ŝ(k)ŝ(k)T} =
⎡
⎢⎣

w(k)T
1 E{x1xT

1 }w(k)
1 w(k)T

1 E{x1xT
2 }w(k)

2 . . . w(k)T
1 E{x1xT

M}w(k)
M

w(k)T
2 E{x2xT

1 }w(k)
1 w(k)T

2 E{x2xT
2 }w(k)

2 . . . w(k)T
2 E{x2xT

M}w(k)
M

. . .

w(k)T
M E{xMxT

1 }w(k)
1 w(k)T

M E{xMxT
2 }w(k)

2 . . . w(k)T
M E{xMxT

M}w(k)
M

⎤
⎥⎦

is the correlation matrix of the kth group of corres-
ponding sources estimated by the demixing vectors
{w(k)

1 , w(k)
2 , ..., w(k)

M }.
In addition, an orthogonality constraint is imposed in

each step to guarantee that the extracted sources from
previous steps are not re-extracted in current step:

ŝ(k)
m ⊥ {ŝ(1)

m , ŝ(2)
m , . . . , ŝ(k−1)

m }, m = 1, 2, . . . , M.

Therefore, we have

ŝm =

⎡
⎢⎢⎣

w(1)T
m

w(2)T
m
. . .

w(K)T
m

⎤
⎥⎥⎦ xm, m = 1, 2, . . . , M,

as the separated sources for the mth dataset. Figure 1d
illustrates the M-CCA decomposition on group datasets.

The M-CCA procedure outlined above optimizes
demixing vectors such that the largest eigenvalue
of source correlation matrix R̂k is maximized. This
procedure is similar to principal component analysis
(PCA) on the concatenation of multiple datasets x =
[xT

1 , xT
2 , . . . , xT

M]T since both of them find the linear
transformations that maximize the eigenvalue of the
correlation matrix. However, when estimating multi-
ple sets of corresponding sources, the orthogonality
among the principal components of x does not necessar-
ily translate to orthogonality of the estimated sources
within each individual dataset. In other words, when the
correlation structure within the group of corresponding
sources, {s(k)

1 , s(k)
2 , . . . , s(k)

M }, has heterogeneous corre-
lation values, the orthogonality among the principal
components of x, i.e., the pooled common factors of
the group datasets, is not sufficient to characterize the
orthogonality among the source estimates within each
dataset. This case is studied in the next section.

2.2 Modeling the Correlation Structure Within
each Group of Corresponding Sources

When {s(k)
1 , s(k)

2 , . . . , s(k)

M } have homogeneous correla-
tion values, we can approximately model their corre-
lation matrix Rk using an intra-class correlation model
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[15]. In this case, M-CCA and PCA on concatenation of
all the datasets both can achieve joint BSS of the latent
sources according to the proposed generative model.

When {s(k)
1 , s(k)

2 , . . . , s(k)

M } have heterogeneous corre-
lation values, the number of independent correlation
coefficients is M(M − 1)/2 and it is not straightforward
to calculate relation between these coefficients and the
eigenvalues of the correlation matrix. Considering a
simplified case, we model Rk by a 2 × 2 BLOCK matrix
with the intra-class correlation matrix structure on its
diagonal blocks, i.e.,

Rk =
[

Q11 Q12

Q21 Q22

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ1 . . . ρ1

ρ1 1 . . . ρ1

. . .

ρ1 ρ1 . . . 1

ρ3 ρ3 . . . ρ3

ρ3 ρ3 . . . ρ3

. . .

ρ3 ρ3 . . . ρ3

ρ3 ρ3 . . . ρ3

ρ3 ρ3 . . . ρ3

. . .

ρ3 ρ3 . . . ρ3

1 ρ2 . . . ρ2

ρ2 1 . . . ρ2

. . .

ρ2 ρ2 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Q11 and Q22 are, respectively, M1 × M1 and
M2 × M2 correlation matrices of the two sub-groups
with correlation coefficient ρ1 and ρ2, Q12 = Q21 are the
cross-correlation matrices with the cross-correlation

coefficient ρ3 between the two sub-groups. In this way,
the number of independent correlation coefficients is
reduced to three and analytical solutions can be de-
rived for the eigenvalues based on the correlation
coefficients.

