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Abstract
Depth completion aims to predict a dense depth map from a sparse depth input. The acquisition of dense ground-truth
annotations for depth completion settings can be difficult and, at the same time, a significant domain gap between real LiDAR
measurements and synthetic data has prevented from successful training of models in virtual settings. We propose a domain
adaptation approach for sparse-to-dense depth completion that is trained from synthetic data, without annotations in the real
domain or additional sensors. Our approach simulates the real sensor noise in an RGB + LiDAR set-up, and consists of
three modules: simulating the real LiDAR input in the synthetic domain via projections, filtering the real noisy LiDAR for
supervision and adapting the synthetic RGB image using a CycleGAN approach. We extensively evaluate these modules in
the KITTI depth completion benchmark.

Keywords Depth completion · Domain adaptation · LiDAR · Sensor fusion

1 Introduction

MotivationActive sensors such as LiDARdetermine the dis-
tance of objectswithin a specified range via a sparse sampling
of the environment whose density decreases quadratically
with the distance. RGB cameras densely capture their field
of view, however, monocular depth estimation from RGB is
an ill-posed problem that can be solved only up to a geometric
scale. The combination of RGB and depth modalities form a
rich source for mutual improvements where each sensor can
benefit from the advantage of the other.

Many pipelines have been proposed for a fusion of these
two inputs [46,47,54,66,74,76]. Ground-truth annotations
for this task, however, require elaborate techniques, man-
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ual adjustments and are subject to hardware noise or costly
and time-consuming labeling. The most prominent publicly
available data for this task [65] creates a ground-truth by
aligning consecutive raw LiDAR scans that are cleaned from
measurement errors, occlusions, and motion artifacts in a
post-processing step involving classical stereo reconstruc-
tion. Even after the use of this additional data and tedious
processing, the signal is not noise-free as discussed in [65]. To
avoid the need for such annotations, some methods perform
self-supervision [47,69–71,76], where a photometric loss is
employed with stereo or video data. The dependence on
additional data such as stereo or temporal sequences brings
other problems such as line-of-sight issues and motion arti-
facts from incoherently moving objects. Modern 3D engines
can render highly realistic virtual environments [13,20,58]
with perfect ground-truth. However, a significant domain
gap between real and virtual scenes prevents from successful
training on synthetic data only.

Contributions andOutline In contrast to the self-supervised
methods [47,69–71,76], we propose to use a domain adap-
tation approach to address the depth completion problem
without real data ground-truth as shown in Fig. 1. We train
our method from the synthetic data generated with the driv-
ing simulator CARLA [13] and evaluate it on the real KITTI
depth completion benchmark [65]. The real LiDAR data is
noisy with the main source of noise being the see-through
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Fig. 1 We investigate the depth completion problem without ground-
truth in the real domain, which contains paired noisy and sparse depth
measurements and RGB images.We highlight some noise present in the
real data: see-through on the tree trunk and bicycle, self-occlusion on
the bicycle and missing points on the van. We leverage synthetic data
with multicamera dense depth and RGB images

artifacts that occur after projecting the LiDAR’s point cloud
to the RGB cameras. We aim to generate synthetic LiDAR
data with a noise distribution similar to real LiDAR data.
Hence, we propose an approach to simulate the see-through
artifacts by generating data in CARLA using a multicamera
set-up (shown in Fig. 2), employing random masks from the
real LiDAR to sparsify the virtual LiDAR map, and project-
ing from the virtual LiDAR camera to the RGB reference
frame. We further improve the model by filtering the noisy
input in the real domain to obtain a set of reliable points
that are used as supervision. Finally, to reduce the domain
gap between the RGB images, we use a CycleGAN [82] to
transfer the image style from the real domain to the synthetic
one.

We compare our approach to other state-of-the-art depth
completion methods and provide a detailed analysis of the
proposed components. The proposed domain adaptation for
RGB-guided sparse-to-dense depth completion is a novel
approach for the task of depth completion, which leads to
significant improvements over using non-adapted synthetic
data as demonstrated by the results. To this end, our main
contributions are:

1. A novel domain adaptation method for depth completion
that includes geometric and data-driven sensor mimick-
ing, noise filtering and RGB adaptation.

2. We demonstrate that adapting the synthetic sparse depth
is crucial for improving the performance, whereas RGB
adaptation is secondary.

3. An improvement in depth completion performance by all
of the proposed modules in the KITTI depth completion
benchmark.

Fig. 2 Overview of the multicamera set-up in CARLA used to simulate
the real projection LiDAR artifacts. The Depth Camera acts as a virtual
LiDAR and collects a dense depth, which is sparsified using real LiDAR
binary masks and projected to either the Left Camera or Right Camera
reference frame. Both the Left Camera and the Right Camera collect
RGB information, used as part of the input data, and a dense depth map,
used for supervision

We extend [43] by adding experiments that explore: the
effect of varying the hyperparameters and sparsity levels,
the distribution of errors depending on the semantic class
and distances to the camera, and the use of an image transla-
tionmodule less complex than CycleGAN.We also include a
computational complexity analysis, extra qualitative results
comparing our method to the state-of-the-art, and we high-
light some issues with the available KITTI ground-truth that
affect the predictions of models trained with such ground-
truth. Furthermore, we strengthen the motivation for the
proposed synthetic projections by showing the input depth
noise distribution for both the real data and our adapted syn-
thetic data.

2 RelatedWork

We first review related works on depth estimation using only
either RGB or LiDAR as input, and then discuss depth com-
pletion methods from both RGB and LiDAR.

2.1 Unimodal Approaches

RGB Images RGB based depth estimation has a long
history [37,60,63] reaching from temporal Structure from
Motion (SfM) [18,30] and SLAM [17,27,49] to recent
approaches that estimate depth from a static image [22,23,
25,36,40]. Networks are either trained with full supervi-
sion [14,36] or use additional cameras to exploit photometric
consistency during training [22,53]. Some monocular depth
estimators leverage a pre-computation stage with an SfM
pipeline to provide supervision for both camera pose and
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depth [34,75] or incorporate hints fromstereo algorthms [68].
These approaches are in general tailored for a specific use
case and suffer from domain shift errors, which has been
addressed with stereo proxies [25] or various publicly avail-
able pretraining sources [40,56].

Sparse Depth While recent advantages in depth super-
resolution [45,57,67] show good performance, they are not
directly applicable to LiDAR data which is sparsely and
irregularly distributed within the image. Classical image pro-
cessing techniques adapted to handle LiDAR sparse signals
are used in [35], which contain hand-crafted elements that
depend on the input sampling pattern. An encoder-decoder
architecture is applied for this task in [12,15,32,65], which
have better performance and ability to generalize to other
sampling patterns than non-learning approaches [46]. These
methods using only sparse depth as input usually outperform
those leveraging only RGB images. However, the combi-
nation of RGB and sparse depth modalities can increase the
depth completion performance compared to either using only
RGB [5,66,77] or sparse depth [47,66] information.

