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Abstract
Clustering artworks is difficult for several reasons. On the one hand, recognizing meaningful patterns based on domain
knowledge and visual perception is extremely hard. On the other hand, applying traditional clustering and feature reduction
techniques to the highly dimensional pixel space can be ineffective. To address these issues, in this paper we propose DELIUS:
a DEep learning approach to cLustering vIsUal artS. The method uses a pre-trained convolutional network to extract features
and then feeds these features into a deep embedded clustering model, where the task of mapping the input data to a latent
space is jointly optimized with the task of finding a set of cluster centroids in this latent space. Quantitative and qualitative
experimental results show the effectiveness of the proposed method. DELIUS can be useful for several tasks related to art
analysis, in particular visual link retrieval and historical knowledge discovery in painting datasets.

Keywords Cultural heritage · Digital humanities · Visual arts · Computer vision · Autoencoders · Deep clustering

1 Introduction

Cultural heritage, especially visual art, is of inestimable
importance for the cultural, historical, and economic growth
of our societies. In recent years, due to technological
improvements and the drastic drop in costs, a large-scale
digitization effort has been made which has led to a growing
availability of large digitized artwork collections. Notable
examples include WikiArt1 and the MET2 collection. This
availability, coupled with recent advances in pattern recogni-
tion and computer vision, has opened up new opportunities
for computer science researchers to assist the art commu-
nity with tools to analyze and support further understanding
of visual arts. Among other things, a deeper understanding
of visual arts has the potential to make them accessible to
a wider population, both in terms of fruition and creation,
ultimately supporting the spread of culture (Castellano and
Vessio, 2021b).

The ability to recognize meaningful patterns in visual
artworks is intrinsically related to the domain of human per-
ception (Leder et al., 2004). The recognition of the stylistic
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and semantic attributes of an artwork, in fact, originates from
the composition of the color, texture, and shape features visu-
ally perceived by the human eye, and can be influenced by
previous historical knowledge (or lack thereof). Furthermore,
humanaesthetic perceptiondepends on subjective experience
and on the emotions the artwork evokes in the observer. This
is why this perception can be extremely difficult to concep-
tualize. Nevertheless, representation learning approaches,
especially those upon which deep learning models are based
(Bengio et al., 2013; LeCun et al., 2015), may be the key
to success in extracting useful features from low-level color
and texture features. These approaches are already helpful for
various tasks related to art analysis, from period estimation,
e.g. (Strezoski and Worring, 2017), to style classification,
e.g. (Cetinic et al., 2018).

Although there is a growing body of knowledge on apply-
ingpattern recognition andcomputer vision algorithms to this
domain in a supervised fashion, see for example (Karayev
et al., 2013; Crowley and Zisserman, 2014; Garcia et al.,
2020), very little work has been done in the unsupervised
setting. The supervised approach is really useful for solv-
ing different classification and retrieval tasks. However, it
requires considerable effort to accurately annotate artworks,
which, as mentioned above, can be influenced by some
subjectivity. Furthermore, it is less suited to support more

1 https://www.wikiart.org.
2 https://www.metmuseum.org/art/collection.
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in-depth analysis, as the machine is typically constrained to
solve only a specific task.

Conversely, having a model that can cluster artworks
without depending on hard-to-collect labels or subjective
knowledge can be useful formany other domain applications.
It can be used to support art experts in discovering trends and
influences from one art movement to another, i.e. in perform-
ing “historical” knowledge discovery. Similarly, the model
can be used to discover different periods in the production of
the same artist. It can support interactive browsing of online
collections by finding visually linked artworks, thus perform-
ing a “visual” link retrieval. It can help curators organize
permanent or temporary exhibitions based on visual similar-
ities rather than just historical motivations. Finally, themodel
can help experts classify contemporary art, which cannot be
providedwith rich annotations, and, similarly, it can help find
out which artworks have most influenced the work of current
artists.

To this end, in this paper, we propose DELIUS: a DEep
learning approach to cLustering vIsUal artS. The method is
based on using a pre-trained deep convolutional neural net-
work (CNN), that is DenseNet121 (Huang et al., 2017), as an
unsupervised feature extractor, and then using a deep embed-
ded clustering (DEC) model (Xie et al., 2016) to perform the
final clustering. The choice of this fully deep pipeline was
motivated by the difficulty of applying traditional clustering
algorithms and feature reduction techniques to the highly
dimensional input pixel space, especially when dealing with
very complex artistic images. The effectiveness of themethod
was evaluated on a subset of the previouslymentionedwidely
used WikiArt collection. It is worth noting that this paper
extends our previous work in this direction (Castellano and
Vessio, 2021a), by introducing a more refined model, and
more experiments and ablation studies on a much larger
dataset.

The rest of the paper is organized as follows. Section 2
deals with related work. Section 3 describes the proposed
method. Sections 4 and 5 present and discuss the experi-
mental setup and the results obtained. Section 6 concludes
the paper and outlines directions for further research on the
topic.

2 RelatedWork

Traditionally, automated art analysis has been done using
hand-crafted features fed into traditional machine learning
algorithms, e.g. (Shamir et al., 2010; Arora and Elgammal,
2012; Carneiro et al., 2012; Khan et al., 2014). Unfortu-
nately, despite the encouraging results of feature engineering
techniques, early attempts soon stalled due to the difficulty
of gaining explicit knowledge about the attributes to asso-
ciate with a particular artist or artwork. This difficulty arises

because this knowledge typically depends on an implicit and
subjective experience that a human expert might find difficult
to verbalize. In fact, experts draw their judgments based on
various factors, notably the historical context of the work,
as well as the understanding of the metaphor behind what
is immediately perceived (Saleh et al., 2016). Furthermore,
art experts, as well as inexperienced enthusiasts, can have
subjective reactions to the stylistic properties of an artwork,
as emotions can influence their aesthetic perception (Cetinic
et al., 2019).