Notice that:

(i) Q11 = (1 − ρ1)I + ρ111T , where 1 is a column vec-
tor of all ones, it can be shown that λmax(Q11) =
1 + (M − 1)ρ1, and λmin(Q11) = 1 − ρ1 with mul-
tiplicity (M − 1);

(ii) Q12 = Q21 = ρ311T ; and
(iii) det(Rk−λI)=det(Q11) · det(Q22−Q21Q11

−1Q12).

Hence, it can be show that the eigenvalues of Rk are:

λ =

⎧⎪⎪⎨
⎪⎪⎩

1 − ρ1, (M1 − 1)

1 − ρ2, (M2 − 1)

1
2

[
(a + b) ± √

(a + b)2 − 4(ab − c)
] where a, b ,

and c are defined as

⎧⎪⎨
⎪⎩

a � 1 − ρ1 + M1ρ1

b � 1 − ρ2 + M2ρ2

c � M1 M2ρ3
2

.

To demonstrate the relationship between the corre-
lation values, ρ1, ρ2, and ρ3 in Rk and its first and second
largest eigenvalues, we simulate a two sample intra-class
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Fig. 2 First and second eigenvalue of the two sample intra-class
correlation matrix with different configurations of correlation
values. The difference between the first and second eigenvalues
of Rk reduces as the inter-class correlation ρ3 decreases. The

second eigenvalue of Rk1 with ρ1 = 0.9, ρ2 = 0.89, and ρ3 < 0.35
becomes greater than the first eigenvalue of Rk2 with ρ1 = 0.1
and ρ2 = 0.09, and ρ3 = 0.05.
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Fig. 3 Illustration of second level PCA to obtain group level source estimate and behavioral association study by multiple linear
regression between the first principal eigenvector and the behavioral score vectors.

correlation matrix, where M1 = 13 is the number of
sources from the dominant sub-group and M2 = 3 is
the number of outliers forming the second sub-group.
For ρ1 = 0.1, . . . , 0.9 and ρ2 = ρ1 − 0.01, we calculate
λ1 and λ2 of Rk at different values of ρ3. Figure 2 shows
the first eigenvalue (λ1) and the second eigenvalue (λ2)
depending on different configurations of ρ1, ρ2, and
ρ3. It is observed that the difference between the first
and second eigenvalues of Rk reduces as ρ3 decreases.
The second eigenvalue of Rk1 with ρ1 = 0.9, ρ2 = 0.89,
and ρ3 < 0.35 becomes equal to or greater than the
first eigenvalue of Rk2 with ρ1 = 0.1, ρ2 = 0.09, and
ρ3 = 0.05. Therefore, when {s(k1)

1 , s(k1)
2 , . . . , s(k1)

M } have
heterogeneous correlation values, i.e., when ρ3 is low,
PCA on concatenated datasets places the secondary
feature of a heterogeneous group (Rk1 ) over the first
feature of the subsequent group (Rk2 ), resulting de-
graded separation of the sources in group k2. On
the other hand, M-CCA provides reliable separation
performance because of the orthogonality constraint
imposed among the estimated sources within each
dataset. Because the secondary or subsequent features
in Rk1 are prevented by the orthogonality constraint
after the sources in group k1 are estimated. We demon-
strate the performance difference between M-CCA
and group ICA using PCA on concatenated dataset in
Section 4.1.

2.3 Second Level Analysis

In the second level analysis, PCA is applied to each
group of corresponding sources estimated by M-CCA.
The first principal component, i.e., the component with
the largest variance is taken as the summary activation
map for the group. The eigenvector corresponding to
the first principal component is taken as the cross-

subject variation vector for this component. The pro-
cedure can be written as

s(k) = b(k)
1 c(k)

1 +
M∑

m=2

b(k)
m c(k)

m (2)

where s(k) is an M × 1 vector that consists of
{s(k)

1 , s(k)
2 , . . . , s(k)

M }, b(k)
1 is the eigenvector correspond-

ing to the largest eigenvalue of the correlation matrix
E{s(k)(s(k))T}. When the first pair of eigenvector and
principal component b(k)

1 c(k)
1 is taken to represent s(k),

it corresponds to a rank-one approximation of the data
matrix of s(k). The percentage of variance explained
by the approximation is the ratio between the largest
eigenvalue and the sum of all the eigenvalues.