2.2 Depth Completion from RGB and LiDAR

Although there are some classical methods that leverage both
RGB and sparse depth modalities [4,19], most recent solu-
tions to depth completion from RGB and LiDAR use deep
neural networks due to their increased performance com-
pared to non-learning methods [54]. These deep learning
methods can be divided into supervised and self-supervised
approaches.

Supervision and Ground Truth Usually, an encoder-
decoder network is used to encode the different input signals
into a common latent space, where feature fusion is possible,
and a decoder reconstructs an output depthmap [38,46,54,66,
74], while fusing 2D and 3D representations [8] can improve
depth boundaries. Spatial Propagation Networks [41], along
with its convolutional [9,11] and non-local variants [50],
refine depth predictions learning affinities from neighbour-
ing pixels. Other methods [54,74] leverage different input
modalities such as surface normals to increase the amount of
diversity in the input data. Some methods have also analyzed
the effect of the input depth pattern [73], including methods
proposing adaptive sampling approaches [6,24]. Similarly to
our approach, some works consider the case where the input
depth may have noise when designing the architecture of the
depth completion model. To reduce the effect of the input
noise, FusionNet [66] fuses local and global informationwith
a confidence map, whereas PENet [29] instead fuses the out-
put of a color-dominant branch and a depth-dominant branch
also using a confidence map. In [29,66], the confidence
maps are used internally to fuse multiple-branch informa-
tion, whereas other works focus on producing meaningful

high-quality uncertainty predictions [16,55]. Most of these
methods test their performance in eitherNYU-v2 dataset [61]
by synthetically sparsifying the ground-truth, hence assum-
ing the input sparse data is noise-free, or in the publicly
available dataset KITTI [21,65]. KITTI includes real driving
scenes where a stereo RGB camera system is fixed on the
roof of a car along with a LiDAR scanner that acquires data
while the car is driving. A post-processing stage fuses sev-
eral LiDAR scans and filters outliers with the help of stereo
vision to provide labeled ground-truth. While this process is
intricate and time-consuming, a further error is accumulated
from calibration and alignment [65].

Self-Supervised Approaches Obtaining ground-truth data
for LiDAR depth completion is difficult due to the need for
accurate depth that is denser than the input LiDAR. For that
reason, self-supervised approaches, which instead leverage
a view either from a second camera or a video sequence for
supervision, can be used to reduce the need for real-domain
ground-truth. Self-supervision for depth completion with a
photometric loss and predicted relative poses between RGB
video frames was proposed in [47], and other works fol-
lowed suit by adding a self-supervision loss term in their
method [69–71,76]. A probabilistic formulation was pro-
posed in [76] with a conditional prior within a maximum
a-posteriori (MAP) estimation, which also leverages stereo
information. [70] introduced an scaffolding block as a first
step, which is a non-learning method that forms a spatially
dense but coarse depth approximation from the sparse points.
The coarse approximation was then refined using a trained
network. This non-learning scaffolding approach assumes
piece-wise planar geometry and is prone to errors in objects
with complex geometry. Thus, further work [71] combined
this scaffolding ideawith a learning approach leveraging syn-
thetic data to learn topology from sparse depth. Similarly to
[71], the recent KBNet [69] densifies first the sparse depth
before inputting anyRGB information.However,KBNet also
uses the intrinsics parameters during training and inference to
lift and process the depth information in the 3D space, which
improves the performance. Our method can be combined
with these recent advances in self-supervised approaches
for improved performance. Furthermore, compared to our
domain adaptation approach, these self-supervised methods
present less accurate predictions around the edges of a given
object and have a lower ability to correct possible artifacts in
the input LiDAR, as wewill show in the qualitative examples
given in Sect. 4.

Synthetic Data Unlike real-domain ground-truth collection,
synthetic depth ground-truth can be easily generated in large
quantities. Thus, in our work, we aim to leverage synthetic
data to train a depth completion approach with good perfor-
mance in the real domain. With that aim, we adopt a domain
adaptation approach, where we adapt the synthetic-domain
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Fig. 3 Overview of our method.We use a simulator with a multicamera
set-up and real LiDAR binary masks to transform the synthetic dense
depth map into a noisy and sparse depth map. We train in two steps:
green blocks are used in the 1st and 2nd step of training while blue

blocks in the 2nd step only. In the filtering block, green points are the
reliable points Sp and red points are dropped. The Image Translation
network is pretrained using a CycleGAN approach [82] (Color figure
online)

input to be similar to a real LiDAR and RGB set-up. For
monocular depth estimation, past works already used domain
adaptation approaches by leveraging style-transfer meth-
ods [2,42,81]. Sparse-to-dense methods, however, have used
synthetic data without any adaptation apart from sampling
depth values from the dense depth map [3,54,71,76] so far.
Regarding synthetic data,multiple simulators for driving sce-
narios have also been researched: SYNTHIA [58] provides
synthetic urban images together with semantic annotations,
while Virtual KITTI [20] gives synthetic renderings that
closely match the videos of the KITTI dataset [21] includ-
ing semantic and depth ground-truth. A LiDAR simulator
using ray-casting and a learning process to drop points was
proposed in [48], which was tested in detection and seg-
mentation tasks, but is not publicly available. The CARLA
simulator [13] allows for photo-realistic simulations of driv-
ing scenarios, which we utilize to generate realistic RGB
images. While LiDAR scans can be simulated with CARLA
via ray-casting, the car shapes in the returned LiDAR depth
are approximated with cuboids, thus losing detail. For that
reason, we leverage the CARLA z-buffer to obtain fine-
granular depth and then sparsify the signal to simulateLiDAR
scans.

3 Method

Our method, shown in Fig. 3, consists of two main compo-
nents that include an adaptation of the synthetic data to make
it similar to the real data, as well as a retrieval of reliable
supervision from the real but noisy LiDAR signal.