In contrast, several successful applications in many com-
puter vision tasks have demonstrated the effectiveness of rep-
resentation learning versus feature engineering techniques
in extracting meaningful patterns from complex raw data;
seminal papers such as LeCun et al. (1989) and Krizhevsky
et al. (2012) are well known to the community. One of the
main reasons for the success of deep neural network mod-
els in solving tasks too difficult for classical pipelines is the
availability of large datasets with human annotations, such as
ImageNet (Deng et al., 2009). Amodel built on these data, in
fact, often provides a sufficiently general knowledge of the
“visual world” that can be profitably transferred to specific
visual domains, in particular the artistic one. This provided
an opportunity to tackle historically difficult tasks in the art
domain,mitigating the need formanually extracting features,
and exploiting higher-level, easier-to-collect labels, such as
the time of production or the school of painting the artworks
belong to, to apply data-driven learning strategies.

One of the first successful attempts to apply deep neu-
ral networks in this context was the research presented by
Karayev et al. (2013), which shows how a CNN pre-trained
on PASCAL VOC can be quite effective in attributing the
correct school of painting to an artwork. Since then, many
articles have been devoted to the use of deep learning tech-
niques based on single-input, e.g. (Van Noord et al., 2015;
Chen and Yeng, 2019), or multi-input models, e.g. (Strezoski
and Worring, 2017; Garcia et al., 2020), to solve artwork
attribute prediction tasks based on visual features.

Another task often faced by the research communitywork-
ing in this field is finding objects in artworks. Indeed, art
historians are often interested in finding out when a specific
object first appeared in a painting or how the representation
of an object evolved over time.A pioneeringwork in this con-
text has been the research of Crowley and Zisserman (2014).
They proposed a system that, given an input query, retrieves
positive training samples by crawling Google Images on the
fly. These are then processed by a pre-trained CNN and used
together with a pre-computed pool of negative features to
learn a real-time classifier. Since then, many other works
have explored this direction further, e.g. (Cai et al., 2015a;
Westlake et al., 2016), also focusing on weakly supervised
approaches (Gonthier et al., 2018) or near duplicate detec-
tion tasks (Shen et al., 2019). The main issue encountered in
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this research is the so-called cross-depiction problem, which
is the problem of recognizing visual objects regardless of
whether they are photographed, painted, drawn, etc. The
variance between photos and artworks is greater than both
domainswhen considered alone, so classifiers usually trained
on traditional photographic images typically encounter dif-
ficulties when used on painting images, due to the domain
shift. This is still an open issue in the research community,
and an approach based on artistic to photo-realistic transla-
tion has recently been proposed to try to fill this gap (Tomei
et al., 2019).

Another task that has attracted attention in the art domain
is the development of a machine capable of imitating human
creativity to some extent. Traditional literature on computa-
tional creativity has developed systems for the generation of
art based on the involvement of human artists in the gener-
ation process. More recently, the advent of the Generative
Adversarial Network paradigm (Goodfellow et al., 2014)
has allowed researchers to develop systems that do not put
humans in the loop but make use of previous human artworks
in the learning process. This is consistent with the assump-
tion that even human experts use prior experience and their
knowledge of past art to develop their own creativity. Some
popular models, in particular (Elgammal et al., 2017) and
(Tan et al., 2018), have been developed that generate images
rated as highly plausible by human experts.

In recent times, a research direction that has sparked
increasing interest is the one that combines computer vision
with natural language processing techniques to provide a uni-
fied framework for solvingmulti-modal retrieval tasks. In this
view, the system is asked to find an artwork based on textual
comments describing it and vice versa. Notable works in this
direction are the research of Garcia and Vogiatzis (2018) and
that of Cornia et al. (2020).

Most of the existing literature reports the use of deep
learning-based solutions that require some form of super-
vision. Conversely, very little work has been done from
an unsupervised perspective. In (Barnard et al. 2001), the
authors proposed a clustering approach to artistic images by
exploiting textual descriptions with natural language pro-
cessing. Spehr et al. (2009), on the other hand, applied
a computer vision approach to the problem of clustering
paintings using traditional hand-crafted features. Gultepe et
al. (2018) applied an unsupervised feature learning method
based on k-means to extract features which were then fed
into a spectral clustering algorithm for the purpose of group-
ing paintings. In (Castellano et al. 2021c), we have recently
proposed a method for finding visual links among paint-
ings in a completely unsupervised way. The method relies
solely on visual attributes learned automatically by a deep
pre-trained model and finds similarities between paintings in
a nearest neighbor fashion. Unfortunately, while it is effec-

tive in addressing the link retrieval problem, this approach is
not suitable for finding clusters in the feature space.

3 ProposedMethod

Clustering is one of the fundamental tasks inMachine Learn-
ing. It is notoriously difficult, mainly due to the lack of
supervision on how to guide the search for patterns in the
data and in evaluating what the algorithm finds. In particu-
lar, since its appearance, k-means has been widely used due
to its ease of implementation and effectiveness. However,
especially in a complex image domain, applying k-means
may not be feasible. On the one hand, clustering with tra-
ditional distance measures in the highly dimensional raw
pixel space is well known to be ineffective. Furthermore, as
noted earlier, extracting meaningful feature vectors based on
domain-specific knowledge can be extremely difficult when
dealing with artistic data. On the other hand, applying well-
known dimensionality reduction techniques, such as PCA, to
the original space or amanually engineered feature space, can
ignore possible nonlinear relationships between the original
input and the latent space, thus decreasing clustering perfor-
mance. To get around these difficulties, we propose a fully
deep learning pipeline.

