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Abstract
Accurate real depth annotations are difficult to acquire, needing the use of special devices such as a LiDAR sensor. Self-
supervisedmethods try to overcome this problem by processing video or stereo sequences, whichmay not always be available.
Instead, in this paper, we propose a domain adaptation approach to train a monocular depth estimation model using a fully-
annotated source dataset and a non-annotated target dataset. We bridge the domain gap by leveraging semantic predictions
and low-level edge features to provide guidance for the target domain. We enforce consistency between the main model and
a second model trained with semantic segmentation and edge maps, and introduce priors in the form of instance heights.
Our approach is evaluated on standard domain adaptation benchmarks for monocular depth estimation and show consistent
improvement upon the state-of-the-art. Code available at https://github.com/alopezgit/DESC.

Keywords Depth estimation · Domain adaptation · Semantic consistency · Image translation

1 Introduction

State-of-the-art depth estimation methods are capable of
inferring an accurate depth map from a monocular image
by relying on deep learning methods, which require a large
amount of data with annotations (Fu et al., 2018; Laina et
al., 2016). Annotations in the form of precise depth measure-
ments are typically providedby special tools such as aLiDAR
sensor (Geiger et al., 2012) or structured light devices (Sil-
berman et al., 2012). Thus, obtaining depth annotations is
costly and time-consuming. Much research has focused on
developing methods not relying on directly acquired depth
annotations by leveraging stereo (Godard et al., 2017; Garg
et al., 2016) or video sequences (Godard et al., 2019; Casser
et al., 2019; Yin & Shi, 2018) for self-supervision. These
research directions have shown promise, but a stereo pair
or video sequence may not always be available in existing
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datasets. The use of synthetic data provides a way to obtain a
large amount of accurate ground truth depth in a fast manner.
However, synthetic data and real data have usually a domain
gap, mainly due to the difficulty of generating photorealistic
synthetic images. In that direction, domain adaptation tech-
niques (Nath Kundu et al., 2018; Zheng et al., 2018) can help
to transfer the models trained on an annotated source dataset
S to a target dataset T , reducing the burden of training a
model for a new environment or camera.

Research results have shown that the domain gap for
semantic segmentation and instance detection can be reduced
by introducing depth information during training (Liu et al.,
2019; Vu et al., 2019; Chen et al., 2019c; Saha et al., 2021). A
different direction, which leverages semantic information to
reduce the domain gap in depth estimation, has been less stud-
ied and mainly in multi-task scenarios (Atapour-Abarghouei
& Breckon, 2019; Kundu et al., 2019). The high-level struc-
ture of the scene, which is given in a semantic map, is a
compact representation with lower domain gap compared to
RGB images (e.g., textures or illumination in RGB images
are highly domain dependant) (Zhou et al., 2020) and gives
information about the geometry of the scene. Humans, for
example, use several semantic cues to estimate depth, e.g.,
smoothness of depth values in an object instance (Chen et
al., 2019b), relative size of known objects in the image or
vertical position of instances in the image (Dijk & Croon,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-022-01718-1&domain=pdf
http://orcid.org/0000-0003-3984-5126
http://orcid.org/0000-0003-0726-9187
https://github.com/alopezgit/DESC


International Journal of Computer Vision (2023) 131:752–771 753

2019). In addition, existing datasets with semantic anno-
tations are large and diverse in scenes as well as cameras
used, hencemodels trained on these diverse semantic datasets
are capable of generalizing to different settings (Lambert
et al., 2020). Several works (Li & Snavely, 2018; Casser
et al., 2019) have shown that using pretrained models to
obtain semantic annotations can also bring improvements
in the depth estimation task. Motivated by these findings,
we exploit readily-available panoptic segmentation models
as guidance to bridge the gap between two different domains
and to improve monocular depth estimation.

Domain adaptation approaches benefit from pseudo-
labelling (Chen et al., 2019a; Saito et al., 2017) and consis-
tency of predictions in the source and target domains (Zhao
et al., 2019; Chen et al., 2019d). Therefore, we propose an
approach that leverages semantic annotations to enforce con-
sistency for depth estimation between the two domains, and
to provide depth pseudo-labels to the target domain by using
the size of the detected objects. Figure 1 shows an overview
of the task. Our main contributions are: (1) the proposal
of an approach to form depth pseudo-labels in the target
domain by using object size priors, which are learnt in an
instance-based manner in the annotated source domain; (2)
the introduction of a consistency constraint with predictions
from a second model trained on high-level semantics and
low-level edge maps; (3) state-of-the-art results in the task
of monocular depth estimation without self-supervision with
domain adaptation from VirtualKITTI (Gaidon et al., 2016)
to KITTI (Geiger et al., 2012).

In this paper, we extend the original Depth Estimation via
SemanticConsistency (DESC) (Lopez-Rodriguez&Mikola-
jczyk, 2020) work by expanding the experimental section to
add new settings and ablation studies, and also by including
recent domain adaptation works. The new experiments con-
tain improvements over the original DESC by combining our
semantic consistency modules with advancements in image
transfer modules, and also by using an ImageNet-pretrained
encoder following state-of-the-art depth estimation works.
Furthermore, we extend the evaluation of DESC by adding
an analysis of the generalization capabilities on Make3D,
results in a semi-supervised setting proposed by past works,
and a largely extended assessment of its performance both
quantitatively and qualitatively.

2 RelatedWork

2.1 Monocular Depth Estimation

Self-Supervision Early depth estimation methods relied on
supervised training, using annotations from LiDAR (Geiger
et al., 2012) or structured light scanners (Silberman et al.,
2012). Due to the difficulty of obtaining depth annotations,

several works have focused on using either stereo pairs or
video self-supervision. Xie et al. (2016) regressed a dis-
cretized disparity map and used a pixel-wise consistency
loss with a second camera view, and Garg et al. (2016)
extended it to predict continuous depth values. The accuracy
was further improved in Monodepth (Godard et al., 2017)
by forcing the network to predict from a single image both
left and right disparities and adding a consistency term. A
stereo pair was used in Luo et al. (2018) to supervise a
model that synthesized the right view from the left image,
and then processing both views by a stereo-matching net-
work.Other notable approaches include the use of adversarial
techniques and cycle-consistency (Pilzer et al., 2019a, b).
Stereo images are not always available, hence video self-
supervision has also been researched. Simultaneous learning
of depth and pose was addressed in Zhou et al. (2017), which
given three video frames, projected the t + 1 and t − 1 views
to the reference view t . Joint pose, depth and optical flow
learning was proposed in GeoNet (Yin & Shi, 2018), and
Monodepth2 (Godard et al., 2019) focused on improving the
pixel reprojection loss and the multiscale loss.

2.2 Depth and Semantic Information

Depth and semantic information have been utilized simulta-
neously to improve depth estimation. The two predominant
trends involve either using a multi-task approach to improve
the depth predictor features, or using the semantic masks to
regularize (e.g., smoothness, edge alignment) and/or filter
(e.g., dynamic objects for self-supervision) the depth maps.

Multi-task learning of depth and semantic tasks has been
proposed in multiple works. Mousavian et al. (2016) trained
a single network for both semantic and depth prediction in
a multi-task manner by using a shared backbone and task-
specific layers. In that direction, Chen et al. (2019b) trained
a network capable of selecting between depth or semantic
segmentation output by only changing an intermediate task
layer. Several works (Jiao et al., 2018; Choi et al., 2020; Li et
al., 2020; Zhang et al., 2018) proposed novel units to share
information between the two tasks,which improved the depth
features. Atapour-Abarghouei and Breckon (2019) assumed
the availability of temporal information in training and test
time to fuse multiple frames for depth and semantic segmen-
tation prediction. Guizilini et al. (2020) used a pretrained
semantic segmentation network to guide the feature maps of
the depth network using pixel-adaptive convolutions.