3.1 Data Generation via Projections

Supervised depth completion methods strongly rely on the
sparse depth input, achieving good performance without
RGB information [47,66]. To train a completion model from
synthetic data that works well in the real domain we need to
generate a synthetic sparse input that reflects the real domain
distribution. Instead of simulating a LiDAR via ray-casting,
which can produce more realistic results but is more com-
putationally expensive and harder to implement [78], we
leverage the z-buffer of our synthetic rendering engine to
provide a dense depth ground-truth at first. We thus aim to
transform this synthetic dense data into a sparse depth resem-
bling a real LiDAR sparse input.
Previous approaches used synthetic sparse data to evaluate a
model in indoor scenes or synthetic outdoor scenes [31,32]
or to pretrain a depth completion model [54,71,76]. To spar-
sify the data a Bernoulli distribution per pixel is used in some
works [31,32,46] which, given a probability pB and a dense
depth image xD , samples each of the pixels by either keeping
the value of the pixel with probability pB or setting its value
to 0 with probability (1 − pB), thus generating the sparse
depth x BD . We argue that a model trained with x BD does not
perform well in the real domain, and our results in Sect. 4
support this observation. There are two reasons for the drop in
performance in the real LiDAR data. Firstly, the distribution
of the points x BD does not follow the LiDAR sparse distribu-
tion. Secondly, there is no noise in the sampled points, as we
directly sample from the ground-truth. Regarding the noise
in the input data, Fig. 4 shows the distribution of errors in
the input sparse data for the training examples in the KITTI
dataset. Most of the LiDAR sparse depth contains either no
noise (≈ 65%) or a low amount of error, e.g., ≈ 28% of the
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Fig. 4 Distribution of errors in the input depth for the KITTI training
set and for our collected CARLA dataset with our projection module

data contain errors of less than 30 cm. However, the prob-
lematic points are the small percentage of input depth points
with a large amount of error, (e.g., only 7% of the points have
an error larger than 30 cm), as those points may have errors
in the range of tens of meters. If we train a network with
synthetic data containing no noise, the model will not learn
to correct the input points and will also propagate the large
error from the incorrect depth values to nearby pixels in the
output prediction (as shown in the examples in Fig. 7). How-
ever, instead of adding random noise to the synthetic input
depth, we posit that the large error in some depth values is
mainly a consequence of the projection from the LiDAR to
the RGB camera, which we aim to simulate to reduce the
domain gap between the synthetic and the real-domain input
depth.

Mimicking LiDAR Sampling Distribution To simulate a
pattern similar to a real LiDAR, we propose to sample at
random the real LiDAR inputs from the real domain similarly
to [3]. We use the real sparse LiDAR depth to generate a
binary mask ML , which is 1 for those pixels with valid depth
in the sparse LiDAR input and 0 in the rest. We then apply
the masks to the dense synthetic depth data by xMD = ML �
xD . This approach adapts the synthetic data directly to the
sparsity level in the real domain without the need to tune it
depending on the LiDAR used.

Generating Projection Artifacts As mentioned, previous
works use noise-free sparse data to pretrain [54,71] or eval-
uate a model [32] with synthetic data. However, simulating
the noise of real sparse data can reduce the domain gap and
improve the adaptation result. Real LiDAR depth contains
noise from several sources including the asynchronous acqui-
sition due to the rotation of lasers, dropping of points due to
low surface reflectance and projection errors. Simulating a
LiDAR sampling process by modelling all of these noise
sources can be costly and technically difficult as a physics-
based rendering engine with additional material properties

Fig. 5 Example of the generated projection artifacts in the simulator.
The zoomed-in areas marked with red rectangles correspond to xMD and
the zoomed-in areas marked with green rectangles correspond to x PD ,
where we can see simulated projection artifacts, e.g., see-through points
on the left side of the motorcyclist (Color figure online)

is necessary to simulate the photon reflections individually.
We propose a more pragmatic solution that allows us to use
the z-buffer of a simulator by assuming that the dominating
noise is a consequence of the point cloud projection from the
LiDAR to the RGB camera reference frame. For that set-up,
the error is a result of projecting a sparse point cloud arising
from another viewpoint, as we do not have a way to filter the
overlapping points by depth. This creates see-through pat-
terns that do not respect occlusions as shown in Fig. 5, which
is also observed in the real domain [10]. Therefore, a simple
point drawing from a depth map at the RGB reference cannot
recreate this effect and such a method does not perform well
in the real domain.

To recreate this pattern,weuse theCARLAsimulator [13],
which allows us to capture multicamera synchronized syn-
thetic data. Our CARLA set-up mimics the camera distances
in KITTI [21], as our benchmark is the KITTI depth comple-
tion dataset [65]. Instead of LiDAR, we use a virtual dense
depth camera. The set-up is illustrated in Fig. 2. As the data
is synthetic, the intrinsic and extrinsic parameters needed for
the projections are known. After obtaining the depth from
the virtual LiDAR camera, we sparsify it using the LiDAR
masks resulting in xMD , which is then projected onto the RGB
reference with

x PD = KRGB P
L
RGBK

−1
L xMD (1)

where KL , KRGB are the LiDAR and RGB camera intrinsics
and PL

RGB is the rigid transformation between the LiDAR
and RGB reference frame. The resulting x PD is the projected
sparse input to either the left or right camera.

Figure 4 shows the distribution of errors in the input points
after the projection step. Our projection module generates
a comparable amount of input sparse depth values with an
error larger than 30 cm in the synthetic data compared to the
real data. The similar distribution of noise between real and
synthetic data resulting after our projection module reduces
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Fig. 6 We reduce the domain gap in the RGB modality using a Cycle-
GAN approach. We show synthetic CARLA images and the resulting
adapted images

the input depth domain gap, and allows the network to learn
from the synthetic data to correct those artifacts. Figure 4
also shows that our projection module does not simulate the
low-scale errors, i.e., those with an error lower than 30 cm,
which may be a consequence of other sources of error in the
LiDAR data, and needs to be addressed in further work.

3.2 RGB Adaptation

Similarly to domain adaptation for depth estimation meth-
ods [2,42,80,81], we address the domain gap in the RGB
modality with style translation from synthetic to real images.
Due to the complexity of adapting high-resolution images,
we first train a model to translate from synthetic to real using
a CycleGAN [82] approach. The generator is not further
trained and is used to translate the synthetic images to the
style of real images, thus reducing the domain gap as shown
in Fig. 6.