The summary activation map c(k)
1 is converted to a Z-

score map by dividing the voxel value by the standard
deviation of the voxel values for the entire map, and
thresholded at Z = 1.5. The supra-thresholded voxles
are considered as the activated area. The eigenvector
b(k)

1 represents the magnitude modulation of the sum-
mary activation map across the M subjects and a lin-
ear regression is performed on this modulation vector
against the selected behavioral score vectors recorded
during the driving task. The second level PCA proce-
dure is illustrated in Fig. 3.

3 Methods

3.1 Simulations

We generate simulated sources as the latent sources
for the group datasets. Each source set contains four
60 × 60 pixel images with a superimposed focus simu-
lating typical activation patterns estimated from fMRI
data. The activation regions on the simulated image
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sources are originally located at the center of each
quadrant of the image, as show in Fig. 4a. The ac-
tivation region is then randomly dislocated around
the original location, as illustrated in Fig. 4b, to form
the group of corresponding sources. Different degrees
of dislocation are arranged for each group of corre-
sponding sources such that the average within-group
source correlation is in decreasing order for the four
groups.

To test the performance of the algorithms on jointly
separating different number of sources, we also gen-
erate random sources sampled from a Laplacian dis-
tribution. Across different groups of random sources,
the within-group correlation values are also arranged
in decreasing order.

One source is selected from each group of corre-
sponding simulated image sources and random sources,
to form the set of K latent sources. The K sources are
then mixed by a randomly generated K × K nonsingu-
lar mixing matrix to form a simulated dataset.

Fig. 4 Illustration of a simulated image source. a The activation
region is originally located at the center of one quadrant of
the image. b The activation region is then randomly dislocated
around the original location to simulate the spatial variation of
brain activation due to subject differences.

We test the joint blind source separation of M-
CCA and Group ICA [10] on three cases where the
group contains M = 10, M = 20, M = 40, and M = 80
datasets. As an example the correlation matrix of the
simulated sources from M = 20 datasets is shown in
Fig. 5. In accordance with our generative model, the
simulated latent sources in the group assume block
diagonal correlation structure.

3.2 Subjects

The study included forty, healthy, right-handed men
(N = 20) and women (N = 20), with a mean age of
24.75 ± 4.7 years. Potential participants were screened
to eliminate those with any neurological disorder or
DSM IV-TR Axis I psychiatric disorder including a
history of substance abuse. At each visit, participants
underwent a urine drug screen to test for drugs and
pregnancy in women. All participants were nonsmok-
ers, had good visual acuity without correction, valid
driver licenses, good driving records assessed by self
report. Participants were trained for 10 min. on the
simulated driving paradigm.

3.3 Experiment Design

The driving simulator used custom built in-house soft-
ware. The hardware setup was designed to mimic a
realistic driving experience with a steering wheel, accel-
erator and brake pedals. All ferromagnetic components
in this hardware were replaced with nonferromagnetic
(plastic or copper-beryllium) parts. The controller itself
was connected to a computer outside the scanner room
through a waveguide in the wall. An LCD projector
(SHARP XG-P25X) outside the scanner room and be-
hind the scanner projected through a second waveguide
to a translucent screen, which the subjects saw via a
mirror attached to the head coil of the 3 Tesla MRI
scanner (Allegra; Siemens, Erlangen, Germany). The
screen subtended approximately a 25◦ field of view
(FOV) that provided the subject with a straight line of
sight.