Regularization of Depth with semantic information has
also been done to improve depth prediction quality. In
that direction, MegaDepth (Li & Snavely, 2018), a diverse
Structure-from-Motion and Multi-View Stereo depth dataset
collected from the internet, used semantic information to
filter spurious depth values and to define ordinal labels.
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Fig. 1 Overview of the data available and proposed supervision. The
source domain S contains both RGB and ground truth depth data, and
the target domain T contains RGB data only. We train a depth estima-
tion model to achieve high performance in T by leveraging semantic

annotations to introduce semantic consistency in T . The semantic anno-
tations are obtained using a panoptic segmentation model trained with
external data

Some works used precomputed object instances masks by
filtering the dynamic objects from the photometric loss
in a video self-supervision setting (Casser et al., 2019;
Meng et al., 2019; Kirillov et al., 2020). Related to our
work, Struct2Depth (Casser et al., 2019), apart from filter-
ing dynamic objects from the photometric loss, also used
predicted instance masks to impose a object size-depth con-
straint by learning a single object height for all the car
instances. Kirillov et al. (2020) trained a semantic segmenta-
tion branch used to detect dynamic objects, filtering out those
that aremovingwhile learning from those that are static (e.g.,
parked cars). Zhu et al. (2020) used semantic maps to reg-
ularize the depth edge of object instances using a morphing
operator and a consistency loss, which aimed to tackle the
bleeding artifacts in a stereo supervised method. Following
this depth edge regularization approach, Saeedan and Roth
(2021) employed panoptic maps to force a depth disconti-
nuity in the instance edges, and also for stereo consistency,
which alleviates some issues with photometric consistency
(e.g., non-Lambertian surfaces).

2.3 Domain Adaptation

Domain adaptation is attracting an increasing attention due
to the lack of a sufficient volume of annotated data for
supervised training. It showed some success in areas such
as classification (Saito et al., 2017; Tzeng et al., 2017) and
semantic segmentation (Chen et al., 2019d; Tsai et al., 2018).
Popular approaches include style adaptation of the source
data to match the target data (Hoffman et al., 2018; Lopez-
Rodriguez et al., 2020), adversarial approaches to match
either the features (Ganin & Lempitsky, 2015; Tzeng et al.,
2017) or outputs (Tsai et al., 2018) of the domains, and using
pseudo-labels (Chen et al., 2019a; Saito et al., 2017).

Depth Estimation Image translation techniques have been
widely used for domain adaptation in depth estimation tasks
due to its success in decreasing the domain gap (Atapour-
Abarghouei et al., 2018; Zhao et al., 2019; Zheng et al., 2018;
PNVR et al., 2020; Cheng et al., 2020). Atapour-Abarghouei
et al. (2018) generated synthetic data using the video-
game GTA V and used a cycle-consistency image-transfer
approach, which also added computational burden by trans-
lating the target images during inference. Our base DESC
approach (Lopez-Rodriguez & Mikolajczyk, 2020) uses the
strategy presented in T2Net (Zheng et al., 2018), which per-
forms image translation without a cycle-consistency loss,
reducing the complexity and the number of networks needed,
and additionally removing any need for inference-time trans-
lation contrary to Atapour-Abarghouei et al. (2018). Several
works have built upon T2Net (PNVR et al., 2020; Cheng
et al., 2020). GASDA (Zhao et al., 2019) focused on the
scenario where stereo supervision is available in the target
domain, and added stereo photometric guidance and depth
prediction consistency between original and style-transferred
target domain images. GASDA (Zhao et al., 2019) also
increased the test-time complexity by averaging the predicted
depth map of the original and the style-transferred target
images. SharinGAN (PNVR et al., 2020) modified T2Net
by transforming both the target and source images into a
shared intermediate domain using a shared generator, which
improved results also at the cost of increased complexity at
test time. Another improvement over T2Net was given by
S3Net (Cheng et al., 2020), which focused on the combi-
nation of synthetic ground truth, predicted semantic maps
(also used at test time) and real video self-supervision. In
S3Net (Cheng et al., 2020), extra constraints were imposed
in the translation step, namely: multi-frame photometric con-
sistency and semantic consistency using segmentation maps.
Contrary to these methods, AdaDepth (Nath Kundu et al.,
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Fig. 2 Overview of the approach. We train a depth estimation network
GD with both target T and source S images. Source images are adapted
to the style of the target images. For S, we use ground truth supervi-
sion, while we enforce consistencywith semantic information in T . The
consistency is enforced with (1) predictions from a second network GS

trained with edges and semantic maps as input, and (2) depth pseudo-
labels formed using an instance height ĥ predicted by Gh . Both GS and
Gh are trained using ground truth data from S. The architecture of Gh
is given in the top right. We use ReLU between the layers of Gh

2018) did not use any image translation and employed instead
an adversarial approach to align both output and feature
distributions between the source and target domain, along
with a feature consistency module to avoid mode collapse.
MonoDEVSNet (Gurram et al., 2021), which similarly to
S3Net (Cheng et al., 2020) used video self-supervision for the
real domain, focused on absolute scale depth prediction and
employed semantic maps for source data weighting. Mon-
oDEVSNet also used a feature adaptation approach similarly
to AdaDepth, but using instead a gradient-reversal layer. In a
multi-task setup, Kundu et al. (2019) proposed a cross-task
distillation module and contour-based content regularization
to extract feature representations with greater transferability.

Beyond Unsupervised Domain Adaptation In a semi-
supervised domain adaptation task, ARC (Zhao et al., 2020)
also used image translation, in this case to remove the clutter
from the real domain before depth prediction. ARC follows
the hypothesis that, compared to the cleaner synthetic images,
the clutter and novel objects in real data is the reason for
the domain gap. In a domain generalization context, S2R-
DepthNet (Chen et al., 2021) used only synthetic data to
train a model capable of generalizing to unseen real data.
S2R-DepthNet uses two extra networks to transform both
the synthetic and real data into images containing mostly
structural edges needed for depth estimation, thus remov-
ing unnecessary information (e.g., textures) and reducing the
domain gap.

Synthetic Data Several synthetics datasets that can be used
for depth estimation have been developed, especially within
driving scenarios. Virtual KITTI (Gaidon et al., 2016) pro-
vides a synthetic version of KITTI, which was improved in

the follow-up Virtual KITTI 2 (Cabon et al., 2020). SYN-
THIA (Ros et al., 2016) provides multi-camera images and
depth annotations, whereas CARLA (Dosovitskiy et al.,
2017) offers a simulated environment where virtual cam-
eras can be placed arbitrarily. In non-driving settings, some
synthetic datasets that provide depth annotations are also
available (Mayer et al., 2016; Li et al., 2018a).

Positioning of DESC Similarly to T2Net and AdaDepth,
and contrary to methods focusing on real domain stereo
(GASDA, SharinGAN) or video (MonoDEVSNet, S3Net)
self-supervision, we focus on the setting where no self-
supervision is available in the target domain, where we
report state-of-the-art results. Semantic information is also
employed in works concurrent to or newer than the origi-
nal work in DESC (Lopez-Rodriguez &Mikolajczyk, 2020),
specifically for image translation improvement and input
augmentation (S3Net) or source data weighting (MonoDE-
VSNet). Unlike those works, we use semantic information
to bring guidance in the output map inspired by consistency-
based domain adaptation works (Roy et al., 2019; French et
al., 2018; Sajjadi et al., 2016). First, we leverage ideas from
Struct2Depth (Casser et al., 2019) to form target domain
pseudo-labels, albeit we predict an individual height per
instance by using source domain ground truth as guidance.
Secondly, motivated by the low domain-gap of segmenta-
tion maps, also noted in a concurrent work (Zhao et al.,
2020), we force consistency in the output map between two
networks with different input representations (RGB, and
Semantic+Edges). As we focus on output map guidance,
we do not add any extra computationally burden contrary
to some of the past methods (e.g., GASDA, SharinGAN or
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Fig. 3 Intra-class variation of detected instances, wherewe show exam-
ples variations of the pose of a detected person (top row), missing bike
handlebar (middle row) and occlusion effects on a detected car (bottom
row)

S2R-DepthNet), and we do not use any semantic informa-
tion at test time contrary to S3Net. Furthermore,DESCcan be
combined with different image-transfer variants, as shown in
Sect. 4.2 in the improvement achieved using strategies from
T2Net, SharinGAN or S2R-DepthNet.

3 Method

In this section, we introduce our domain adaptation forDepth
Estimation via Semantic Consistency (DESC) approach.
An overview is presented in Fig. 2. During inference we
only apply our depth estimation network GD to our target
images, except when using other image translation strategies
inSect. 4.2. Semantic annotations are predicted for our source
and target datasets using a panoptic segmentationmodel (Kir-
illov et al., 2019b) trained with external data, providing per
image detected instances and a semantic segmentation map.