3.3 Filtering Projection Artifacts for Supervision

In a depth completion setting, the given LiDAR depth can
also be used as supervision data, as in [47]. Nevertheless, the
approach in [47] did not take into account the noise present in
the data. The given real-domain LiDAR input is accurate in
most points with an error of only a few centimeters as shown
in Fig. 4. However, due to the noise present, some points can-
not be used for supervision, such as the see-through points,
which have errors in the order ofmeters.Anothermethod [10]
also used the sparse input as guidance for LiDAR-stereo
fusionwhile filtering the noisy points using stereo data. How-
ever, we aim to remove the noisy inputs without relying on
additional data, such as a stereo pair, as this may not always
be available.
Thus, to supervise the real data, we first aim to find a set
of reliable sparse points in the real-domain depth, Sp, that
contains those input LiDAR points that are likely to have
low error. Using Sp for supervision can lead to better perfor-
mance compared to using the original input LiDAR due to its

reduced amount of noise. To obtain the set Sp, we propose
to apply a filter to the real-domain input LiDAR points. This
filter is designed based on the assumption used in Sect. 3.1
to generate our data, i.e., the main source of error in the input
LiDAR points are the see-through artifacts after projecting
from theLiDAR reference frame to theRGBcamera. Follow-
ing this see-through assumption, we can assume that in any
given localwindow there are twomodes of depth distribution,
approximated by a closer and a further plane. We show an
overviewof the idea inFig. 3.Thepoints from the closer plane
are more likely to be correct as part of the occluding objects.
To retrieve Sp we apply a minimum pooling with window
size wp yielding a minimum depth value dm per window.
Then, we include in Sp the points s ∈ [dm, dm + θ ] where
θ is a local thickness parameter of an object. The number of
noisy points not filtered out depends on the window wp and
object thickness θ , e.g., larger windows remove more points
but the remaining points are more reliable. We use the noise
rate η, which is the fraction of noisy points as introduced in
noisy labels literature [26,39,79], to select wp and θ in the
synthetic validation set, thus not requiring any ground-truth
in the real domain. Section 4 shows that using a large object
thickness parameter θ or a small window size wp leads to a
higher noise rate due to an increased tolerance of the filter.
As our proposed filter is not able to remove all of the see-
through artifacts in the real input LiDAR, after the filtering
step a certain number of noisy elements will remain in Sp

and will be used for supervision. Due to the supervision per-
formed with our adapted synthetic data, our network is able
to correct some of the input noise present in the real LiDAR.
Hence, the noisy points in Sp are more likely to be further
away from the dense depth prediction ŷ than the noise-free
points in Sp. Thus, the Reverse Huber (BerHu) loss [85],
which we use for supervision in the synthetic domain and
behaves as a squared error loss for larger errors and linearly
for lower errors (see Eq. 4), would give more weight to those
noisy points in Sp and, in turn, reduce the performance of
the method. To provide extra robustness against these false
positives, we use in the real domain a Mean Absolute Error
(MAE) loss, as MAE weights all values equally, showing
more robustness to the noisy outliers.

3.4 Summary of Losses

Our proposed loss is

L = λSLS + λRLR (2)

where LS is the loss used for the synthetic data, LR the loss
used for the real data and λS and λR are hyperparameters.
We use a two-step training approach similar to past domain
adaptation works using pseudo-labels [62,84], aiming first
for good performance in the synthetic data before introduc-
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ing noise in the labels. First, we set λS = 1.0 and λR = 0.0,
to train only from the synthetic data. ForLS we use a Reverse
Huber loss [85], which works well for depth estimation prob-
lems [36]. Hence, we define LS as

LS = 1

bS

∑

i

1

ni

∑

k

Lbh(ŷk, yk) (3)

where bS is the synthetic batch size, ni the number of ground-
truth points in image i , ŷ is the predicted dense depth, y is
the ground-truth depth and the Reverse Huber loss Lbh [85]
is

Lbh(ŷk, yk) =
{

(ŷk−yk )2+c2

2c if |ŷk − yk | > c

|ŷk − yk | if |ŷk − yk | ≤ c
(4)

where c = δ · maxk |ŷk − yk | and we set δ = 0.05, which is
the default value in the official code of themodel we use [66].

In the second step we set λS = 1.0 and λR = 1.0 as we
introduce real domain data into the training process using Sp

for supervision. We define LR as

LR = 1

bR

∑

i

1

#(Sp,i )

∑

k

|ŷk − yk | (5)

where bR is the real domain batch size and #(Sp,i ) is the
cardinality of the set of reliable points Sp for an image i .

4 Experiments

We use PyTorch 1.3.1 [51] and an NVIDIA 1080 Ti GPU, as
well as the official implementation of FusionNet [66] as our
sparse-to-dense architecture. The batch size is set to 4 andwe
useAdam [33] with a learning rate of 0.001. For the synthetic
data, we train by randomly projecting to the left or right cam-
era with the same probability. In the first step of training, we
use only synthetic data (i.e., we set the loss weight and batch
size for the synthetic data to λS = 1.0 and bS = 4, whereas
for the real data they are set to λR = 0.0 and bR = 0) until
performance plateaus in the synthetic validation set. In the
second step, we mix real and synthetic data setting λS = 1.0,
λR = 1.0, bS = 2, bR = 2, the filter’s window size to
wp = 16pixels, thefilter’s object thickness to θ = 0.5m, and
train for 40,000 iterations. The link to the implementation is
https://github.com/alopezgit/project-
adapt.
To test our approach, data from a real LiDAR+RGB set-up
is needed as we address the artifacts arising from project-
ing the LiDAR to the RGB camera. There are no standard
real LiDAR+RGB indoor depth completion datasets avail-
able. In NYUv2 [61] the dense ground-truth is synthetically

sparsified using Bernoulli sampling, while VOID [70] pro-
vides sparse depth fromvisual inertial odometry that contains
no projection artifacts. Thus, the KITTI depth completion
benchmark [65] is our real domain dataset, as it provides
paired real noisy LiDAR depth with RGB images, along with
denser depth ground-truth for testing. We use the official
KITTI code to evaluate our method in the selected validation
set and in the online test set, each containing 1,000 images.
Following [66], we train using images of 1216×256 by crop-
ping their top part. We evaluate on the full-resolution images
of 1216 × 356. The metrics used are Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE), reported in
mm, and inverse RMSE (iRMSE) and inverseMAE (iMAE),
in 1/km.

Synthetic Data We employ CARLA 0.84 [13] to generate
synthetic data using the camera set-up in Fig. 2. We collect
images from 154 episodes resulting in 18,022 multicamera
images for training and 3,800 for validation. An episode is
defined as an expert agent placed at random on the map and
driving around while collecting left and right depth+RGB
images, as well as the virtual LiDAR depth. We use for the
virtual LiDAR camera a regular dense depth camera instead
of the providedLiDARsensor inCARLAbecause the objects
in the LiDAR view are simplified (e.g., CARLA approxi-
mates the cars using cuboids). The resolution of the images
is 1392 × 1392 with a Field Of View of 90◦. To match the
view and image resolution in KITTI, we first take a center
crop of resolution 1216 × 356, and from this crop we take
the upper part of resolution 1216 × 256. To adapt the syn-
thetic RGB images, we train the original implementation of
CycleGAN [82] for 180,000 iterations.