The functional paradigm was blocked and consisted
of three epochs, fixation (30 s), driving (90 s) and
watching (60 s), each repeated three times and ending
with a fixation epoch. During the fixation phase, the
subject was instructed to focus on a + sign. During
the driving block, the participant was asked to drive
the car normally and safely, abide by all conventional
traffic rules (posted speed limit [40 mph], stop signs,
yielding for pedestrians, staying in the right lane except
to pass). During the watching phase, the subject pas-
sively viewed a simulated driving scene. A screenshot
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Fig. 5 Block diagonal correlation structure of the simulate
sources for joint source separation: M = 20, P = 20. Blocks on
the main diagonal are identity matrices, indicating that the gen-
erated sources within each dataset are uncorrelated and have
unit variances. The block matrices at upper and lower triangle

are approximately diagonal matrices, indicating that the sources
across different datasets have correlation only at corresponding
indices. Each group of cross-correlated sources form a group of
corresponding sources.

of the driving scene is shown in Fig. 6. The watching
phase is the same for all subjects, i.e., a playback of
a previously recorded driving session. Each run was
repeated three times to increase the signal to noise ratio
(SNR).

3.4 Data Acquisition

Driving behavior Continuous behavioral variables in-
cluding, passenger side white line crossings, median/
yellow line crossings, opposite side white line crossings,
crashes, speed, and steering weave were recorded dur-
ing the driving phase of the experiment.

Imaging Functional data were acquired on a Siemens
Allegra 3T scanner at the Olin Neuropsychiatry
Research Center at the Institute of Living using an
echoplanar sequence using the following imaging para-
meters; repeat time (TR) = 1500 ms, echo time (TE) =
27 ms, field of view (FOV) = 22 cm, flip angle = 70◦,
acquisition matrix = 64 × 64, voxel size = 3.44 × 3.44,
slice thickness = 5 mm, number of slices = 29, as-

cending acquisition. The scanner was equipped with 40
mT/m gradients and a standard quadrature head coil.
To achieve longitudinal equilibrium, six dummy scans
were performed at the beginning and discarded prior
to analysis. Scanning was automatically triggered by the
paradigm.

3.5 Data Processing

Behavior data Eight behavioral scores are constructed
for each subject and running session: average speed
(AS), differential of speed (DS), duration of over-
speed-limit driving (OS), average steering weave (AR),
differential of steering weave (DR), differential of
pedal offset (DP), times of yellow line crossing
(YLC) and times of white passenger-side line cross-
ing (WPLC). Each behavioral score is normalized for
all the datasets to make different behavioral scores
commensurate. Other behavioral records such as the
driver-side white line crossing, hit on curb, and collision
are eliminated because of no occurrence or very rare
occurrence.
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Fig. 6 A typical screen shot taken from the driving simulation program.

fMRI data All images were preprocessed using
the SPM2 Software (http://www.fil.ion.ucl.ac.uk/spm/
software/spm2/). Motion correction was achieved using
INRIAlign [16, 17] to compensate for movement in
the fMRI time series images. Each subjects’ movement
parameters were screened to ensure absence of exces-
sive head motion. Motion corrected images were then
spatially normalized to Montreal Neurological Institute
(MNI) space by matching them to the standardized EPI
template image in SPM. After spatial normalization,
images were spatially smoothed by Gaussian kernel
with 10 × 10 × 10 mm full-width-half-maximum.

Before statistical analysis, the global signal in each
dataset is removed. The global signals include the
global temporal mean signal and the global spatial
mean signal. Since localized brain activations account
for relatively lower variance compared with the global
fluctuations in fMRI, removing global signal improves

the sensitivity of subsequent multivariate analyses.
Each dataset is dimension reduced by PCA and the
dimension of signal subspace, i.e., the reduced number
of principal components, is determined by information
theoretic criteria with data sample dependence correc-
tion [18]. The information theoretic criteria such as
Akaike information criterion (AIC) [19] and Minimum
description length (MDL) [20] establish a measure in
terms of the total information conveyed by the obser-
vations (in a likelihood sense) and balance the quantity
by the number of free parameters used to describe the
data through likelihood so that no overfitting will occur.
In fMRI analysis, we use them to select the optimal
number of principal components spanning the subspace
of fMRI signals, embedded in multivariate Gaussian
noise with uniform variances. To facilitate the group
analysis, the maximum order selected by the MDL
criterion is applied to all datasets, resulting in thirty-one

http://www.fil.ion.ucl.ac.uk/spm/software/spm2/
http://www.fil.ion.ucl.ac.uk/spm/software/spm2/
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principal components retained for each dataset. One
hundred and twenty datasets (forty subjects with three
sessions for each subject) are analyzed by M-CCA
algorithm to estimate thirty-one components for each
dataset.