DELIUS, which is schematized in Fig. 1, consists of the
following steps:

1. Artwork images are first pre-processed;
2. Pre-processed images are fed into DenseNet121 to extract

visual features;
3. The global average pooled features are provided as input

to a deep embedded clustering model to perform cluster-
ing;

4. The embedded features are finally projected in twodimen-
sions with t-SNE for visualization purposes.

Algorithm 1 summarizes the main steps. Details of each step
are provided in the following subsections.

3.1 Pre-processing

Each RGB image is first resized to 224 × 224, which is the
input size normally accepted by DenseNet121, and its pixel
values are scaled between 0 and 1, as is usually done when
using convolutional neural networks.

3.2 Feature Extraction

The Dense Convolutional Network (DenseNet) family of
models connects each layer to each other layer in a feed-
forward fashion (Huang et al., 2017).While traditionalCNNs
with L layers have L direct connections, one between each
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Fig. 1 Schema of the proposed method. Three-channel images fol-
low an information processing flow, undergoing some transformations,
namely pre-processing, feature extraction, feature reduction through
nonlinear embedding and cluster assignment, and a final reduction in
two dimensions

layer and the next one, DenseNets have L(L + 1)/2 con-
nections. For each layer, the feature maps of all previous
layers are used as input, and the own feature maps are used
as input to all subsequent layers. DenseNets are often consid-
ered the logical extension of the previouswell-knownResNet
(He et al., 2016): the key difference is the use of concatena-

tion instead of addition in cross-layer connections. The name
DenseNet derives from the fact that the dependency graph
between the variables becomes rather dense: the last layer
of the chain is densely connected to all the previous lay-
ers. The metaphor is that each layer receives the “knowledge
gathered” from all the previous layers and together they col-
lectively contribute to the final output. The main components
that form a DenseNet are dense blocks and transition layers.
The former define how the inputs and outputs are chained;
the latter control the number of channels so that it is kept
small.

DenseNets have several advantages over other state-of-
the-art architectures: they alleviate the vanishing gradient
problem, strengthen feature propagation, encourage feature
reuse, and substantially reduce the number of parameters.
Like any CNN, the network is able to build a hierarchy of
visual features, starting with simple edges and shapes in ear-
lier layers to higher-level concepts like complex objects and
shapes as the layers go deeper. This approach is suitable for
obtaining high-level semantic representations from the ini-
tial artwork images without the need for any supervision. To
obtain these features, we use the common practice of extract-
ing features from the last dense block, which returns 1024
7 × 7 feature maps.

The feature maps are finally global average pooled to get
a more compact one-dimensional vector of size 1024. As
usual, this fairly simple operation is performed to signifi-
cantly reduce the feature dimensionality.

3.3 Clustering

In recent years, a deep clustering paradigm has emerged that
exploits the ability of deep neural networks to find complex
nonlinear relationships among data for clustering purposes
(Xie et al., 2016; Guo et al., 2017; Yang et al., 2017). The
idea is to jointly optimize the task of mapping the input data
to a lower dimensional space and the task of finding a set of
cluster centroids in this latent space. Deep clustering is being
used with very promising results in several real domains,
e.g. (Bhowmik et al., 2018; Lu et al., 2019); however, it is
usually applied directly to the original input. In this paper,
we leverage the ability of a deep network like DenseNet121
to extract meaningful and more compact features from very
complex artistic images before clustering them.

The global average pooled features from the previous
step are provided as input to a deep embedded clustering
model, such as the DECmodel proposed by Xie et al. (2016).
Basically, DEC is based on an autoencoder and a so-called
clustering layer connected to the embedded layer of the
autoencoder. Autoencoders are neural networks that learn to
reconstruct their input using an encoder and adecoder in com-
bination. The encoder transforms the data with a nonlinear
mapping φ : X → Z , where X is the input space and Z is a
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smaller hidden latent space. The decoder learns to reconstruct
the input using this latent representation, ψ : Z → X . This
is done in a completely unsupervised way, with no knowl-
edge of a target variable. In addition to the input layer, which
depends on the specific input shape, and which in our case
is equal to 1024, the encoder size has been set as in Xie
et al. (2016) to 500-500-2000-10 hidden units, where 10 is
the size of the latent embedded space. The embedded features
are then reshaped and propagated through the decoder part of
the network, which mirrors the encoder hyperparameters in
reverse order and restores the embedded features back to the
original input space. To learn the nonlinear mappings φ and
ψ , the autoencoder parameters are updated by minimizing a
classic mean squared reconstruction loss:

Lr = 1

n

n∑

i=1

∥∥x′
i − xi

∥∥2 = 1

n

n∑

i=1

‖ψ (φ (xi )) − xi‖2 (1)

where n is the cardinality of the set of input data, xi is the i-th
input sample, x′

i its reconstruction, and ‖ · ‖ is the Euclidean
distance.

The clustering layer attached to the embedded layer of the
autoencoder assigns the embedded features of each sample to
a cluster. Given an initial estimate of the nonlinear mapping
φ : X → Z , and the k centroids of an initial clustering {c j ∈
Z}kj=1, the clustering layer maps each embedded point, zi =
φ(xi ), to a cluster centroid, c j , using a cluster assignment
distribution Q based on Student’s t-distribution:

qi j =
(
1 + ∥∥zi − c j

∥∥2
)−1

∑
j ′

(
1 + ∥∥zi − c j ′

∥∥2
)−1 (2)

where qi j represents the membership probability of zi of
belonging to cluster j ; in other words, it can be seen as a soft
assignment. Membership probabilities are used to calculate
an auxiliary target distribution P:

pi j = q2i j/ fi∑
j ′ q

2
i j ′/ f j ′

(3)

where f j = ∑
i qi j are soft cluster frequencies. Clustering is

done by minimizing the Kullback–Leibler (KL) divergence
between P and Q:

Lc = K L(P ‖ Q) =
∑

i

∑

j

pi j log

(
pi j
qi j

)
(4)

In practice, the qi j ’s provide a measure of the similarity
between each data point and the different k centroids. Higher
values for qi j indicate more confidence in assigning a data

Algorithm 1: DELIUS
Input: A given dataset D of n images; number of clusters k
Preprocess D;
For each image I ∈ D, extract a feature vector xi using
DenseNet121 plus global average pooling;
Initialize the autoencoder by minimizing Eq. 1 to get initial
embeddings {zi ∈ Z}ni=1;
Initialize cluster assignment with k-means to get initial cluster
centroids {c j }kj=1;

while not converged do
Compute qi j using Eq. (2);
Compute pi j using Eq. (3);
Update the encoder and cluster assignment by minimizing
Eq. (4);

end
Further reduce the dimensionality of Z with t-SNE;
Result: Each image I is assigned to a cluster centroid c j

point to a particular cluster. The auxiliary target distribu-
tion is designed to place greater emphasis on the data points
assigned with greater confidence while normalizing the loss
contribution of each centroid. Then, byminimizing the diver-
gence between the membership probabilities and the target
distribution, the network improves the initial estimate by
learning from previous high-confidence predictions.

The overall training works in two steps. In the first step,
the autoencoder is trained to learn an initial set of embed-
ded features, minimizing the reconstruction loss defined in
Eq. (1). After this pre-training phase, the learned features are
used to initialize the cluster centroids c j using traditional k-
means. Finally, the decoder part of the model is abandoned
and embedded feature learning and clustering are jointly opti-
mized byminimizing only the cluster assignment loss defined
in Eq. (4). The overall weights are updated using backprop-
agation. It is worth noting that, to avoid instability, P is not
updated on every iteration using only a batch of data, but
using all embeddedpoints every t iterations. The training pro-
cedure stopswhen the change in cluster assignments between
two consecutive updates is below a given threshold δ.

It is worth underlining that “training” here means the pro-
cess of optimizing the reconstruction of the original input,
in the case of the autencoder, and the search for cluster cen-
troids, in the case of clustering. Both tasks do not require any
form of supervision.

3.4 Visualization

After training, the initial artwork images lie in the 10-
dimensional embedded feature space. These features can
then be used to fit a t-SNE representation to display data
in a reduced space, for qualitative evaluation purposes. t-
distributed Stochastic Neighbor Embedding is a well-known
technique for nonlinear dimensionality reduction,which con-
verts the similarities between the data points into joint proba-
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bilities and tries to minimize the KL divergence between the
joint probabilities of the lower dimensional embeddings and
the higher dimensional data (Van der Maaten and Hinton,
2008).

It is worth noting that, contrary to other clustering
approaches, the reduced feature space will differ depend-
ing on the number of clusters, as the proposed method
simultaneously minimizes image reconstruction and cluster
assignment. Therefore, changing the number of clusters will
lead to different arrangements of the data in the space induced
by the embedding.

4 Experimental Setting

This Section describes the dataset we used, implementation
details, other clustering approaches with whichwe compared
our method, and evaluation metrics.

4.1 Dataset

Several datasets have been used and proposed by the research
community working on digitized art (Castellano and Ves-
sio, 2021b). Some of them, such as People-Art (Westlake
et al., 2016), are actually intended for object detection tasks;
others, such as SemArt (Garcia and Vogiatzis, 2018), were
designed for multi-modal retrieval tasks. WikiArt (formerly
known asWikiPaintings) is currently one of the largest online
collections of digitized paintings available, and has been a
frequent choice for dataset creation in many recent studies
and has contributed to several art-related research projects.
The artworks collected cover a wide range of periods, with a
particular focus on the art of the last century. The dataset is
constantly growing and includes not only paintings but also
sculptures, sketches, posters, and so on. As of this writing,
WikiArt includes nearly 170, 000 artworks.

We used the data already scraped and downloaded from
WikiArt by Tan et al. (2016),1 for a total of 78, 978 digi-
tized artworks, including not only paintings but also drawings
and illustrations. The artworks span a wide range of histori-
cal periods (from Early Renaissance to Pop Art) and genres
(from portraits to landscapes). To obtain a fairly balanced
dataset between the classes, for later evaluation, and to avoid
excessive fragmentation, we grouped the artworks into 8
well-knownmacro-periods. These are shown in Table 1. Fur-
thermore, to evaluate the clustering performance by genre
and not just by style, we also distinguished the artworks by
genre (see Table 2). Note that since the genre is not provided
for all the artworks in the dataset, they add up to 64,524.

1 https://github.com/cs-chan/ArtGAN.

Table 1 Art movements of our dataset, along with the artwork count

Movement #Artworks

Renaissance 6575

Baroque and Rococo 6329

Romanticism 6945

Realism 10,609

Impressionism 13,016

Post-impressionism 11892

Expressionism and cubism 13,371

Modern and contemporary art 10,241

The coverage period of these movements is from the 15th century to the
present day and, as it is notoriously not easy to define them rigorously,
they sometimes overlap

Table 2 Art genres of our dataset, along with the artwork count

Genre #Artworks

Abstract paintings 5446

Cityscapes 4535

Genre paintings 10,342

Illustrations 1883

Landscapes 13,102

Nude paintings 1853

Portraits 14,055

Religious paintings 6482

Sketches and studies 4012

Still lifes 2814

Artwork images vary in size but, as noted earlier, theywere
resized and normalized in the pre-processing stage. Sample
images are shown in Fig. 2.

4.2 Implementation Details

The experiments were performed on an Intel Core i5
equipped with the NVIDIAGeForceMX110, with dedicated
memory of 2 GB. As a deep learning framework, we used
TensorFlow 2.0 and the Keras API.