4.1 Ablation Study

We include an ablation study in Table 1 using the validation
set. For the result of thewhole pipeline,we average the results
of three different runs to account for training variability. All
of the proposed modules provide an increase in accuracy.

CARLA Adaptation Table 1 shows that projecting the
sparse depth is as important as matching the LiDAR sam-
pling pattern, decreasing the RMSE by 23.1% when used
jointly. Table 1 also shows that using Bernoulli sampling
and then projecting the sparse depth results in worse perfor-
mance compared to training only with Bernoulli sampling.
Compared to the LiDARmask sampling case, where the see-
through artifacts pattern is easy to distinguish after projecting
the LiDAR points to the RGB camera (see Fig. 5), the lack
of structure of a Bernoulli sampling approach may difficult
the ability of the network to discern what points are see-
through artifacts. Even though CycleGANmostly adapts the
brightness, contrast and colors of the images as shown in
Fig. 6, using image translation further reduces the RMSE by
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Table 1 Ablation study on the
KITTI selected validation set

Model RMSE MAE iRMSE iMAE

1st Step: Only Synthetic Supervision

Syn. Baseline 1: Bernoulli (pB=0.062) 1735.59 392.81 7.68 1.73

+ Proj. 3617.98 1411.36 23.42 9.06

Syn. Baseline 2: LiDAR Mask 1608.32 386.49 7.13 1.76

+ Proj. 1335.00 342.16 5.41 1.55

+ Proj. + CycleGAN RGB + Only 1 mask 1273.77 316.22 5.26 1.37

+ Proj. + CycleGAN RGB 1247.53 308.08 4.54 1.34

2nd Step: Adding Real Data

No Filter 1315.74 315.40 4.70 1.40

Sp+ BerHu 1328.76 320.23 4.25 1.33

Full Pipeline: Sp 1150.27 281.94 3.84 1.20

Real GT + Synthetic GT 984.85 236.64 2.95 1.10

Real GT Supervision 802.49 214.04 2.24 0.91

BerHu refers to using BerHu for real data supervision. All of 2nd Step results use LiDAR Mask + Proj +
CycleGAN RGB. We use Bernoulli with pB=0.062 as the KITTI LiDAR density for the crop used is approx-
imately 6.2%. RMSE and MAE are reported in mm, and iRMSE and iMAE in 1/km. Real GT Supervision is
the original result from [66] trained with an MSE loss, whereas Real GT + Synthetic GT refers to our result
combining both CARLA and KITTI ground-truth and using a BerHu loss
Bolded results refer to the best performance among those methods not using the semi-dense KITTI ground-
truth

Fig. 7 Qualitative results with different training methodologies.
Bernoulli refers to training using the Bernoulli sparsified depth x BD ,
LiDAR Mask to training using the depth sparsified with real LiDAR

masks xMD and Ours to our full pipeline that uses both LiDAR masks
and projections. Both rows show projection artifacts, which Ours deals
with correctly

6.6%whenused jointlywith real LiDARmasks sampling and
projections. Figure 7 includes predictions for images with
projection artifacts, showing that simulating the see-through
artifacts via projections in the synthetic images is crucial to
deal with the noisy input in the real domain.

Number of Sampled LiDAR Masks We now aim to test
the effect on performance on the number of binary LiDAR
masks used, as in real scenarios we may not have access to a
large number of real LiDARmasks. To that end, we sampled
a single mask at random from KITTI, which is applied to
all the synthetic depth images during training. Table 1 shows
the performance obtained for our method after the first step
of training, i.e., using only synthetic data supervision, when
using only one mask (+Proj. + CycleGAN RGB + Only 1
mask), where we see that the performance impact is minimal
compared to using all available masks in KITTI (+Proj. +
CycleGAN RGB).

Introducing Real Domain Data Using the reliable points
Sp as supervision in the real domain alongside theMAE loss
function increases the performance as Table 1 shows. If we
use BerHu along with supervision with reliable points, the
method deteriorates as the noisy points are likely to domi-
nate the loss. Supervising our network using both MAE and
the unfiltered real LiDAR also drops the performance due to
the high noise rate η. These results show that using the noisy
LiDAR points for supervision as in [47,69–71] can be detri-
mental to the performance. If we define a point to be noisy if
its difference with the ground-truth is more than 0.3 m, the
noise rate η for the unfiltered depth is 5.8%, and with our
filtering method is reduced to 1.7%while dropping 45.8% of
input points. The results suggest that η in Sp is more impor-
tant than the total amount of points used for supervision.
Supervising with real filtered data (Full Pipeline) improves
both synthetic baselines (Syn. Baseline) in Table 1.
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Table 2 Results on the KITTI validation set depending on the input
type for the whole pipeline

Input data RMSE MAE iRMSE iMAE

Only Sparse Depth 1175.54 290.51 4.11 1.27

+ RGB 1167.83 289.86 3.87 1.28

+ T2Net transfer [81] 1184.39 306.66 3.99 1.36

+ FDM 1150.42 281.11 3.87 1.21

+ CycleGAN RGB 1150.27 281.94 3.84 1.20

RMSE and MAE are reported in mm, and iRMSE and iMAE in 1/km
Bolded results refer to the best performance for each metric

Upper Bound Real GT Supervision in Table 1 refers to the
results reported in [66],which trains onlywithKITTIground-
truth andusing anMSE loss.RealGT+SyntheticGT refers to
the results when also usingKITTI ground-truth but mixing in
the batch both CARLA and KITTI data with equal weighting
in the loss, and BerHu for both KITTI and CARLA data.
When having real data ground-truth, mixing synthetic and
real data affects the attainable upper bound instead of giving
a performance increase. However, our method can serve as a
good pretraining step in the case where we only have access
to a few labeled examples, which will be shown in a later
section.

Impact of RGBModalityContrary to self-supervisedmeth-
ods, which use RGB information to compute a photometric
loss, we do not require the RGB image for good performance
as shown in Table 2. Including RGB information reduces
the error by 0.7% in RMSE, and by using the CycleGAN
RGB images the RMSE is reduced by 2.1%. A similar low
impact when adding the RGB modality was found in a past
self-supervised work [47]. In a fully supervised manner the
difference is 16.3% for FusionNet, showing that methods
aiming to further reduce the RGB domain gap may increase
the performance. Due to computational constraints, we train
theCycleGANmodel in a separate step. To test an end-to-end
approach, we adapt T2Net [81], which, instead of using cycle
consistency, relies on a depth estimation network to maintain
geometric consistency after translation. However, our depth
completion network is not capable of properly constrain-
ing the translation, and, hence, we obtained lower-quality
translated images and larger error compared to CycleGAN
as Table 2 shows.