In the second level analysis, the first principal com-
ponent in each group of corresponding source esti-
mates is deemed to be the group level activation map.
The group time course is calculated using the same
weights as the group level activation maps and is lin-
ear regressed with the driving and watching paradigm
to identify whether the identified source is driving or
watching related. The first eigenvector is deemed to be
the cross-subject variation modulation vector and is lin-
ear regressed with the eight selected behavioral factors.

4 Results

4.1 Simulated Datasets

Figure 7 shows a performance comparison of M-CCA
and Group ICA for joint separation of sources with
increasing number of datasets. When the number of
datasets is small (M = 10) both M-CCA and group ICA
achieves good performance on joint source separation.
The separation performance of Group ICA degrades as
the number of datasets increases (M = 20, 40, 80) while
M-CCA is not affected.

As an example, Fig. 8 shows the estimated global
matrix estimated by M-CCA and Group ICA. In source
separation simulation, the global matrix is a the product
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Fig. 7 Comparison of source separation performance between
M-CCA and Group ICA. The separation performance is mea-
sured by inter-symbol interference (ISI) [26] of each jointly
separated source. Four cases are studied with increasing number
of datasets a M = 10, b M = 20, c M = 40, and d M = 80. When

the number of datasets is small (M = 10) both M-CCA and group
ICA achieves good performance on joint source separation. The
separation performance of Group ICA degrades as the number of
datasets increases (M = 20, 40, 80) while M-CCA is not affected.
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Fig. 8 Estimated global matrix G of each dataset by a M-CCA
and b Group ICA for the case of M = 20 and P = 20. Because
Group ICA uses PCA on concatenated datasets for group di-
mension reduction, the last group of corresponding sources are
not robustly separated, as shown in panel b. This is due to the
interference between their first principal component and the
secondary principal components of the previous source groups,
as explain in Section 2.3. In contrast, M-CCA can robustly sep-
arate the last group of corresponding sources, as shown in panel
a because of the orthogonality constraints are imposed on source
estimates for each individual dataset.

of the estimated demixing matrix and the true mixing
matrix. The global matrix is close to identity matrix in
case of correct source separation. It is observed that,
in this instance, Group ICA fails to separate sources
in dataset 6, and for all the datasets, the last group
of sources are not well separated from other sources.
Because the last group of sources have relatively low
cross-correlation, when PCA is applied to concate-
nation of datasets the eigenvalue of its correlation
matrix is superseded by the secondary eigenvalue of
the previous groups, as discussed in Section 2.2. There-

fore, for methods based on PCA on concatenation of
datasets, e.g., Group ICA, the last group of sources
can not be properly estimated. On the other hand, M-
CCA extracts sources from each individual dataset and
imposes orthogonality constraints among the extracted
sources. In this way, the extraction of sources with low
cross-correlation is not interfered by the sources from
previous groups.

4.2 Estimated Sources of Interest (SOIs)
from Simulated Driving fMRI Data

Because M-CCA jointly extract sources from each
dataset such that the cross-dataset correlation among
the extracted source is maximized, there is a natural
order of the source estimates—an decreasing order on
cross-dataset source correlation. Among the thirty-one
group of jointly extracted sources, we present four SOIs
based on the activation areas shown on their Z-maps.
That is, we pick up those sources whose group maps
show localized activations corresponding to functional
brain regions.

The first identified source of interest (SOI) is shown
in Fig. 9a. The estimated spatial pattern has low inter-
subject variability and shows correlation in parieto-
occipital regions and anti-correlation in medial frontal
regions. The time course of this component has high re-
gression coefficients with the driving paradigm (0.48 ±
0.20)—indicating that the frontal and parieto-occipital
brain regions are consistently active across all the
subjects when performing the driving task. The obser-
vation that the frontal region is anti-correlated with the
driving task agrees with a previous driving study in [8]
(Blue component), i.e., the frontal region is part of the
“default mode network”, and is decreased as a driving
task is performed.