3.1 Pseudo-labelling Using Instance Height

The height of the detected object instances can provide a
strong cue for distance estimation, hence we aim to use the
detected instances to provide a guidance in the target domain
by generating pseudo-labels from the predicted height. To
do so, we leverage the work in Struct2Depth (Casser et al.,
2019), which used the instance height to deal with mov-
ing objects in video self-supervision. Thus, Struct2Depth
retrieved an approximate distance to the objects by solving

D̂ ≈ f · h
H

(1)

where D̂ is an approximate distance to the object, f is the
focal length in pixels, H is the predicted instance size in pix-
els and h is the physical height of the object. It is assumed
that the entire object instance is placed at a distance D̂, that
f is known, and that the real object size h is unknown. In

Struct2Depth (Casser et al., 2019), the object size was set as
a shared learnable parameter ĥ for the class car, i.e., all of
the detected instances of class car were assumed to have the
same height. We argue that predicting a ĥ per object instance
rather than class can provide a better height estimate, as it can
take into account both intra-class variations and occlusions
in the detected instances. Figure 3 shows some examples
of cases of intra-class variations in the detected instances,
which affect the height H of the detections in pixels, e.g., the
obtained H for the bottom-right car only takes into account
part of the car due to occlusion effects. A unique predicted
height per class cannot correct for those variations, and thus
we need to estimate an instance-based physical height ĥ to
obtain a more accurate depth when using Eq. (1). Further-
more, instead of learning ĥ in an unsupervised manner as
in Struct2Depth (Casser et al., 2019), we can improve the
estimation using source domain data. Therefore, we use a
networkGh , with a simple architecture presented in Fig. 2, to
predict a ĥi for an instance i from thedimensions of its bound-
ing box, the detected binary instance mask and the predicted
class label. Gh can use the predicted class to learn a range of
suitable values of ĥ for the detected instance, and then correct
for pose variations, occlusions or other intra-class effects by
using the bounding box and binary instance mask. We train
Gh using labels in the source data by retrieving hGT ,i , which
is the ground truth physical object size for instance i . To

retrieve hGT ,i we use hGT ,i = Hi ·D̂S,i
fS

, where the instance

depth D̂S,i is obtained directly from the depth ground truth.
To obtain D̂S,i we use D̂i = median(MS,i � yS), where
MS,i is the binary segmentation instance mask for a source
domain detected instance i , � refers to the Hadamard prod-
uct, yS is the ground truth depth, and the median operation is
performed only for non-zero values. Thus, Gh is trained on
the source domain withLI ,S = 1

nI

∑
i |ĥS,i −hGT ,i |, where

nI is the number of detected instances. In the target domain,
Gh is used to predict a height ĥT ,i for a detected instance i ,
and then ĥT ,i is used to retrieve a depth pseudo-label D̂T ,i

computed usingEq. (1).Weuse the depth pseudo-labels D̂T ,i

to provide supervision for GD in the target domain using a
sum of pixel-wise L1 losses over all detected instances i ,

LI ,T = φ

pI

∑

i

∥
∥
∥
∥
∥

(
D̂T ,i

φ
− GD(xT )

)

� MT ,i

∥
∥
∥
∥
∥
1

(2)

where pI is the sum of non-zero pixels for all the binary
segmentation masks MT ,i , xT is an image from T and φ is
a learnable scalar. The scalar φ is used to correct any scale
mismatch in the predictions ofGD(xT ) due to camera differ-
ences between S and T (He et al., 2018). When computing
D̂T ,i we use the focal length fT of the target domain cam-
era, although as we will show in Sect. 4, φ automatically
scales the values to the correct range even for unknown fT .
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As we use a panoptic segmentation model trained with exter-
nal data to extract semantic annotations, some of the classes
detected may be present in T but not in S, e.g., person in
Virtual KITTI→KITTI. For those classes, Gh can also learn
an instance-based height prior in an unsupervisedmanner via
consistency with GD in LI ,T .

3.2 Consistency of Predictions Using Semantic
Information

Many works (Roy et al., 2019; French et al., 2018; Saj-
jadi et al., 2016) have shown that constraining the learning
process by requiring consistency in a domain adaptation set-
ting reduces the performance gap. Similar observations have
been made in self-supervised learning (Chen et al., 2020),
where a contrastive loss is used between different views of
the same scene obtained via data augmentation. Following
these findings, we enforce consistency between the predic-
tions generated by our main depth estimation network, GD ,
and a secondary network, GS . Instead of using data augmen-
tation techniques to generate another view to input to GS ,
we aim to use low domain-gap modalities to increase the
generalization ability of the network. Hence, input data xSem
is formed by two channels that have a low domain gap: a
semantic segmentation map and an edge map.

Semantic StructureA semantic segmentation map provides
information on the high-level structure of the scene, and this
high-level structure helps to predict the depth structure. Sim-
ilarly to the observation made by concurrent work (Zhou et
al., 2020) to our original DESC work (Lopez-Rodriguez &
Mikolajczyk, 2020), we notice that datasets are more similar
in their high-level structures or presented semantic scenes
compared to their RGB similarity due to differences on the
quality of textures, illumination or models, among others.
The semantic segmentation map is introduced in the form
of an integer corresponding to the semantic class label, as
we experimentally found it to yield better performance than
one-hot encoding.

Edge Map Deep learning networks tend to use texture
cues (Geirhos et al., 2019) for predictions. We use an edge
map to reduce the impact of the texture differences between
domains, and to provide a different data modality to the net-
work. Furthermore, edgemaps include information about the
shapes of objects that is valuable in depth related tasks (Hu
et al., 2019; Huang et al., 2019). Edges also give comple-
mentary information to the semantic maps and, compared to
RGB images, present less variation and need less adaptation
in domains with semantically similar scenes.

Consistency As both networks GD and GS receive different
input modalities, forcing consistency between them for the
predictions of the target domain can significantly increase

the target-domain performance of both models. We propose
to supervise GS with source domain depth ground truth yS
by using a pixel-wise L1 loss,LCon,S , and then force consis-
tency of predictions in the target domain via LCon,T . Then,
assuming N is the total number of pixels,

LCon,S = 1

N
‖GS(xSem,S) − yS‖1

LCon,T = 1

N
‖GD(xT ) − GS(xSem,T )‖1 (3)

3.3 Training Loss

We now present the modules used in DESC in addition to
our semantic consistency losses.

Depth Estimation LossOur model GD outputs a multiscale
prediction that is supervised using source domain ground
truth with LD , which is a pixel-wise L1 loss (Zheng et al.,
2018; Zhao et al., 2019). The ground truth is resized to match
the resolution of each of the maps output by GD , and specif-
ically the model we use for GD outputs maps at 4 different
scales, where each subsequent map doubles both its width
and height. Thus, LD is defined as:

LD = 1

N

∑

s

‖GD(xS)s − yS,s‖1 (4)

where s refers to the scale of the prediction and yS,s is the
resized source ground-truth to match the resolution of the
prediction GD(xS)s .

Image Translation has been demonstrated to effectively
reduce the domain gap (Zhao et al., 2019; Zheng et al., 2018).
In our base DESC (Lopez-Rodriguez &Mikolajczyk, 2020),
we adopt the approach from T2Net (Zheng et al., 2018),
where a network GS→T translates the source image to the
target domain without cycle consistency. T2Net (Zheng et
al., 2018) uses a least-squares adversarial term LGAN (Mao
et al., 2017) to produce examples xS→T having a simi-
lar distribution to xT , and leverages the constraint imposed
by LD to ensure xS→T is geometrically consistent with
xS . The method also uses a L1 identity loss LI DT =
1
N ‖GS→T (xT ) − xT ‖1 to force GS→T (xT ) ≈ xT , i.e.,
LI DT forces GS→T to behave as an identity mapping for
xT . In this follow-up work to DESC (Lopez-Rodriguez &
Mikolajczyk, 2020), we also present results in Sect. 4.2
when using newer image translation techniques such as
SharinGAN (PNVR et al., 2020) and S2R-DepthNet (Chen
et al., 2021), which yield improved results compared to using
the T2Net-approach.

Smoothing We use for the target data the smoothing term
LSm introduced in Monodepth (Godard et al., 2017), and
successfully used in domain adaptation (Zheng et al., 2018;
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Zhao et al., 2019)methods for depth estimation. The smooth-
ing term encourages the predicted depth map to be locally
smooth except in those areas where there are large gradients
in the RGB image, as those regions are likely to have depth
discontinuities. LSm is thus defined as:

LSm =
∑

s

1

2s N

∑

i, j

|∂xGD(xT )s |e−‖∂x xT i, j‖

+ |∂yGD(xT )s |e−‖∂y xT i, j‖
(5)

where i, j refer to pixel i, j , and ∂x and ∂y are the gradients
in dimensions x and y. As Eq. (5) shows, the weight of LSm

is reduced by 2s for the higher resolution predicted depth
maps.