Less Demanding RGB Transfer The changes performed
by CycleGAN on the CARLA images are mostly related to
contrast and saturation. Figure 8 shows that the CycleGAN
translation also introduces artifacts similar to the chromatic
aberration present in KITTI (e.g., road in the middle column
images or the back of the van in the right column exam-
ple), along with other distortions. Additionally, the results
in Table 2 show that CycleGAN adaptation does not have a

large impact on our final performance. Thus, we propose to
emulate the type of visual changes performed by CycleGAN
with a less demanding non-adversarial approach, which does
not produce the artifacts introduced by CycleGAN. To that
end, we replace the CycleGANmodule with the Feature Dis-
tribution Matching (FDM) approach proposed in [1], which
does not require training and is less computationally expen-
sive. FDMmostly adapts color and contrast by matching the
mean and covariance of the synthetic image to a randomly
sampled real image. Figure 8 shows examples of the resulting
FDM images. In some cases, FDM translates the images to
non-realistic colors, but wemostly observe that the translated
images are similar to theCycleGAN images butwithout local
artifacts. The performance when training our method with
FDM images is given in Table 2, obtaining similar results to
the CycleGAN approach.

4.2 Method Evaluation

Comparison to State-of-the-Art In Table 3 we compare our
method, Ours, with the state-of-the-art methods not using
real-domain ground-truth. Our method obtains a competitive
performance compared to the GT-free state-of-the-art, which
use video self-supervision. This performance is obtained
using an architecture with fewer parameters, and without
using any self-supervision. Tables 1 and 3 show that we
achieve comparable results to most self-supervised methods
by training only with synthetic data, i.e., in the first training
step, which validates the observation that the main source of
error to simulate to reduce the domain gap are the see-through
points. Although both DDP [76] and ScaffNet [71] use syn-
thetic ground-truth fromVirtual KITTI [20] for training, they
result in worse results compared to Ours due to not apply-
ing any domain adaptation strategy to their synthetic data.
The recent work KBNet [69], which does not use any syn-
thetic data during training, obtains better performance than
Ours, although KBNet assumes knowledge of the intrinsic
parameters at both training and testing time to design their
model.

Adding Self-Supervision When real domain video data
is available, our approach can be combined with self-
supervised methods [47,70]. With that aim, we add to our
pipeline the self-supervision loss from S2D [47]. In S2D, the
relative pose between two video frames is assumed unknown,
and thus needs to be estimated. To do so, we first obtain
2D matches of SIFT features [44] between the two RGB
frames. Those matches from the first frame with a valid
LiDAR depth are lifted to 3D to obtain 3D-2D matches
between the first and second frame. We then use the 3D-
2D matches to solve a Perspective-n-Point (PnP) problem
with RANSAC, which estimates a relative pose between the
two frames. Next, the estimated relative pose and the pre-
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Fig. 8 Qualitative results of image transfer when applying to the original CARLA images (1st row) a CycleGAN approach (2nd row) or an FDM
approach (3rd row)

dicted dense depth are used to project the RGB values of
the second frame to the pose of the first frame using bilinear
interpolation, which is differentiable. Finally, we compute a
multi-scale photometric lossλphLph by computing an l1-loss
between the RGB values of the first frame and the projected
second frame using the predicted dense depth and relative
pose. Minimizing this loss guides the projected RGB val-
ues of the second frame to be similar to those of the first
frame, which in turn guides the predicted depth to be closer

to the ground-truth. By using a multi-scale loss, we are able
to improve the performance also in those cases where the
predicted depth is far from the ground-truth value. We add
this multi-scale photometric loss λphLph during the second
step of training only for the real KITTI data, where we set
λph = 10 to have similar loss values as LS + LR . This
approach, which is shown in Table 3 in the lineOurs+SS, fur-
ther reduces the error in the test set and achieves lower errors
compared to VOICED [70] and ScaffNet [71], although we

Table 3 Comparison of results
on the KITTI selected validation
set and the official online test set

Model Param. Validation set Online test set
RMSE MAE iRMSE iMAE RMSE MAE iRMSE iMAE

Unsuperv.

DDP 18.8M 1325.79 355.86 – – 1285.14 353.16 3.69 1.37

Self-Sup.

SS-S2D 27.8M 1384.85 358.92 4.32 1.60 1299.85 350.32 4.07 1.57

DDP+St. 18.8M 1310.03 347.17 – – 1263.19 343.46 3.58 1.32

VOICED 9.7M 1239.06 305.06 3.71 1.21 1169.97 299.41 3.56 1.20

ScaffNet 7.8M 1182.81 286.35 3.55 1.18 1121.93 280.76 3.30 1.15

KBNet 6.9M 1126.85 260.44 3.20 1.03 1069.47 256.76 2.95 1.02

Dom. Ada.

DA Base 2.6M 1630.31 423.70 6.64 1.98 − − − −
+ D. Out. 2.6M 1636.89 390.59 6.78 1.78 − − − −
+ D. Feat. 2.6M 1617.41 389.88 7.01 1.79 − − − −
Ours 2.6M 1150.27 281.94 3.84 1.20 1095.26 280.42 3.53 1.19

Ours-S2D 16.0M 1211.97 296.19 4.24 1.33 − − − −
Ours+SS 2.6M 1112.83 268.79 3.27 1.12 1062.48 268.37 3.12 1.13

Supervised

S-S2D 27.8M 878.56 260.90 3.25 1.34 814.73 249.95 2.80 1.21

FusionNet 2.6M 802.49 214.04 2.24 0.91 772.87 215.02 2.19 0.93

DDP 18.8M – – – – 836.00 205.40 2.12 0.86

DA Base is our Domain Adaptation baseline formed by CycleGAN [82] + LiDAR Masks. RMSE and MAE
are reported in mm, and iRMSE and iMAE in 1/km. We compare against the supervised and self-supervised
S2D [47] variants, the self-supervised VOICED [70]; the self-supervised ScaffNet [71]; the self-supervised
KBNet [69]; the unsupervised, self-supervised and supervised variants of DDP [76]; and the supervised
FusionNet [66]. The unsupervised DDP [76] refers to only using Virtual KITTI data without using any KITTI
data.DA Base is our domain adaptation baseline, with a discriminator at the output (D. Out) or in the features
(D. Feat). Ours uses FusionNet architecture, Ours-S2D uses S2D architecture and Ours+SS refers to our
domain adaptation approach combined with the video self-supervision from [47]. Bolded results refer to the
best performance among those methods not using the semi-dense KITTI ground-truth
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Fig. 9 Qualitative results on the official KITTI test set for SS-S2D, VOICED, ScaffNet, KBNet and our method with video supervision Ours+SS.
Red rectangles show zoomed-in areas (Color figure online)