The second SOI is shown in Fig. 9b. The active areas
comprises the default model network (DMN) [21, 22].
Typically, the activation of DMN is suppressed when
a cognitive task is performed. In a simulated driving
experiment, driving is the dominant task, therefore,
the activations in DMN is suppressed compared with
watching and fixation. As a result, the time course of
this component has a negative regression coefficient
with the driving paradigm.

The third SOI is shown in Fig. 9c. Its spatial pattern
shows correlation in medial frontal areas and cerebel-
lum. The time course is significantly correlated with
the driving paradigm. This is consistent with the in-
volvement of the medial frontal regions in top down
executive control, (thinking about driving) and with
cerebellar regions being involved in the motor function
during driving.
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� Fig. 9 For each SOI, the group activation map is shown on
the top, mean time course overlaid with the paradigm for three
repetitions of [F]ixation-[D]riving-[W]atching in the middle, and
confidence interval (CI) of behavioral correlation at bottom.
a SOI-1 shows correlation in parieto-occipital regions and anti-
correlation in medial frontal regions. The time course has high re-
gression coefficients associated with the driving paradigm (0.48 ±
0.20)—indicating that the frontal and parieto-occipital brain re-
gions are highly consistent across all the subjects when perform-
ing the driving task. Among the eight behavioral factors defined
in Section 3.5, this component has significant association with the
average and differential of steering weave. b SOI-2 shows the
default model network (DMN). Typically, DMN is suppressed
when a cognitive task is performed. As a result, the time course
of this component has a negative regression coefficient with the
driving paradigm. c SOI-3 shows correlations in medial frontal
areas and also in the cerebellum. The time course is significantly
correlated with the driving paradigm. This is consistent with the
involvement of the medial frontal regions in top down executive
control, (thinking about driving) and with cerebellar regions
being involved in the motor function during driving. d SOI-4
shows correlation at parietal lobe, anterior cingulate, and anti-
correlation at motor cortex and posterior cingulate. The time
course of this component is correlated with both driving and
watching paradigm. The activation of SOI-4 contains multiple
brain regions and the cross-dataset consistency of SOI-4 is the
lowest among the four presented SOIs. The observation suggest
that the cross-subject and cross-session variability becomes sig-
nificant for brain regions involved with functions such as visual
integration and attention (parietal lobe), high level motor control
(pre- and post-central cortices).

The last SOI is shown in Fig. 9d. Its spatial pattern
shows correlation at parietal lobe, anterior cingulate,
and anti-correlation at motor cortex and posterior cin-

gulate. The time course is correlated with both driving
and watching paradigm. The spatial map of this SOI
contains multiple brain regions and the cross-dataset
consistency of this SOI is the lowest among the four
presented SOIs. The observation suggest that the cross-
subject and cross-session variability becomes significant
for brain regions involved with functions such as visual
integration and attention (parietal lobe), high level
motor control (pre- and post-central cortices). It’s also
interesting to observe a counter relationship between
anterior and posterior cingulate.

4.3 Association of the Brain Activations
with the Driving Behavior

Rank-one approximation is applied to each group of
SOIs. The percentage of variance represented by the
first principal component in each group is calculated to
be: 0.89, 0.83, 0.76, and 0.73.

The cross-subject covariation of each group is re-
gressed with eight behavioral factors as described in
Section 3.5. The estimated 95% confidence interval of
the regression coefficients of each behavioral factor is
displayed in the bottom panel in Fig. 9a–d.

Study with the behavioral factors indicates that the
variations of all four SOIs are significantly related to
the differential of the steering weave, i.e., the frequency
of steering manipulation—a very active behavioral vari-
able involved in driving task, primarily involved with

Fig. 10 a Spatial correlation matrix and b Temporal correlation
matrix of the group of corresponding sources of SOI-1. It is ob-
served that the spatial maps estimated from the three sessions of
the same subject assume higher correlation than the correlation
with other subjects, i.e., higher correlation values appear on the
diagonals in each 40 × 40 matrix blocks. Since M-CCA treats

fMRI data of each subject at each session as an independent
dataset, this correlation pattern reveals that the brain activation
pattern is more consistent within the subject (across different run-
ning sessions) than across the different subjects. The estimated
time course has lower degrees of correlation compared with the
spatial maps.
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Fig. 11 Comparison of a spatial map correlation and b time
course correlation of the four SOIs among all datasets, within-
sessions, and within-subjects, the standard deviation is stacked
onto the mean value of each case. Although the time courses

show lower level of cross-correlation compared with spatial
maps, the trend of high within-subject correlation is consistently
observed.

cognitive control such as online monitoring and adjust-
ment during driving.