Overall Loss Our final model is trained using the following
loss

L = λS(LD + LCon,S + LI ,S) + λT (LCon,T + LI ,T )

+ λSmLSm + λI DTLI DT + λGANLGAN (6)

where λS , λT , λSm, λI DT , λGAN are hyperparameters to
balance the different terms.

4 Experiments

Wediscuss the experimental setup before presenting our eval-
uation results.

Setup We use Pytorch 1.4 and an NVIDIA 1080 Ti GPU.
We obtain the semantic annotations, in both S and T , by
using a ResNet-101 (He et al., 2016) panoptic segmentation
model (Kirillov et al., 2019a) trained on COCO-Stuff (Lin
et al., 2014; Caesar et al., 2018) from the Detectron 2
library (Wu et al., 2019). We employ a VGG-based U-
Net (Ronneberger et al., 2015) for GD and GS , and a
ResNet-based model for GS→T . Both image translation and
depth estimation architectures are the same as the architec-
tures used in Zheng et al. (2018) and Zhao et al. (2019).
Following Zhao et al. (2019), we set λS = 50, λGAN = 1,
λSm = 0.01, and following Zheng et al. (2018) we set
λI DT = 100. Similarly to the original implementation
of Zhao et al. (2019), we first pretrain the networks to reach
good performance in S before introducing the consistency
terms, i.e., with λT = 0. Afterwards, we freeze GS→T to
reduce the memory footprint, and we introduce the semantic
consistency terms by setting λT = 1 unless stated otherwise.
The batch size is set to 4, with a 50/50 target and source
data ratio, we use Adam (Kingma & Ba, 2015) with learning
rate 10−4 and we train for 20000 iterations after pretrain-
ing. To obtain the edge map for GS we use a Canny Edge

detector (Canny, 1986). We randomly change the brightness,
saturation and contrast of the images for data augmentation.

Virtual KITTI→KITTI We follow the same experimental
settings as in Zheng et al. (2018) and Zhao et al. (2019).
Both Virtual KITTI (Gaidon et al., 2016) and KITTI (Geiger
et al., 2012) images are downscaled to 640 × 192, and fol-
lowing Zheng et al. (2018) we cap the Virtual KITTI (Gaidon
et al., 2016) ground truth depth at 80m.

Cityscapes→KITTI Cityscapes (Cordts et al., 2016) pro-
vides disparity maps computed using Semi-Global Match-
ing (Hirschmuller, 2007). We use the official training set,
consisting of 2975 images of size 2048 × 1024. We set the
horizon line approximately in the center by cropping the
upper part, resulting in images of 2048 × 964. We then take
the 2048×614 center crop to have the same aspect ratio as in
KITTI and rescale the images to 640× 192. We use λT = 5
for this experiment.

Evaluation on KITTI. We follow the same evaluation pro-
tocol, metrics and splits as in Eigen et al. (2014) for KITTI,
using the evaluation code from Monodepth2 (Godard et al.,
2019). The predictions are upscaled tomatch the ground truth
size. The results are reported using median scaling as in past
methods (Nath Kundu et al., 2018; Casser et al., 2019; Zhou
et al., 2017), except when using stereo supervision in KITTI
or in a semi-supervised regime. We provide results for both
ground truth depth capped at 80m and between 1 and 50m
as done in Zhao et al. (2019) and Zheng et al. (2018).

4.1 Results onVirtual Kitti→Kitti

Comparison with State-of-the-Art Table 1 compares the
performance of DESC with the state-of-the-art Virtual
KITTI→KITTI methods that do not use stereo nor video
self-supervision in KITTI. DESC performs better than
AdaDepth (Nath Kundu et al., 2018) and T2Net (Zheng et
al., 2018), with a Sq. Rel. error almost 24% lower than
T2Net. Compared to S3Net (Cheng et al., 2020), which also
uses semantic information during training, DESC performs
better in most metrics than S3Net but is outperformed by
S3Net (Test Semantic), as the latter employs semantic maps
during test time. The recent domain generalization method
S2R-DepthNet (Chen et al., 2021), published after DESC
(Lopez-Rodriguez & Mikolajczyk, 2020), achieves compa-
rable results to DESC without using any KITTI data during
training, especially in the 80m cap setting. In Sect. 4.2, we
explore the combination of S2R-DepthNet andDESC, which
improves notably the results of the original DESC. Figure 4
shows some predictions of our DESC method compared to
T2Net, which we build upon. DESC contains fewer high-
error regions than T2Net (Zheng et al., 2018) due to the
guidance provided byGS , as shown in the upper-right wall of
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Table 1 Results for Virtual KITTI→KITTI in KITTI (Geiger et al., 2012) Eigen (Eigen et al., 2014) split

Method Lower is better Higher is better

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Cap 80 m

AdaDepth (Nath Kundu et al., 2018) 0.214 1.932 7.157 0.295 0.665 0.882 0.950

T2Net (Zheng et al., 2018) 0.173 1.396 6.041 0.251 0.757 0.916 0.966

S2R-DepthNet (Chen et al., 2021) 0.162 1.339 5.684 0.232 0.786 0.934 0.974

DESC 0.156 1.067 5.628 0.237 0.787 0.924 0.970

Cap 50 m

AdaDepth (Nath Kundu et al., 2018) 0.203 1.734 6.251 0.284 0.687 0.899 0.958

T2Net (Zheng et al., 2018) 0.165 1.034 4.501 0.235 0.772 0.927 0.972

S2R-DepthNet (Chen et al., 2021) 0.155 0.997 4.327 0.220 0.799 0.941 0.978

S3Net (Cheng et al., 2020) 0.154 0.993 4.449 0.224 0.799 0.936 0.975

DESC 0.149 0.819 4.172 0.221 0.805 0.934 0.975

S3Net (Test Semantic) (Cheng et al., 2020) 0.145 0.887 4.218 0.215 0.813 0.941 0.977

For a fair comparison, we use the official pretrained models given by T 2Net and S2R-DepthNet to recompute the results using median scaling.
S3Net is the best reported result in Cheng et al. (2020) not using any semantic maps at test time, whereas S3Net (Test Semantic) uses semantic maps
both at train and test time. S2R-DepthNet (Chen et al., 2021) is a domain generalization method that does not use any KITTI data during training
Bold values refer to the best performance obtained per metric and category

the predictions in the first row. The geometry of the instances
in our method tends to be complete, e.g., the cars of the sec-
ond row and the larger car in the first row, which has large
missing parts in the T2Net prediction. The last row in Fig. 4
also shows that DESC produces less detailed regions due to
the consistency term with GS blurring the predictions and
removing some fine structures.
Ablation Study Table 2 shows an ablation study of DESC.
The result marked with +Img correspond to T2Net (Zheng
et al., 2018) without the adversarial feature module, and with
a lower smoothing weight λSm as we use λSm = 0.01 instead
of the λSm = 0.1 used for the T2Net implementation shown
in Table 1. The lower λSm we use accounts for the better
results of T2Net in Table 1. We chose a smaller λSm for our
experiments because a larger λSm blurs the predictions, lead-
ing to a worse result after enforcing consistency withGS due
to the loss of detail. However, when consistency with GS

is not applied, a larger λSm is beneficial as shown by the

improved results of +Img.+Ins. (λSm = 0.1) compared to
+Img.+Ins.. Both the instance-based pseudo-labelling and
consistency with GS modules bring an improvement as
shown in +Img.+Ins. and +Img.+Con. compared to +Img.
Using the consistency term when only edge maps are input
into GS improves most metrics as shown in +Img.+Con.
(only edges), although it also shows that inputting the seman-
tic map into GS is largely beneficial. DESC − Full shows
an improvement in all metrics, also compared to learning
a single h per class in DESC − Full (1 h per class) as
in Struct2Depth (Casser et al., 2019). For DESC − Full
(unknown fT ) we set fT to half the actual value, obtaining
comparable results to when using the correct value of fT ,
i.e., inDESC−Full. This result shows that φ in Eq. (2) auto-
matically scales the instance size pseudo-labels to the correct
range for unknown fT . Figure 5 shows some visual examples
of the baseline with image translation (Img), of GD trained
with the two different losses we propose (Img+Ins and