Regarding the hyper-parameter setting, the autoencoder
was initially pre-trained with mini-batch size 256, and using
Adam for 200 epochs with a recommended learning rate of
0.001, β1 of 0.9, β2 of 0.999 and ε of 1× 10−8. The weights
were randomly initialized from a normal distribution with a
mean of zero and a standard deviation of 0.01, as suggested
in Xie et al. (2016). For initialization of the cluster centroids,
we used traditional k-means with 20 restarts, choosing the
best solution. Finally, the deep embedded clustering model
was trained using Adam with the same set of parameters as
before, but setting the convergence threshold δ to 0.001 and
the update interval t to 140.
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Fig. 2 Examples of artworks fromWikiArt. From top to bottom, from left to right: “Acrobat with Bouquet” by Marc Chagall; “Monet in his Studio
Boat” by Edouard Manet; “Still Life with Irises” by Vincent van Gogh; “Shields, on the River Tyne” by William Turner; “Woman Reading” by
Pablo Picasso

4.3 Other Clustering Approaches

Since no work in the literature uses deep learning for cluster-
ing paintings, we compared our proposed method with other
clustering approaches to the same problem to assess whether
it provides a better solution. In particular,we considered three
alternative strategies:

– k-means on the original pixel space previously reduced
by a PCA to decrease the extremely high dimensionality
(from now on-wards PCA+k-means);

– k-means on the embedded feature space resulting from
the pre-training phase of the autoencoder, before training
it together with the clustering layer (from now on-wards
AE+k-means);

– The deep convolutional embedding clusteringmodel pro-
posed in our previous preliminary work (Castellano and
Vessio, 2021a), which introduced some slight changes
to the one proposed by Guo et al. (2017) (from now on-
wardsDCEC). In short, the encoder and decoder are made
up of convolutional layers and the model is fed directly
with the three-channel images.

It is worth noting that, since our goal was not to pro-
pose a new generic deep clustering model but a specific
methodology that would work effectively in the domain of
computational analysis of art, we did not extend the compar-
ison to other methods similar in philosophy to DCEC.

4.4 EvaluationMetrics

Since clustering is unsupervised, we do not know a pri-
ori which is the best grouping of paintings. Furthermore,
since even two artworks by the same artist could have been
produced in different stylistic periods, it is very difficult
to assign a precise label to a given painting, thus provid-
ing a form of accurate supervision over cluster assignment.
For this reason, for clustering evaluation, we mainly used
two standard internal metrics, namely the silhouette coeffi-
cient (Rousseeuw, 1987) and the Calinski-Harabasz index
(Caliński & Harabasz, 1974), which are based on the model
itself. The silhouette coefficient is defined for each sample
and is calculated as follows:

SC = b − a

max(a, b)
(5)

where a is the average distance between a data point and all
other points in the same cluster, and b is the average distance
between a data point and all other points in the nearest cluster.
The final score is obtained by averaging over all data points.
The silhouette coefficient is between −1 and 1, representing
the worst and best possible value respectively. Values close
to 0 indicate overlapping clusters. The Calinski–Harabasz
index is the ratio of the sum of between-cluster dispersion
and inter-cluster dispersion for all clusters. More precisely,
for a dataset D of size n, which has been partitioned into k
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clusters, the index is defined as:

CH I = tr(Bk)

tr(Wk)
× n − k

k − 1
(6)

where tr(Bk) is the trace of the between-cluster dispersion
matrix, being Bk = ∑k

j=1 n j (μ j − μD)(μ j − μD)�, and
tr(Wk) is the trace of the within-cluster dispersion matrix
defined as Wk = ∑k

j=1
∑

x∈C j
(x − μ j )(x − μ j )

�, where
C j is the set of points in cluster j , μ j the center of cluster
j , μD the center of D, and n j the cardinality of cluster j .
The Calinski–Harabasz index is not bounded within a given
interval. It isworth remarking that, except forPCA+k-means,
both SC and CH I were computed in the space induced by
the embedding. Indeed, these metrics help assess whether
the deep model produced adequate representations from the
original high-dimensional datawhen providedwith an appro-
priate objective function.

The abovemetrics are based on internal criteria. However,
note that the eight periods into which the dataset we used can
be broken down provide a form of ground truth. Furthermore,
artworks can be further divided into 10 classes if we divide
them by genre. In this way, we can also use external crite-
ria such as the unsupervised clustering accuracy (Cai et al.,
2010), which is widely used in the unsupervised setting:

ACC = max
m

∑n
i=1 1{yi = m(ci )}

n
(7)

where yi is the ground-truth label, ci is the cluster assignment,
and m varies over all possible one-to-one mappings between
clusters and labels. ACC differs from the usual classification
accuracy in that it uses themapping functionm to find the best
mapping between the cluster assignment c and the ground
truth y. This mapping is necessary because an unsupervised
algorithm can use a different label than the actual ground

truth label to represent the same cluster. Another popular
external metric, useful when knowledge of the ground truth
is available, is the normalized mutual information (Vinh et
al., 2010):

NMI = MI (U , V )

mean(H(U ), H(V ))
(8)

where MI (U , V ) = ∑|U |
i=1

∑|V |
j=1

|Ui∩Vj |
N log

(
N |Ui∩Vj |
|Ui ||Vj |

)
is

the classic mutual information calculated between the cluster
assignmentsU and the ground truth labels V , normalized by
the average entropy H of both. Values close to 0 indicate
two largely independent assignments, while values close to
1 indicate significant agreement.

Finally, we also drew qualitative observations on the clus-
ter assignments provided by the method based on the t-SNE
visualization. Note that other reduction strategies similar to
t-SNE can be used for the same purpose, such as Uniform
Manifold Approximation and Projection (UMAP) (McInnes
et al., 2018).