Table 4 Semi-supervised
results on the KITTI selected
validation set for different
pretraining strategies before
finetuning on available
annotations

Pretraining strategy S:1 / I:196 S:3 / I:1508 S:5 / I:2690
RMSE MAE RMSE MAE RMSE MAE

Only supervised 2578.72 1175.78 1177.90 302.30 1042.75 295.73

DA baseline 1130.79 310.68 1042.70 255.56 986.09 244.94

Ours 1106.30 262.29 996.28 247.00 949.63 242.61

S and I are the number of annotated sequences and images respectively. For Only supervised, the weights are
randomly initialized. RMSE and MAE are reported in mm, and iRMSE and iMAE in 1/km
Bolded results refer to the best performance for each metric

Fig. 10 Hyperparameter analysis. The two left images show the noise
rate η versus wp (θ = 0.5 m) and θ (wp = 16 pixels). The right plot
shows MAE versus number of training iterations in the second step,

where we evaluate every 400 iterations, use a moving average with
window size 25 and average 3 runs to reduce the variance

obtain comparable performance to the recent KBNet [69].
However, the combination of our method with the archi-
tectural improvements in KBNet, which assume knowledge
of the camera intrinsics for training and testing, may fur-
ther improve the results. We also show qualitative results of
Ours+SS, KBNet, ScaffNet, VOICED and SS-S2D in the
official KITTI test set in Fig. 9. We see that the SS-S2D
results include sparse see-through artifacts, e.g., the light
pole in the middle column images, as SS-S2D uses the noisy
depth input as supervision. KBNet, ScaffNet and VOICED

handle these artifacts better, but the see-through depth points
still affect the results in the light pole in the middle column
example. Despite the similar quantitative performance of
our method compared to the state-of-the-art self-supervised
methods, ourmethod shows qualitatively a reduction of these
see-through points due to the use of adapted synthetic data
that mimics these artifacts. Additionally, our method also
shows better object boundaries compared to the other self-
supervised approaches, which produce edges less sharp and
wider than the original object. In general, self-supervision
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presents issues with object boundaries [7,83], which can be
alleviated by using accurate synthetic dense depth for super-
vision as done in our method.

Domain Adaptation Baselines Following synthetic-to-real
depth estimation methods [2,42,81], we use as a domain
adaptation baseline an image translation method, in our case
CycleGAN [82], to adapt the synthetic RGB images. To
sparsify the synthetic depth, we use the real LiDAR masks
[3], shown in Table 1 to perform better than Bernoulli sam-
pling. The performance of this domain adaptation baseline is
presented in Table 3 inDABase.We explore the use of adver-
sarial approaches to match synthetic and real distributions on
top of the DA Base. DA Base + D. Out. in Table 3 uses an
output discriminator using the architecture in [52], with an
adversarial loss weight of 0.001 similarly to [64]. Follow-
ing [81], we also tested a feature discriminator in the model
bottleneck in DA Base + D. Feat. with weight 0.01. Table 3
shows that the use of discriminators has a small performance
impact and that standard domain adaptation pipelines are not
capable of bridging the domain gap.

Semi-Supervised Learning In some settings, a subset of
the real data may be annotated. Our full pipeline mimics the
noise in the real sparse depth and takes advantage of the
unannotated data by using the filtered reliable points Sp for
supervision. This provides a good initialization for further
finetuning with any available annotations as Table 4 shows.
Compared to pretraining using the DA Baseline, our method
achieves in all cases a better performance after finetuning.

Hyper-Parameter SelectionWedo not tune the lossweights
λS and λR . The projected points x PD in the synthetic valida-
tion set are used to choose the filter window size wp and the
filter object thickness θ by employing the noise rate η in the
reliable points Sp as the indicator for the filtering process
performance. Figure 10 shows the noise percentage depend-
ing onwp and θ , where we see that curves for the noise rate η

follow a similar pattern in both the synthetic and real domain.
We first select wp and then θ as the gain in performance is
lower for θ . The optimal values found are wp = 16 pixels
and θ = 0.5 m. Figure 10 also shows the MAE depending
on the number of iterations in the second step. After 40,000
training iterations, we did not see any improvement.
Sensitivity to Filter ParametersFigure 11 shows theRMSE
when varying the window size wp and the object thickness
θ after 10,000 iterations of second step training. For values
different to those used in our experiments, i.e., θ = 0.5 m
and wp = 16 pixels, the performance after 40,000 itera-
tions is decreased compared to the performance after 10,000
iterations and, furthermore, the performance after 40,000
iterations of training is also lower than the performance after
only the first fully-synthetic step of training. We hypothe-
size that the reason for the drop in performance after 40,000
iterations for non-optimal filter parameters is the increased

Fig. 11 RMSE in the second step of training when varying the param-
eters of the filter used to obtain the reliable points Sp . In the top image
we vary the object thickness θ with window size set to wp = 16 pixels.
In the bottom imagewe vary the window sizewp , with object thickness
fixed to θ = 0.5 m. 1st Step is the performance obtained after the first
step of training, i.e., only using synthetic data. No F. refers to not using
any filter in the real sparse depth used for supervision during the second
step of training

Fig. 12 RMSE obtained when varying the sparsity level by sampling
the input sparse depth with probability pS

noise rate η. Hence, a smaller number of training iterations is
a safer choice for a wider range of filter parameters to avoid
overfitting to the noisy points remaining after the filtering
step.
Model Agnosticism We chose FusionNet [66] as our main
architecture, but we also test our approach with the 18-
layers architecture from [47] to show our method is robust
to changes in architecture. Due to memory constraints we
use the 18-layers architecture instead of the 34-layers model
from [47], which accounts for the different parameter count
in Table 3 between Ours-S2D and SS-S2D. We set the batch
size to 2, increase the number of iterations in the second step
to 90,000 (the last 20,000 iterations use a lower learning rate
of 10−4), and freeze the batch normalization statistics in the
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Fig. 13 Qualitative results on PandaSet [59] for our DA Baseline and full method (Ours-Full) trained in CARLA and KITTI. RGB images also
show an overlay of the sparse depth input

second step. The result is given in Table 3 in Ours w/S2D
arch., which achieves state-of-the-art RMSE and MAE.
Sparsity of Input Data Similarly to [47], we evaluate the
performance of our method when varying the input spar-
sity level. In this experiment, we keep each of the given
input KITTI sparse depths with probability pS . We evalu-
ate both our final model trained with the original LiDAR
maps, and also our final model finetuned for the different
sparsity levels for 10,000 iterations with a learning rate of
10−4. Figure 12 shows the results of the experiment when
varying pS . We show a similar trend to the results in [47],
however our method is capable of performing better over all
ranges of values. Finetuning the model increases the accu-
racy, but even without any further training the model behaves
well for lower values of pS .