Fig. 4 Qualitative results in KITTI for models trained on Virtual KITTI→KITTI. Ground truth depth is linearly interpolated for visualization.
Green bounding boxes refer to areas of the prediction more accurate compared to the corresponding red bounding boxes (Color figure online)
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Fig. 5 Qualitative results of our ablation study. Img corresponds to
our model trained with only the image translation module, Img +
Ins combines the image translation module with the instance-based

pseudo-labelling proposed in Sect. 3.1, Img + Con combines the
image translation module with the consistency loss in Sect. 3.2, and
DESC − Full is our complete pipeline

Img+Con), and of our full DESC pipeline. Figure 5 shows
that adding the instance-based pseudo-labelling (Img+Ins)
results in better completeness of the different instances com-
pared to the T2Net-based baseline (Img), which can be
observed in e.g., the black car in the fifth row or the red van
in the first row. Our consistency loss (Img+Con) improves
in turn the overall structure of the scene, e.g., it corrects the
missing depth values in the first-row wall or the errors on the

road in the second row.We also observe how our consistency
loss results in a loss of details as it tends to smooth the pre-
dictions. Finally, the full model (DESC−Full) combines the
better scene structure and higher smoothness obtained when
using the consistency loss, with the better instance complete-
ness obtained with the instance-based pseudo-labelling loss.
Virtual KITTI 2 (Cabon et al., 2020) is an updated version
of Virtual KITTI that replicates Virtual KITTI while improv-

Table 2 Ablation study of DESC for Virtual KITTI→KITTI in Eigen split (Eigen et al., 2014) capped at 80 m

Method Lower is better Higher is better

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Only source (Zhao et al., 2019) 0.223 2.205 7.055 0.305 0.672 0.872 0.945

+Img. 0.199 2.436 7.137 0.280 0.753 0.890 0.950

+Img. + Con. (only edges) 0.187 1.330 6.094 0.258 0.708 0.905 0.966

+Img. + Con. 0.173 1.235 5.776 0.244 0.748 0.919 0.969

+Img. + Ins. 0.171 1.332 5.818 0.250 0.771 0.918 0.966

+Img. + Ins. (λSm = 0.1) 0.165 1.157 5.670 0.245 0.774 0.921 0.968

DESC−Full (1 h per class (Casser et al., 2019)) 0.160 1.107 5.746 0.243 0.780 0.920 0.968

DESC−Full (unknown fT ) 0.156 1.084 5.654 0.237 0.783 0.926 0.971

DESC−Full 0.156 1.067 5.628 0.237 0.787 0.924 0.970

DESC−Full (VKITTI2) 0.155 1.097 5.597 0.238 0.786 0.926 0.970

DESC−Full (R50) 0.160 1.207 6.034 0.248 0.777 0.918 0.965

DESC−Full (R50-ImageNet Pretr.) 0.149 1.026 5.476 0.228 0.797 0.935 0.975

EfficientPS Panoptic Maps 0.156 1.067 5.559 0.238 0.781 0.926 0.970

GS− Synth 0.186 2.164 7.011 0.282 0.763 0.894 0.949

GS− DESC 0.155 1.146 5.601 0.232 0.789 0.930 0.974

GS− Synth + Stereo 0.136 1.206 5.598 0.235 0.822 0.932 0.969

Img. refers to using image translation, Ins. to using instance-height pseudo-labels (Sect. 3.1) and Con. to the consistency of predictions constraint
(Sect. 3.2)
EfficientPS Panoptic Maps refers to our DESC - Full pipeline trained with panoptic maps from EfficientPS (Mohan and Valada, 2021) trained on
Cityscapes (Cordts et al., 2016) instead of the Detectron2 (Wu et al., 2019) trained on COCO (Lin et al., 2014; Caesar et al., 2018) we use for the
rest of the experiments. We also include the results obtained when evaluating the output of the network GS when GS is trained only with dense
supervision from the source data (GS - Synth), after our full pipeline (GS - DESC), and when trained jointly with synthetic dense supervision and
target-domain stereo data (GS - Synth + Stereo)
Bold values refer to the best performance obtained per metric with our main GD model
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Table 3 Results on KITTI Eigen split (80 m cap) for methods using stereo data in KITTI

Method Lower is better Higher is better

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Virtual KITTI→ KITTI

Source + Stereo 0.131 1.154 5.518 0.227 0.837 0.937 0.971

T2Net (Zheng et al., 2018) + Stereo 0.126 1.114 5.429 0.223 0.839 0.938 0.971

GASDA (Zhao et al., 2019) 0.124 1.018 5.202 0.217 0.846 0.944 0.973

DESC + Stereo 0.119 0.935 5.050 0.217 0.843 0.942 0.974

SharinGAN (PNVR et al., 2020) 0.116 0.939 5.068 0.203 0.850 0.948 0.978

Only KITTI

Monodepth2 (w/o pre.) (Godard et al., 2019) 0.130 1.144 5.485 0.232 0.831 0.932 0.968

Monodepth2 (ImageNet pre.) (Godard et al., 2019) 0.109 0.873 4.960 0.209 0.864 0.948 0.975

Due to an evaluation error in Zhao et al. (2019), results from GASDA are recomputed using the official pretrained models. We include one of the
state-of-the-art stereo-trained methods Monodepth2 (Godard et al., 2019)
Bold values refer to the best performance obtained per metric for the models leveraging both Virtual KITTI and KITTI data, which do not use a
network pretrained on ImageNet

Fig. 6 Qualitative results of GS and GD before (GD − Img and GS − Synth) and after (GD − DESC and GS − DESC) consistency training

ing the visual quality of the synthetic images. We include in
Table 2 the performance of DESC when using Virtual KITTI
2 as our source data. Despite the higher-quality synthetic
images, the results of DESC are comparable when using
either Virtual KITTI or Virtual KITTI 2, which we attribute
to the image translation module outputting similar source to
target translations to those when using Virtual KITTI.

ImageNet Pretrained GD . Our GD network is a randomly
initialized VGG-based model, which was also employed in
past domain adaptation works (Zheng et al., 2018; Zhao et
al., 2019). However, some state-of-the-art depth estimation
works (Godard et al., 2019) use a ResNet-based network
initialized with ImageNet weights, as transfer learning has
proven to be beneficial for depth estimation (Alhashim &
Wonka, 2018). In that direction, we run our DESC approach
using for GD the ResNet50-based network (He et al., 2016)
with an ImageNet pretrained encoder given in the Mon-
odepth2 (Godard et al., 2019) implementation. Compared
to our original VGG-based U-Net, we obtain lower perfor-
mance with the randomly initialized ResNet-50 as shown in
DESC−Full(R50) in Table 2. However, when using an Ima-
geNet initialized encoder, line DESC− Full (R50-ImageNet
Pretr.) in Table 2, the absolute relative error is improved by

4.5% compared toDESC−Full, which highlights the impor-
tance of ImageNet pretraining also in a domain adaptation
setting as we obtain faster training and better performance.

PanopticModel For the semantic segmentation map used in
GS we leveraged a COCO-trained model using the Detec-
tron 2 (Wu et al., 2019) library. However, COCO includes
both high diversity images and classes that are not relevant
to the driving data in KITTI/Virtual KITTI. For that reason,
we aim to test if using the panoptic predictions from a model
trained in amore similar domain, in this case the state-of-the-
art method EfficientPS (Mohan & Valada, 2021) trained on
Cityscapes (Cordts et al., 2016), has an impact on the perfor-
mance. Table 2 shows that the results are comparable formost
metrics when using either Detectron2, line DESC − Full, or
EfficientPS, in the line EfficientPS Panoptic Maps. This sim-
ilarity of results suggests that using a panoptic segmentation
model trained on a more general dataset, i.e., COCO, seems
to not degrade the performance compared to selecting amore
domain-specific panoptic model.