5 Results

We carried out several experiments to evaluate the effec-
tiveness of the proposed method. The first experiment was
devoted to evaluating the effectiveness of the method in clus-
tering the overall data. A second experiment was dedicated to
showing the effectiveness of themethod in grouping artworks
created by the same artist. In a third experiment,we compared
the proposed solution with the other clustering approaches
to the same problem. Finally, we show the results of some
ablation studies aimed at adjusting the final system.

Fig. 3 From top to bottom: bi-dimensional visualizations of the com-
parison between DELIUS (fourth row) and PCA+k-means (first row),
AE+k-means (second row) and DCEC (third row), varying the number

of clusters k from 2 to 10. Note that, for better visualization, these views
were obtained by plotting the same stratified random sample of 10% of
the overall data
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Fig. 4 Bi-dimensional visualization of the clusters found by DELIUS with UMAP. For the sake of comparison with t-SNE, the plots were obtained
on the same fraction of data as in Fig. 3

5.1 Clustering the Overall Data

Figures 3, 4, 5, 6, 7 and 8 show the clustering performance of
the proposed method over the entire dataset by varying the
number of clusters k. Note that, to avoid redundancies, the
figures also show the results obtained with other methods,
which will be discussed in Sect. 5.3. We varied k between 2
and 10, which is the grouping suggested by the ten different
genres towhich the artworks in the dataset belong.Observing
the two-dimensional visualization given by t-SNE, it can be
seen that in all cases DELIUS is able to create well-separated
clusters (Fig. 3). To assess whether the method finds well-
separated clusters even when a different reduction technique
is used, we also experimented with UMAP instead of t-SNE,
which provided even better concentrated clusters (see Fig. 4).
These results are quantitatively confirmed by the silhouette
coefficient, whose value is always close to 1, and by the
Calinski-Harabasz index, which has very high values for all
partitions (Fig. 5).

As regards clustering accuracy and normalized mutual
information, DELIUS obtained unsatisfactory results if we
consider the eight historical classes into which the dataset
was divided (Fig. 6). In particular, the accuracy of the model
was 0.28± 0.01 at the 95% confidence level, slightly higher
than the top second accuracy of 0.25 ± 0.01 obtained by
AE+k-means. In all cases, NMI shows lower results than
ACC . However, significantly higher results were obtained
when considering the genre ground truth (Fig. 7). In fact,
although the clustering accuracy by genre does not exceed
50% (0.47 ± 0.01 at the 95% confidence level, higher than
the top second accuracy of 0.43 ± 0.01 obtained by AE+k-
means), it should be noted that in a classic supervised setting
this would be a 10-class classification problem. Again, NMI
behaves worse than ACC , although better than the previ-
ous evaluation based on style. These results suggest that the
model tends to look at content rather than stylistic features
to group paintings.

A more complete assessment was made by analyzing the
composition of the clusters and visualizing artworks belong-
ing to each cluster. To this end, in Figs. 9 and 10 we show
some exemplary images from the clusters found by DELIUS
when k = 3 and k = 8. It can be seen that in the case
of three clusters (Fig. 9), DELIUS separated the dataset into
three macro-categories: drawings and illustrations in a clus-
ter; portraits and, more generally, paintings depicting people
in a second cluster; finally, landscapes and cityscapes in the

Fig. 5 Comparison between DELIUS (magenta) and PCA+k-means
(cyan), AE+k-means (blue) and DCEC (purple) in terms of silhouette
coefficient (top) and Calinski–Harabasz index (bottom) (Color figure
online)

Fig. 6 Comparison between DELIUS (magenta) and PCA+k-means
(cyan), AE+k-means (blue) and DCEC (purple) in terms of clustering
accuracy (top) and normalized mutual information (bottom) by style
(Color figure online)

Fig. 7 Comparison between DELIUS (magenta) and PCA+k-means
(cyan), AE+k-means (blue) and DCEC (purple) in terms of clustering
accuracy (top) and normalized mutual information (bottom) by genre
(Color figure online)

Fig. 8 Comparison between DELIUS (magenta) and DCEC (purple) in
terms of number of iterations needed to converge (Color figure online)
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Fig. 9 Sample images from the clusters found by DELIUS when applied to the overall dataset with k = 3

Fig. 10 Sample images from the clusters found by DELIUS when applied to the overall dataset with k = 8

third cluster. When eight clusters are considered (Fig. 10),
the model further fragments the data into groups showing
homogeneous characteristics: the drawings and illustrations
are separated into two distinct clusters; the works depicting
people are divided into portraits only, genre paintings, and
religious paintings; finally, a clearer separation was made
between landscapes, cityscapes and still lifes. As the number

of clusters grows,DELIUS separates artworks into smaller and
smaller groups that share visual similarities. Interestingly, the
clusters found tend to reflect some known artistic influences
and connections between artists. For example, sketches and
studies by Duerer and Da Vinci, known to have contributed
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significantly to Renaissance,2 appear in the same cluster.
Likewise, the model tends to group religious paintings3 by
artists such as Pontormo and van Eyck, as well as cityscapes
and landscapes by Monet and Manet.4