Qualitative Results on PandaSet [59] are shown in Fig. 13
for ourmethod and theDABaseline, bothwithout further tun-
ing in PandaSet. PandaSet contains a different camera set-up
and physical distances compared to theCARLA/KITTI train-
ing set-up, e.g., the top two rows in Fig. 13 correspond to a
back camera not present in KITTI, whereas the two bottom
rows are from a frontal-left camera. Our method is still capa-
ble of dealing better with the projection artifacts and with the
missing data compared to the DA Baseline. However, there
are regions that our method is not capable of correcting com-
pletely, such as the see-through artifacts on the tree trunk
in the third row, which is due to a different camera set-up
and depth statistics compared to our CARLA dataset. Pan-
daSet does not provide depth completion ground-truth, thus
no quantitative results can be computed.

Distribution of Errors Figure 14 shows that the distribution
of ground-truth depth values is similar inCARLAandKITTI,
as the synthetic data matches the camera position, intrinsics
and crop used in KITTI, and also simulates similar scenes.
Figure 14 also shows that, for both real and synthetic data,
the MAE of the predictions increases for larger depth val-
ues, having both datasets have a minimum MAE for values

Fig. 14 Top: Distribution of depth ground-truth values in the KITTI
validation set and the CARLA training set. Bottom: MAE versus
ground-truth depth values in the KITTI validation set and the CARLA
training set for our final model

Fig. 15 Error and data distribution depending on the detected class
(we use a Mask R-CNN [28] model pretrained on COCO [72]) on the
KITTI selected validation set for our used crop of 1216 × 256. MAE
is the average absolute error for the predicted dense depth maps, Noise
Input is the average absolute error in the input depth values,RatioDepth
is the ratio of the depth GT values available divided by the total amount
of ground-truth values, Ratio RGB is the ratio of pixels representing a
class divided by the total amount of pixels

around 6–8 m, where most of the depth values are concen-
trated. The error in the CARLA training set is consistently
higher for most depth ranges, obtaining a total MAE of 500
mm, compared to the 282 mm obtained in the KITTI valida-
tion set. This higher error in the CARLA training data is a
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Fig. 16 KITTI ground-truth overlaid on the RGB image. The red rect-
angles show challenging areas where the ground-truth is missing, which
is a consequence of the process to obtain the ground-truth performed in
[65]

Fig. 17 Due to ground-truth misalignments, methods supervised with
the KITTI ground-truth (top) tend to expand the predictions around
the edges of the objects compared to our method (bottom), which is
supervised with synthetic depth

result of the synthetic ground-truth being completely dense,
whereas, due to the process used to generate the semi-dense
maps, the KITTI ground-truth has a bias towards easier-to-
predict depth values. To show this bias, in Fig. 15 we plot
for different semantic classes in KITTI the MAE, the aver-
age input noise and the ratio that each class represents in
the available ground-truth depth (Ratio Depth) and the RGB
images (Ratio RGB). Figure 15 shows a relationship between
the input noise and the prediction MAE, where classes with
high input noise, e.g., tree, also present high output MAE.
In KITTI, the class road+pavement, which has both the low-
est output MAE and input noise, is given more weight in the
depth ground-truth (RatioDepth) compared to the actual ratio
of RGB pixels that are from that class (Ratio RGB). Further-
more, Fig. 16 shows that the KITTI ground-truth has missing
regions around the instances edges, which are areas of usu-
ally high prediction error and also contribute to the lower
error in the KITTI validation set compared to the CARLA
training set.
Ground-Truth Issues The process performed in [65] to
obtain the KITTI semi-dense ground-truth is not completely
noise-free, especially in dynamic or far-away objects. Sim-

Fig. 18 Failure cases of our method in KITTI, which cannot correct
all types of noise. The top row example shows a set of noisy inputs on
the wall. The bottom row example shows a dropping of points due to
low-reflectance black surfaces

ilarly, the ground-truth is not perfectly aligned around the
edges of some objects, which, coupledwith themissing depth
around some instances shown in Fig. 16, makes the models
trained with KITTI ground-truth to predict depth maps that
expand the instances borders as shown in Fig. 17. Our model
shows predictions better aligned around the boundaries,
which highlights the benefits of training using pixel-perfect
synthetic depth data.
Computational Complexity The inference speed depends
on the architecture used as our method does not add any
complexity. We use FusionNet, which has a low number of
parameters compared to most of the state-of-art models as
shown in Table 3. Furthermore, the computational time for
different depth completion models in [29] also shows that
FusionNet is fast compared to other models such as DeepL-
iDAR [54]. When using a 1080 Ti GPU and a batch of 10
images with a resolution of 1216 × 256, FusionNet is capa-
ble of achieving a speed of 35 images/s. As for training,
with our hardware set-up it takes ≈ 5.5 h for the first fully
synthetic training step, and ≈ 4.5 h for the second training
step, amounting to a total training time of ≈ 10 h. The given
training time does not include the CycleGAN step, however
as shown in Table 2 using the original RGB images or the
lower-complexity FDM [1] method, which does not require
any training, results in a similar performance to using the
CycleGAN images.
LimitationsWhile we addressed see-through artifacts, other
types of noise can be present in the real sparse depth as Fig. 18
shows. The upper row example shows a set of noisy inputs
on the wall that is not corrected. The bottom row example
shows missing points in the prediction due to the lack of
data on the black hood surface. The fully supervised model
deals properly with these cases. These examples suggest that
approaches focused on other types of noise could further
decrease the error. Additionally, our method mimicked the
KITTI set-up, e.g., camera positions and image resolution
used. The performance of our method needs to be assessed
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quantitatively in diverse set-ups. However, currently there is
a lack of real LiDAR depth completion datasets that provide
a ground-truth.

5 Conclusions

We proposed a domain adaptation method for sparse depth
completionusingdata-drivenmasking andprojections to imi-
tate real noisy and sparse depth in synthetic data. The main
source of noise in a joint RGB + LiDAR set-up was assumed
to be the see-through artifacts due to projection from the
LiDAR to the RGB reference frame. We also found a set of
reliable points in the real data that are used for additional
supervision, which helped to reduce the domain gap and to
improve the performance of our model. A promising direc-
tion is to investigate the use of orthogonal domain adaptation
techniques capable of leveraging the RGB inputs even more
to correct also other types of error in the LiDAR co-modality.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
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