SOIs 1 and 3 also show significant association with
the average steering weave, which is a measure on the
overall extend that the car is changing its direction—
this could be due to lane changing or turning direction.
This manipulation involves high level decision making,
attention, and possibly visual and motor functions.

4.4 The Source Correlation Structure Estimated
by M-CCA

Different from the existing group analysis methods,
M-CCA estimates the group of sources in the order
of cross-correlation among the corresponding sources,
i.e., the sum of all the pairwise source correlation
values. Therefore, a natural ranking in terms of the
cross-dataset consistency is imposed during the group
analysis.

M-CCA reveals the correlation structure of each
group of corresponding sources. This correlation struc-
ture has been used, through a rank-one decomposition,
in the second level behavioral association study.

Furthermore, as an example, we plot the cross-
correlation pattern of the spatial maps and time courses
for SOI-1 in Fig. 10. It is observed that the spa-
tial maps extracted from three sessions of the same

subject assume higher spatial correlation, i.e., higher
correlation values appear on the diagonals in each
40 × 40 matrix blocks in Fig. 10a. Since M-CCA treats
fMRI data of each subject at each session as an inde-
pendent dataset, this correlation pattern reveals that
the functional correlation is more consistent within a
subject (across different running sessions) than across
different subjects. In the temporal domain, the cross-
correlation of time courses are significantly lower than
that of the spatial maps as shown in Fig. 10b. However,
the pattern of higher within-subject correlation than
cross-subject correlation is consistent in spatial and
temporal domain, as presented in Fig. 11 for all four
SOIs.

5 Discussion

5.1 Contributions of each Brain Network
to the Driving Task

Since M-CCA is based on the principle of correla-
tion maximization, the components obtained are not
as sparse as the independent components in ICA.
Therefore, multiple activation regions could co-exist in
the same component. However, these regions together
compose the spatial map that are arranged in order of
decreasing cross-dataset correlation.
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Table 1 List of activation regions in each M-CCA component, the time course regression coefficients with driving and watching
paradigm, and their confidence intervals (CI).

Component SOI-1 SOI-2 SOI-3 SOI-4

βD 0.85 CI: [0.75,0.94] −0.63 CI: [−0.75, −0.52] 0.86 CI: [0.77,0.94] 0.64 CI: [0.53,0.75]
βW 0.42 CI: [0.33,0.52] −0.39 CI: [−0.51, −0.28] 0.15 CI: [0.07,0.23] 0.61 CI: [0.50,0.72]
Parieto-occipital sulcus +
Parietal lobe +
Medial frontal +
Inferior frontal −
Motor cortex −
Cerebellum +
Superior parietal
Inferior parietal +
Anterior cingulate +
Posterior cingulate + −

Table 1 summarizes the activation regions for each
SOI, with the Brodmann labeling shown in Table 2.
As a reference, time course regression coefficients of
driving (βD) and watching (βW) are also presented in
the table for each component. The four selected SOIs
all have significant correlation with driving, indicating
that these functionally correlated regions are driving
related, hence, their variation across subjects can be
used for the association study with the driving behavior
scores.

It is observed that the first source has the high-
est regression coefficient with the driving paradigm
and demonstrates highly consistent spatial activations.
This observation suggests that M-CCA, as a second-
order based method, reveals the variance in the fMRI
datasets imposed by the experimental design, which is
common across all the datasets [23]. The co-existence
of positive and negative correlations as a brain network

is similarly observed in the results of model-driven
analysis [1]. The new observation in this work sug-
gests that the inferior frontal lobe, which involves high
level executive functions tends to be suppressed during
low level online visuomotor guidance, i.e., when the
parieto-occipital cortex are active. Similar observation
is reported in [24].