This qualitative assessment confirms that the model cre-
ated by DELIUS takes into account semantic features, that
is, those relating to the subject and genre of the artwork,
rather than just stylistic properties. This can be explained
considering that the deep clustering model uses high-level of
abstraction features extracted from a deep pre-trained CNN
as an input,which typically involvemore complex shapes and
objects rather than low-level features. Furthermore, unlike
supervised approaches, where the same deep CNN can be
used (see Sect. 5.4), after feature extraction the deep clus-
tering model is not forced to learn useful features for style
classification tasks, but independently explores high-level
visual similarities between artworks to group them. In other
words, when a clear loss function based on a style ground
truth is adopted, the model is forced to learn useful features
to minimize that loss. Instead, in an unsupervised setting, the
model is free to group artworks independently of such loss
and tends to consider content-based features. These findings
are consistent with previous work showing how visual fea-
tures can be used to find similarities between artists (Saleh
et al., 2016; Castellano et al., 2021c) and how visual features
from the same semantic domain overlapwhile appearing sep-
arate fromother domains (Garcia andVogiatzis, 2018;Cornia
et al., 2020). Furthermore, as the results we have obtained
with the supervised approach also demonstrate (Sect. 5.4),
even when the system has a clear loss function to minimize,
the period prediction is difficult, as more classical works
can exhibit futuristic and pioneering features, while mod-
ern works can draw inspiration and revive the classic style.
In addition, there is usually confusion between similar styles
(Strezoski and Worring, 2017). Indeed, precisely separating
artistic styles is still challenging.

Clearly, the proposed method is far from being perfect,
especially considering that, like any clustering algorithm, the
method is forced to group data, so a data point can appear in
one cluster because it does not have enough similarities to any
other cluster. However, the ability ofDELIUS to group objects
regardless of how they are depicted (in a realistic or abstract
way, and so on) makes it capable of mimicking, to some
extent, the human semantic understanding of art. Thismay be
a step towards solving the well-known cross-depiction prob-
lem, since, as suggested by (Cai et al., 2015a, b), a candidate
solution is not to learn the specificity of each representation,
but to learn the abstraction that the different representations
share so that they can be recognized regardless of their depic-

2 https://en.wikipedia.org/wiki/Renaissance.
3 https://en.wikipedia.org/wiki/Religious_art.
4 https://en.wikipedia.org/wiki/Impressionism.

tion. Abstract styles in particular, such as Expressionism and
Cubism, have always posed serious challenges, as represen-
tations of objects and subjects can show strong individuality
and therefore less generalizable patterns.

5.2 Clustering a Single Artist

We also experimented with a sub-sample of the dataset com-
prising the works of a single artist. This was done to evaluate
the effectiveness of the proposed method in the search for
meaningful clusters within the production of the same artist.

In particular, we run the proposed method on the 762 art-
works made by Pablo Picasso provided by the dataset we
used, as Picasso is known for having a prolific production
with different series, genres, and periods of works. We tested
different values of k, from 2 to 8. In all cases, well-separated
clusters were found, with the best value for the silhouette
coefficient and the Calinski-Harabasz index when k = 6,
where SC ≈ 0.97 and CH I ≈ 6.5 × 104. Figure 11 shows
sample images from these 6 clusters. Again, the model cre-
ated byDELIUShas showna tendency to group togetherworks
with notable visual similarities, related to the subject matter
and the content of the work: one cluster is clearly related to
still lifes; another with sketches and studies; another cluster
with portraits (including self-portraits); two clusters appear
to be related to the so-called “blue” and “rose” periods of the
author; finally, one cluster is related to the late neoclassicist
and surrealist works.

When only a small dataset of a single artist is considered,
DELIUS finds it easier to distinguish paintings by style as
well. Picasso’s major stylistic phases have been described by
a variety of scholars, writers, and critics; and DELIUS seems
to have found somewell-knowngroups such as the aforemen-
tioned “blue” and “rose” period, as well as the later works.5

Themodel alsomanages tomitigate the cross-depiction prob-
lem, as it places semantically related works, such as portraits
and still lifes, in the same groups, despite their stylistic depic-
tion. The Cubist still lifes, for example, are not separate from
the more realistic ones.

5.3 Comparison with Other Clustering Approaches

Figures 3, 4, 5, 6, 7 and 8 also show the results of the
comparison between the four methods we have tested on
the overall data from a qualitative and quantitative point
of view. Figure 3 shows the bi-dimensional visualizations
of the clusters obtained with the methods. These clearly
outline how PCA+k-means and AE+k-means cannot find
well-defined and separated clusters in the feature space. The
data points appear randomly distributed and overlapping in
the bi-dimensional space without any structure emerging.

5 https://en.wikipedia.org/wiki/Pablo_Picasso.

123

https://en.wikipedia.org/wiki/Renaissance
https://en.wikipedia.org/wiki/Religious_art
https://en.wikipedia.org/wiki/Impressionism
https://en.wikipedia.org/wiki/Pablo_Picasso


International Journal of Computer Vision (2022) 130:2590–2605 2601

Fig. 11 Sample images from the clusters found by DELIUS among Picasso’s artworks when k = 6

The behavior shown by PCA+k-means was expected since
applying traditional techniques to the original pixel space
in such a complex domain is well known to be ineffective.
The behavior of AE+k-means was also expected. Although
reduced by CNN processing, the resulting feature space still
has a high dimensionality and k-means is unable to find well-
formed clusters in this space.On the contrary, as noted earlier,
DELIUS is capable of separating data in well-formed clusters
in all cases. The strategy of further reducing the feature space
through the autoencoder and optimizing embedding learning
with clustering appears to be effective for grouping artworks.
Likewise, DCEC, which is based on a similar deep clustering
principle, is able to find well-formed clusters.

These qualitative results are reflected by the quantitative
evaluation shown in Fig. 5. The values for the silhouette
coefficient and the Calinski–Harabasz index remain quite
stable and high regardless of the number of clusters k for
DELIUS. The values for these metrics shown by DCEC are
also good although lower than the proposed method. This

confirms the effectiveness of using a deep pre-trained model
like DenseNet to extract features before learning the embed-
ding. Furthermore, it should be noted that being performed
directly on the initial images, theDCEC training ismuchmore
computationally demanding, as it requires many more iter-
ations to converge (Fig. 8). In contrast, PCA+k-means and
AE+k-means show very poor performance, with the metric
values progressively decreasing as k increases, confirming
their ineffectiveness to solve the clustering task.