Performance of GS . Table 2 includes the results of GS

after being trained only with Virtual KITTI data (GS- Synth),
and when combining Virtual KITTI dense supervision and
KITTI stereo supervision (GS- Synth+Stereo). Even though
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Fig. 7 Qualitative results of GS , which takes as input the concatenation of the semantic and edge map

GS only leverages edges and semantic information, the per-
formance of GS with stereo supervision is comparable to
the main network GD with stereo supervision (Table 3, line
Source+Stereo). Furthermore, we argue that the improved
results of GD after applying semantic consistency (Table 2,
line +Img.+Con.) compared to only using image translation
(Table 2, line +Img) are not due to a distillation process, i.e.,
due to GS having a higher accuracy and transferring its per-
formance to GD after source data pretraining. Instead, the
lower performance of GS- Synth compared to both GD after
applying semantic consistency (+Img.+Con.) and GS after
full training (GS-DESC), suggests that consistency between
predictions from different modalities constrains the learning
process and is the reason for the accuracy increase, as both
GD and GS models benefit from the consistency loss term.
On that note, Fig. 6 shows that before applying consistency
training (second and third column), both models differ in the
artifacts and errors shown due to the different input modali-
ties used. For example, GD shows an incorrect prediction on
the right sidewall of the three given examples andmistakes an
illumination effect as a depth change in the left-side car in the
second row. However, asGS uses semantic and edge maps as
inputs, it provides a smoother prediction on those walls and
is not as affected by illumination changes, but presents other
types of artifacts. Our consistency loss forces the models to
agree and corrects those mistakes in bothGS andGD (fourth
and fifth column), which leads to a better scene structure but
also to a loss of details. Furthermore, in Fig. 7 we show some
examples of both inputs and predictions of our GS module.
The module is highly guided by the semantic segmentation
mask, where errors in the prediction (e.g., missing part of
the left van in the top image and non-straight edges in the
bottom right car in the middle row) translate to errors in the
prediction. The edge map does help recover some details,
e.g., the car windows, but overall the resulting predictions
are smooth (e.g., foliage in the bottom row prediction) due
to the difficulty of predicting high-frequency changes from
edges and semantic maps.

Performance of Gh . We now test the performance of our
instance height pseudo-labelling approach. Table 4 shows
the errors when directly evaluating the pseudo-label obtained
combining Eq. (1) and our fully-trained Gh . We also include
the performance when using in Eq. (1) the optimal per-class
h (Opt. Class h), which is obtained by finding the per-class
value thatminimizes theAbsRelmetric in the test set, and acts
as an upper bound of the performance possible to obtain using
a single h per class. Our trainedGh is capable of outperform-
ing the optimal per-class h in most metrics, which validates
the choice of an instance-based height predictionmethod.We
also show that introducing our instance-based pseudo-labels

Table 4 Results on KITTI Eigen split (cap 80 m) for three common
classes (car, person, bike) using the same Detectron 2 library we lever-
age during training

Method Lower is better

Abs Rel Sq Rel RMSE RMSE log

Car

Opt. Class h 0.205 1.665 6.526 0.395

Gh 0.177 1.571 6.628 0.403

GD - Img + Con. 0.207 1.598 6.004 0.324

GD - DESC Full 0.164 1.295 6.240 0.355

Person

Opt. Class h 0.204 2.112 6.574 0.373

Gh 0.202 1.668 6.384 0.362

GD - Img + Con. 0.588 6.307 8.566 0.520

GD - DESC Full 0.273 1.952 6.118 0.362

Bike

Opt. Class h 0.161 0.535 2.548 0.227

Gh 0.146 0.496 2.775 0.207

GD - Img + Con. 0.170 0.493 2.483 0.202

GD - DESC Full 0.153 0.451 2.612 0.211

The results are averaged over all pixels with valid ground-truth, and for
these results no median scaling is applied.Opt. Class h is the value that
achieves the lowest error on the KITTI Eigen split test set, which is 1.50
m for car, 1.65m for person and 1.15 m for bike
Bold values refer to the best performance obtained per metric and
semantic class
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Fig. 8 Qualitative results in KITTI for models trained on Virtual KITTI→KITTI with stereo supervision in KITTI. Bottom row corresponds to a
center crop of the original image

in our GD training (GD − DESC Full) improves the perfor-
mance in the classes shown in Table 4 compared to when
not using our pseudo-labelling approach (GD-Img + Con),
especially in the Abs Rel and Sq Rel metrics.
Stereo Supervision Although DESC focuses on the setting
where no self-supervision is used in T , our approach can
also bring an improvement in such a scenario. We train
DESC adding stereo supervision in KITTI by adding the
same multiple-scale pixel-wise reconstruction method as
in GASDA (Zhao et al., 2019) with the same loss weight
of λSt = 50. To account for the introduced supervision
in T , we increase λT = 5 and the number of train-
ing iterations to 100,000. Table 3 shows that, compared to
T2Net+Stereo, our method with stereo supervision,DESC +
Stereo, achieves better results in all metrics and also outper-
forms GASDA (Zhao et al., 2019) in most metrics. GASDA
is a domain adaptationmethod tailored for stereo supervision
that uses two depth estimation networks and an image-
translation network during inference. The recent stereo-
focused domain adaptation method SharinGAN (PNVR et
al., 2020), which is concurrent to the original DESC (Lopez-
Rodriguez & Mikolajczyk, 2020), performs better in most
metrics than DESC + Stereo due to the improved image
transfer strategy used, although SharinGAN also increases
the computational cost at test time due to using an extra
network. We also report better performance than the state-
of-the-art for stereo supervision, Monodepth2 (Godard et al.,
2019) without ImageNet (Deng et al., 2009) pretraining in
Monodepth2 (w/o pre.). However, ImageNet pretraining has
a large effect on the accuracy of Monodepth2, shown in
Monodepth2 (ImageNet pre.), achieving better results than
our method. Figure 8 shows predictions for domain adapta-
tion methods using stereo supervision in KITTI. Compared
to GASDA, we observe a better recovery of fine structures,
shown in the pole of the first row of Fig. 8, and better predic-
tions of further object instances, shown in the bottom row.
DESC also predicts a better depth for the sky, as shown in
the first row of Fig. 8.

Hyperparameter Selection Theweights associated with the
image translation process were chosen following T2Net val-
ues, however we still need to tune the semantic consistency

Table 5 Results on KITTI Eigen split (cap 80 m) when varying either
the weight of the semantic consistency loss λT , and the number of
training iterations for the last step of training

Method Lower is better

Abs Rel Sq Rel RMSE RMSE log

Variation of λT

λT = 1.0 0.156 1.067 5.628 0.237

λT = 2.0 0.158 1.081 5.816 0.243

λT = 5.0 0.162 1.143 6.044 0.249

Train. It. (λT = 1)

10000 0.158 1.105 5.557 0.236

20000 0.156 1.067 5.628 0.237

40000 0.157 1.077 5.661 0.239

80000 0.159 1.099 5.784 0.244

Default values used in DESC are λT = 1.0 and 20,000 training itera-
tions
Bold values refer to the best performance obtained per metric and cat-
egory

weight λT . In that direction, we include in Table 5 the effects
of varyingλT .Multiplying the originalλT = 1 by 5, i.e., line
λT = 5, the absolute relative error degrades by 4%, although
it still achieves better performance than T2Net (Table 1).
Table 5 also shows the results when varying the number of
training iterations when applying the last semantic consis-
tency step of training. Even though modifying the training
iterations impact the performance and may lead to overfit-
ting for larger training iteration values, the error variation
is less pronounced compared to modifying λT . In practice,
most unsupervised domain adaptation methods use quantita-
tive performance in the target domain to tune to some level
the hyperparameters or the model. Further research needs to
develop reliable methods to avoid any assumption of target
domain ground truth for hyperparameter or model selec-
tion (You et al., 2019).

Distribution of Errors Following Gurram et al. (2021),
we now analyze the obtained error of our methods DESC
and DESC+Stereo for different depth ranges and semantic
classes. As DESC builds upon T2Net, we also include it in
the analysis to better understand the performance improve-
ment given by DESC. Figure 9 shows the distribution of
errors depending on the ground truth value. KITTI concen-
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Fig. 9 Absolute relative error versus ground truth distance for three
different methods in the KITTI Eigen test split. We also include a his-
togram of the ground truth distribution. Left axis shows both absolute
relative error (line plot) and ratio of ground truth values (histogram)

trates most of the ground truth values around 5-20 meters,
where the represented methods also present their lower abso-
lute relative error. Our method, DESC, consistently performs
better than T2Net for depth values under ≈ 65m, however
the performance of DESC drops for depth values close to
80m. Adding stereo information to DESC improves the per-
formance largely for closer depth values (where there are
large disparity shifts) and for larger depth values, whereas
it achieves similar performance to regular DESC for mid-
range values. Figure 10 shows the performance averaged
over all the different semantic classes (we use the EfficientPS
semantic maps trained on Cityscapes for evaluation). DESC
performs better than T2Net in most of the classes, especially
for the detectedobject instances (e.g., car, train or traffic light)
due to the semantic consistency introduced in DESC, which
is also related to the better completeness of object instances
shown in Fig. 4.