SOI-2 includes major activation regions at infe-
rior parietal and posterior cingulate cortices. The
time course of this source has negative regression
coefficients with the driving task, which agrees with the
fact that the default mode network is decreased when
performing a task [21, 22]. However, it is worth noting
that the different parts of this brain default network
are also functionally specialized [25], which explains the
association of the posterior cingulate cortex with the
parietal, motor, and anterior cingulate cortices in form-
ing a separate system shown in Fig. 9d. The overlapping

Table 2 List of activation regions in each M-CCA component and their anatomical label, Brodmann area label, volume, and peak
values, and their Talairach coordinates.

Component Anatomical region Brodmann area Volume (L/R) Peak Z-score and coordinates (L/R)

SOI-1 Cuneus 17, 18 9.9/8.4 2.5(−9, −99, 8)/2.1(3, −96, 5)

Lingual gyrus 17, 18 7.8/6.7 2.3(−3, −79, 1)/2.1(3, −79, 1)

SOI-2 Precuneus 7 13.6/11.0 4.6(0, −71, 45)/3.2(6, −70, 50)

Cingulate gyrus 31 5.6/1.9 4.1(0, −51, 27)/3.0(6, −54, 28)

SOI-3 Medial frontal gyrus 9 6.7/6.0 2.8(−6, 42, 20)/2.7(6, 42, 20)

Culmen – 6.3/6.0 3.2(−6, −50, −15)/3.5(0, −53, −18)

SOI-4 Precuneus 7 10.4/9.7 4.6(−21, −70, 50)/3.9(18, −70, 48)

Inferior parietal lobule 40 8.4/5.0 3.2(−39, −50, 52)/4.3(18, −67, 53)

Precentral gyrus 6, 4 3.9/3.7 −2.9(−33, −17, 67)/−2.8(30, −17, 67)

Posterior cingulate 29, 30, 31 3.7/5.6 −3.6(0, −46, 22)/−3.4(3, −52, 11)
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of the activation regions indicates that a single region is
part of more than one network which is also observed
with ICA based methods [8].

Since BSS methods assumes a linear mixture model
which is more flexible than the conventional models
such as the general linear model, it is better fitted
into the scenario where exploratory interpretation of
the data is desired. In this study, M-CCA achieves
source separation based on cross-dataset consistency
and hence efficiently utilizes the statistical power in
group dataset.

5.2 Different Ways to Associate Neural Correlates
with Behavioral Factors

In a cognitive experiment, it is always intriguing to re-
veal the link between the neural correlates with behav-
ioral factors. There are two typical ways of exploring
this association.

In one way, behavioral factors recorded during the
cognitive experiment can be used to design regressors
to infer the associated neural correlates by model-
driven analysis such as GLM [3]. In this way, the re-
sulting neural correlates are specific to each dataset.
A group inference can be drawn from all the neural
correlates identified from each dataset. Although, this
method requires precise record of the behavior and as-
sumes that the behavior records can be used to explain
the brain activation through an event-related design
with the modulation of hemodynamic response.

As an alternative approach, the association can be
identified by the co-variation of the activation levels
with the behavioral scores [4, 5, 8]. In this approach,
the underlying hypothesis is that the engagement of
functional networks is concordant to behavioral factors
and the hypothesis is tested by linear regression of the
functional activation level with the summary behavioral
factors such as number of event occurrence, driving
speed, and vehicle operation parameters as studied
in Section 4.3. This approach is suitable for data-
driven analysis since no response model needs to be
assumed.

5.3 Conclusion and Future Work

In this work, we use a novel statistical method, M-CCA,
to study brain functions and functional-behavioral
associations during simulated driving task. The M-
CCA method jointly estimates brain activations from

large number of fMRI datasets based on the cross-
correlation structures of the underlying sources. In
addition, the association of functional and behavioral
factors is revealed by regressing cross-dataset activation
variations with the recorded behavioral scores. The
proposed framework is generally applicable to group
analysis of multi-dimensional datasets for study of mul-
tiple features and their variations. The extension of
intra-class correlation model in Section 2.2 provides a
model of the heterogeneity within a group of corre-
sponding sources, hence, is potentially useful in mod-
eling and comparing contrasting sub-group structures
such as healthy controls and patients.
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