Finally, with regard to the external metrics (Figs. 6, 7), no
model is able to obtain satisfactory results in relation to the
time period ground truth. However, when considering the
genre ground truth, both AE+k-means and DELIUS exceed
40%. The better results achieved by AE+k-means compared
toDCEC, althoughwell-defined clusters are not obtainedwith
themethod, confirms that the features extracted by DenseNet
may be more informative than those learned from scratch by
the convolutional autoencoder.
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Fig. 12 From top to bottom: the learning curves of loss and accuracy on the training and validation set and the normalized confusion matrix, for
each network compared. The vertical lines indicate the start of fine-tuning

5.4 Ablation Study

In this section, we report the results of some ablation studies
we have done to choose the best neural network architec-
ture to extract meaningful features from digitized paintings
and drawings without supervision. To do this, we com-
pared DenseNet121 with the popular VGG16 and ResNet50.
VGG16 is a classic CNN architecture that adopts 3× 3 con-
volution and 2× 2 max pooling throughout the network and
follows a standard scheme in which convolutional layers are
interleaved with max pooling layers for a total of 16 weight
layers (Simonyan andZisserman, 2014). ResNet, on the other
hand, uses a skip connection strategy so that inputs can prop-
agate faster between layers (He et al., 2016). As noted earlier,
ResNet uses addition rather than concatenation in cross-layer
connections.

To compare the three networks fairly, we trained them to
solve the same classification task, namely the separation of
the WikiArt dataset into the 8 stylistic classes of Table 1.
This was done to find the network that is best able to recog-
nize some stylistic properties of the artworks. The evaluation
was performed on a validation set obtained as a 10% strati-
fied fraction of the overall dataset. The three networks were
trained using the same training strategy: each of them was
equipped with a global average pooling layer on top of the
convolutional base; a dropout layer with a dropout rate of
0.2; and a final output layer with softmax activation attached.
Additionally, each network was trained to minimize a cross-
entropy loss function using Adam with a learning rate of
0.001. We adopted the common practice of using the net-
works as feature extractors first, monitoring the validation
loss and continuing propagation until early stopping with a
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patience of 2. Then, starting from weights pre-trained on
ImageNet, we fine-tuned each network by unfreezing the
last convolutional block while continuing propagation with
a learning rate of 10−4 to prevent the previously learned
weights from being destroyed. Again, we independently
stopped each network training by monitoring the validation
loss with a patience of 2.

The results obtained are shown in Fig. 12. They point
out that none of the networks is able to achieve excellent
results on WikiArt. However, it should be noted that this is
an 8-class classification task, the random baseline of which
is much lower. Furthermore, we have not implemented any
other strategies to push these findings further, as this was
not the main focus of our study. The learning curves show
that ResNet50 tends to severely overfit the dataset very soon;
while a slightly better behavior is shown by VGG16 and
DenseNet121, with the latter performing better than the
former. The lower number of parameters of DenseNet121
compared to the other two models makes it less prone to
overfitting when fine-tuned on a dataset, WikiArt, which is
significantly smaller than ImageNet. All in all, also consid-
ering that DenseNet121 is smaller in size and faster than the
other two models, we preferred to use this network.

Finally, it is worth noting that fine-tuning was only used to
help better assess network behavior on these data, but in our
final model we only used DenseNet121 in an unsupervised
way.

6 Conclusion

The contribution of this study was the achievement of new
results in the automatic analysis of art, which is a very
difficult task. Indeed, recognizing meaningful patterns in
artworks based on domain knowledge and human visual per-
ception is extremely difficult for machines. For this reason,
the application of traditional clustering and feature reduc-
tion techniques to the highly dimensional pixel space has
been largely ineffective. Automatic discovery of patterns in
painting is desirable to relax the need for prior knowledge
and labels, which are very difficult to collect in this field,
even for an expert.

To address these issues, in this paper we have proposed
DELIUS, a new fully unsupervised deep learning approach
to clustering visual arts. The quantitative and qualitative
experimental results show that DELIUSwas able to find well-
separated clusters both when considering an overall dataset
spanning different periods and when focusing on artworks
produced by the same artist. In particular, from a qualitative
point of view, it seems that DELIUS is able to look not only
at stylistic features to group artworks, but also especially
at semantic attributes, relating to the content of the scene
depicted. This abstraction capability appears to hold promise

for addressing the well-known cross-depiction problem—
which still poses a challenge to the research community—,
pushing toward a better imitation of the humanunderstanding
of art.

As future work, we would like to study how the injection
of some pieces of prior art knowledge, in a semi-supervised
fashion, e.g. (Ren et al., 2019), can be advantageous for the
proposed method and to better cluster the works of current
artists. Furthermore, it is worth noting that, in an attempt to
mimic human aesthetic perception, without using any prior
knowledge, DELIUS relies only on visual features to group
artworks; however, artworks are characterized not only by
their visual appearance but also by various other historical,
social, and contextual factors that place them in a more com-
plex scenario. A promising way to harness this knowledge
is to encode (con)textual information of the artworks into
a Knowledge Graph (KG) (Hogan et al., 2021) and use an
appropriate representation of the nodes in the graph as an
additional input to a deep learning model. Recent work has
already moved in this direction (Garcia et al., 2020; Vaigh
et al., 2021) andwe are contributing by developingArtGraph,
an artistic KG based on WikiArt and DBpedia (Castellano et
al., 2022). In the future, we would like to integrate ArtGraph
with DELIUS to explore how the injection of (con)textual
information of prior art is useful for generalizing beyond just
the visual features, and thus for clustering novel art and to
gain better semantic scene understanding and machine aes-
thetic perception.
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