4.2 Improved Image Transfer Strategies

The image transfer approachused inDESC(Lopez-Rodriguez
& Mikolajczyk, 2020) is based upon T2Net (Zheng et
al., 2018). However, recent domain adaptation and gener-
alization works outperformed the image transfer method

in T2Net. We now aim to substitute the T2Net strategy
used in DESC by these improved image transfer strategies.
Specifically, we include in DESC the methods presented in
SharinGAN (PNVR et al., 2020) and the domain general-
ization method S2R-DepthNet (Chen et al., 2021), which
were discussed in Sect. 2.3. To apply SharinGAN to DESC
we use the image transfer network pretrained on Virtual
KITTI→KITTI from the official SharinGAN code and keep
it frozen during training. For S2R-DepthNet, we take the offi-
cial pretrained models, which are trained on Virtual KITTI,
and further finetune both the depth network and the atten-
tion network using our semantic consistency modules. For
both SharinGAN and S2R-DepthNet approaches, we trans-
late both target and source data to an intermediate domain
before feeding the images to GD .

Quantitative Results Table 6 shows the results for all the
three image transfer approaches usedwith ourDESCmethod.
Both SharinGAN and S2R-DepthNet further improved the
performance of DESC. Using SharinGAN instead of a T2Net
approach in DESC decreases the absolute relative error in
cap 80m by 2%, whereas using S2R-DepthNet has a larger
impact on the DESC performance, decreasing the absolute
relative error by 7%.DESC-S2R-DepthNet outperforms in all
metrics both the base S2R-DepthNet and base DESC results
given in Table 1. The increased performance achieved when
combining DESC with either method also shows the wide
applicability of DESC to other image translation methods.

Qualitative Results Figure 11 shows examples of image
translations for our trained T2Net approach, the SharinGAN
model and the depth structure output by S2R-DepthNet.
T2Net produces a stronger shift in the Virtual KITTI images
compared to SharinGAN, resembling more the illumination
and textures present in the real KITTI at the cost of introduc-
ing artifacts (e.g., hallucinated trees). Furthermore, Figs. 11
and 12 show that the SharinGAN translations for both Vir-
tual KITTI and KITTI images are quite close to the input
image, suggesting that non-aggressive changes are enough to
achieve good performance. S2R-DepthNet produces images
quite different to those from either T2Net or SharinGAN.

Fig. 10 Distribution of absolute relative error averaged over all pixels for a specific detected class over the KITTI Eigen test split (cap 80m) for
models three different methods trained on Virtual KITTI→KITTI. The percentage of ground truth depth corresponding to each class is given below
each class
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Fig. 11 Qualitative results for three different image transfer strate-
gies. Virtual KITTI images are transferred to either a style matching
KITTI images using a T2Net-based approach or to an intermedi-
ate shared domain with the transferred KITTI images using either

a SharinGAN (PNVR et al., 2020) or S2R-DepthNet (Chen et al.,
2021) approach. The original single-channel S2R-DepthNet images are
mapped to RGB using a colormap and logarithmic mapping

Fig. 12 Transfer of KITTI images to the intermediate shared domain employed by SharinGAN (PNVR et al., 2020) and S2R-DepthNet (Chen et
al., 2021). The original single-channel S2R-DepthNet images are mapped to RGB using a colormap and logarithmic mapping

Table 6 Results of DESC on the KITTI Eigen test split when combined with three different image transfer modules

Method Lower is better Higher is better

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Cap 80 m

DESC − T2Net (Zheng et al., 2018) 0.156 1.067 5.628 0.237 0.787 0.924 0.970

DESC − SharinGAN (PNVR et al., 2020) 0.153 1.057 5.641 0.236 0.789 0.926 0.970

DESC − S2R − DepthNet (Chen et al., 2021) 0.145 0.986 5.368 0.225 0.806 0.938 0.976

Cap 50 m

DESC − T2Net (Zheng et al., 2018) 0.149 0.819 4.172 0.221 0.805 0.934 0.975

DESC − SharinGAN (PNVR et al., 2020) 0.146 0.804 4.123 0.219 0.807 0.937 0.975

DESC − S2R − DepthNet (Chen et al., 2021) 0.139 0.742 3.971 0.211 0.821 0.947 0.980

Bold values refer to the best performance obtained per metric and category

S2R-DepthNetmostly removes texture and illumination cues
(e.g., no shadows in Fig. 11 cars) and only keeps the structural
edges needed for depth prediction. Hence, S2R-DepthNet
maps the input RGB images to a lower-gap intermediate
domain, as shown in Figs. 11 and 12 where the resulting
S2R-DepthNet images from KITTI and Virtual KITTI are
quite closer in appearance compared to the original RGB
images.

Computational Complexity We use for our experiments a
single NVIDIA 1080 Ti. Our base DESC only adds com-
putational cost during training, hence the inference speed
depends on the depth prediction network used. The U-Net
employed in DESC forGD , also used in T2Net and GASDA,
is capable of an inference of 43 imgs/s with a resolution
of 640 × 192, assuming a batch size of 1. However, using
the presented improved image-transfer strategies reduces the
inference speed, as both SharinGAN and S2R-DepthNet
approaches need extra networks at test time. In the case
of using a DESC-SharinGAN approach, the inference speed

decreases to 23 imgs/s, whereas with DESC-S2R-DepthNet
we achieve a speed of 9 imgs/s. The total training time for our
original DESC is approximately 2 days which accounts for
the three training steps (i.e., pretraining ofGD , pretraining of
GS and joint training) and assumes the panoptic predictions
are precomputed.

4.3 Evaluation in Additional Settings

Make3D (Saxena et al., 2008) is used to test the generaliza-
tion capabilities of our DESC model trained in the Virtual
KITTI→ KITTI scenario. The ground truth in Make3D is
of low quality and low resolution, as shown in the examples
in Fig. 13, hence the results provide only rough guidance of
the generalization ability of the model. We use the evalua-
tion protocol and code given by another domain adaptation
method, SharinGAN (PNVR et al., 2020), for a fair compari-
son. We include in Table 7 the results of both our base DESC
and our DESC with ImageNet pretraining. We also report

123



766 International Journal of Computer Vision (2023) 131:752–771

Table 7 Results on Make3D (70 m cap) (Saxena et al., 2008) using the
same central image crop as PNVR et al. (2020)

Method Lower is better

Abs Rel Sq Rel RMSE

No median scaling

S2R-DepthNet 0.490 10.676 10.889

T2Net 0.508 6.589 8.935

GASDA 0.403 6.709 10.424

SharinGAN 0.377 4.900 8.388

DESC 0.424 5.563 8.571

DESC (R50-ImageNet pretr.) 0.386 3.943 8.104

Median scaling

S2R-DepthNet 0.485 10.547 10.833

T2Net 0.420 7.477 9.992

GASDA 0.377 6.323 9.097

SharinGAN 0.322 3.744 7.812

DESC 0.335 3.772 8.030

DESC (R50-ImageNet pretr.) 0.293 2.755 7.510

All of the methods have been trained on Virtual KITTI→KITTI, except
for S2R-DepthNet, which is only trained on Virtual KITTI. For non-
median scaled results of SharinGAN, GASDA and T2Net, we report
the results given in PNVR et al. (2020), and we compute the median
scaled results using the evaluation code given in PNVR et al. (2020)
along with the official pretrained models given by each method
Bold values refer to the best performance obtained per metric and cat-
egory

the results on Make3D both with and without median scal-
ing, as median scaling greatly improves the results due to the
different camera intrinsics and image resolution in Make3D
affecting the scale of the predictions. Table 7 shows that our
method performs comparatively well in Make3D, and the
only domain adaptation method that obtains similar results
is SharinGAN (PNVR et al., 2020), which contrary to DESC
uses stereo information from the real domain during training.
Compared to T2Net (Zheng et al., 2018) and S2R-DepthNet,
the other methods in Table 7 that do not use any real-domain
stereo supervision during training,DESC achieves better per-
formanceby awidemargin. Figure 13 shows somequalitative
results on Make3D, where we observe that the predictions of
both DESC and T2Net contain large areas of error, highlight-
ing the need for methods capable of better generalization.
The top row corresponds to an example where both methods
fail to predict a satisfactory depth for the building, show-
ing these generalization issues. The bottom row shows how
our method, although quantitatively behaves noticeably bet-
ter than T2Net, produces blurrier predictions in Make3D as
a consequence of the consistency loss with GS used during
training.

Semi-supervised Setting Past work (Zhao et al., 2020;
NathKundu et al., 2018;Chen et al., 2021) has tackled a semi-
supervised approach assuming access to 1000KITTI images,

Fig. 13 Qualitative results in Make3D for T2Net and DESC

which we now investigate. We use the same 1000 labelled
KITTI frames in ARC (Zhao et al., 2020) as our annotated
data. We finetune our final DESC model with the labelled
real images following the same loss given in Eq. (6) with
the addition of the KITTI ground truth supervision loss. For
the target data supervision, as the ground truth is sparse, we
upscale the feature maps instead of downscaling the ground
truth to leverage all of the available sparse depth values.
Table 8 shows that we obtain better results for DESC - Only
image translation, which is a T2Net without feature adapta-
tion, compared to those reported in Zhao et al. (2020), which
could be partially due to using a different implementation for
the target loss. Table 8 also shows that DESC outperforms
all of the past domain adaptation methods, but obtains lower
performance than the domain generalization method S2R-
DepthNet, which can be quickly adapted to new domains
using few examples.

Evaluation on KITTI Stereo KITTI Stereo 2015 (Menze
& Geiger, 2015) provides images annotated in a process
combining (1) static background retrieval via egomotion
compensation and (2) fitting of CAD models to account for
dynamic objects. The result is a denser ground truth com-
pared to the LiDAR depth annotations provided in KITTI,
especially in the cars. DESC, which uses detected instances
to generate depth pseudo-labels, benefits from evaluating in
images with denser annotation in the vehicles, as shown
in Table 9 in the larger accuracy gap between DESC and
T2Net, and also between DESC and S2R-DepthNet, which
obtained comparable results on the Eigen split given in
Table 1. Comparing stereo-trained methods we find a similar
trend, there is a larger gap in performance between DESC
+ Stereo and GASDA, and DESC + Stereo also outperforms
SharinGAN contrary to the results in Table 3. Furthermore,
DESC + Stereo achieves either better (Sq Rel, RMSE) or
equal (RMSE log) squared metrics results than the state-of-
the-artMonodepth2 (ImageNet pre.)without pretraining GD

in ImageNet.

Cityscapes→ KITTI Table 10 shows the results for this
benchmark. We improve upon T2Net for all metrics, with
a 13.9% lower absolute relative error. Most of the accuracy
improvement comes from the consistency term as shown in
DESC (Img.+Con.) and DESC (Full, φ learnt). Due to the
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Table 8 Results on the KITTI Eigen test split (cap 80 m) when using a semi-supervised setting with 1000 labelled KITTI images

Method Lower is better Higher is better

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

AdaDepthS (Nath Kundu et al., 2018) 0.167 1.257 5.578 0.237 0.771 0.922 0.971

Real + Syn 0.152 0.988 4.751 0.257 0.784 0.918 0.966

T2Net 0.151 0.993 4.693 0.253 0.791 0.914 0.966

ARC 0.143 0.927 4.679 0.246 0.798 0.922 0.968

DESC - Only Img. Trans. 0.132 0.995 5.085 0.215 0.824 0.937 0.976

DESC 0.128 0.924 4.984 0.210 0.829 0.940 0.977

S2R-DepthNet 0.116 0.766 4.409 0.185 0.858 0.955 0.984

No median scaling performed during evaluation for this experiment. Results for T 2Net, Real + Syn and ARC taken from Zhao et al. (2020)
Bold values refer to the best performance obtained per metric

Table 9 Results on the KITTI 2015 stereo 200 training set disparity images (Menze & Geiger, 2015; Geiger et al., 2012)

Method Lower is better Higher is better

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Virtual KITTI→KITTI

T2Net (Zheng et al., 2018) 0.151 1.535 6.177 0.224 0.817 0.935 0.975

S2R-DepthNet (Chen et al., 2021) 0.142 1.371 5.737 0.207 0.835 0.949 0.981

DESC 0.120 0.968 5.597 0.206 0.839 0.937 0.977

GASDA (Zhao et al., 2019) 0.095 1.068 5.015 0.168 0.906 0.966 0.986

SharinGAN (PNVR et al., 2020) 0.092 0.903 4.611 0.159 0.906 0.968 0.987

DESC + Stereo 0.085 0.781 4.490 0.158 0.909 0.967 0.986

Only KITTI

Monodepth2 (w/o pre.) (Godard et al., 2019) 0.096 1.163 5.161 0.179 0.898 0.959 0.981

Monodepth2 (ImageNet pre.) (Godard et al., 2019) 0.082 0.908 4.698 0.158 0.919 0.970 0.986

We include Monodepth2 (Godard et al., 2019), the state-of-the-art stereo method trained only in KITTI. Results for non-stereo trained methods
(T 2Net, S2R-DepthNet and DESC) are reported with median scaling
Bold values refer to the best performance obtained per metric for the models leveraging both Virtual KITTI and KITTI data, which do not use a
network pretrained on ImageNet

camera difference between the datasets, the learnable scalarφ
is necessary for good performance, as shown for fixed φ = 1
in DESC (Full, φ = 1). Struct2Depth (Casser et al., 2019)
also uses precomputed semantic annotations to improve
its self-supervised video learning, although Struct2Depth
is not a domain adaptation method as it only trains with
Cityscapes (Cordts et al., 2016) data, i.e., it does not use
KITTI for training. Struct2Depth also uses a different crop
for Cityscapes. Table 10 shows that we achieve better accu-
racy than Struct2Depth (M+R), which uses three frames at
test time for refinement, whereaswe only need a single image
for inference.

4.4 Limitations

Due to the consistency termwithGS , ourmethod shows some
loss of detail in fine structures compared to T2Net (Zheng
et al., 2018), as shown in the last row of Fig. 4 or in
Fig. 13, which could also limit the achievable upper-bound

performance in settings with real data supervision, such as
self-supervision or semi-supervised settings. Additionally,
DESC is more computationally demanding during training
than T2Net due to the added GS . The depth predicted by
GS also relies on the quality of the computed semantic data,
hence in settings where the extracted annotations are of low
quality the performance of themethodmay degrade. Further-
more, the instance-based pseudo-labelling predicts a height
that assumes that the object is in an upright position, thus
some rotations of the camera poses or objects could degrade
the performance of that module.

5 Conclusion

We proposed a method that leverages semantic annotations
to improve the performance of a depth estimation model in a
domain adaptation setting. We used the relationship between
instance size and depth to provide pseudo-labels in the tar-
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Table 10 Cityscapes→KITTI results, evaluated in KITTI (Geiger et al., 2012) Eigen split (80 m cap)

Method Lower is better Higher is better

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Only Cityscapes

Source Baseline 0.189 1.717 6.478 0.257 0.740 0.919 0.968

Struct2Depth (M) (Casser et al., 2019) 0.188 1.354 6.317 0.264 0.714 0.905 0.967

Struct2Depth (M+R) (Casser et al., 2019) 0.153 1.109 5.557 0.227 0.796 0.934 0.975

Cityscapes→ KITTI

T2Net (Zheng et al., 2018) 0.173 1.335 5.640 0.242 0.773 0.930 0.970

DESC (Img.+Ins.) 0.174 1.480 5.920 0.240 0.782 0.931 0.971

DESC (Img.+Con.) 0.150 0.981 5.359 0.222 0.805 0.938 0.976

DESC (Full, φ = 1) 0.169 1.142 5.936 0.261 0.741 0.919 0.967

DESC (Full, φ learnt) 0.149 0.967 5.236 0.223 0.810 0.940 0.976

Struct2Depth (M+R) (Casser et al., 2019) uses three consecutive frames for refinement
Bold values refer to the best performance obtained per metric

get domain. A segmentation map and an edge map were
input to a second network, whose prediction was forced to
be consistent with the prediction of the main network. These
additions led to higher accuracy in the setting where no self-
supervision is available in the real data. In the Virtual KITTI
to KITTI benchmark we outperform all of the other methods
that do not use KITTI video or stereo supervision, and when
employing a more advanced image strategy, we also outper-
form a method using semantic labels at test time. As we use
automatically extracted semantic annotations, our method
can be easily added to current approaches to improve their
accuracy in a domain adaptation setting, as shown in the
improvement achieved with stereo self-supervision or the
multiple image-transfer strategies we successfully test. As
future work, approaches aiming to reduce the detail loss due
to the enforced consistency of predictions could improve the
method.
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