
International Journal of Computer Vision (2022) 130:1145–1164
https://doi.org/10.1007/s11263-022-01588-7

SoftPool++: An Encoder–Decoder Network for Point Cloud Completion

Yida Wang1 · David Joseph Tan2 · Nassir Navab1 · Federico Tombari1,2

Received: 1 March 2021 / Accepted: 3 February 2022 / Published online: 11 March 2022
© The Author(s) 2022

Abstract
We propose a novel convolutional operator for the task of point cloud completion. One striking characteristic of our approach
is that, conversely to related work it does not require any max-pooling or voxelization operation. Instead, the proposed
operator used to learn the point cloud embedding in the encoder extracts permutation-invariant features from the point cloud
via a soft-pooling of feature activations, which are able to preserve fine-grained geometric details. These features are then
passed on to a decoder architecture. Due to the compression in the encoder, a typical limitation of this type of architectures
is that they tend to lose parts of the input shape structure. We propose to overcome this limitation by using skip connections
specifically devised for point clouds, where links between corresponding layers in the encoder and the decoder are established.
As part of these connections, we introduce a transformation matrix that projects the features from the encoder to the decoder
and vice-versa. The quantitative and qualitative results on the task of object completion from partial scans on the ShapeNet
dataset show that incorporating our approach achieves state-of-the-art performance in shape completion both at low and high
resolutions.

Keywords Point cloud · Completion · SoftPool · Skip-connection

1 Introduction

Several data representations exist for 3D shapes. One com-
mon choice is the use of spatially discretized representations
such as volumetric data (Yang et al. 2017;Wang et al. 2019b;
Yang et al. 2018a). Alternative popular choices are implicit
descriptions (Park et al. 2018; Chibane et al. 2020) as well
as sparse 3D coordinate-based representations such as point
clouds (Yang et al. 2018b; Xie et al. 2020b; Yuan et al.
2018) and 3D meshes (Groueix et al. 2018). Among this
latter category of 3D data formats, point clouds are arguably
the simplest, since they store 3D coordinates without any
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additional topological information such as faces or edges
associated to the vertices. Hence, investigating how to pro-
cess and learn 3D shape geometry based on these simple,
yet effective representations is currently a hot research topic.
This has recently motivated several tasks in 3D computer
vision such as estimating point cloud deformation (Yang et
al. 2018b; Yuan et al. 2018), registration (Aoki et al. 2019;
Park et al. 2017), completion (Wang et al. 2020b; Groueix
et al. 2018; Yuan et al. 2018), segmentation (Qi et al. 2017a;
Lei et al. 2020; Xu et al. 2020) and 3D object detection (Shi
et al. 2020; Qi et al. 2019).

This paper focuses on the point cloud completion task.
The goal is to fill out occluded parts of the input 3D geome-
try represented by a partial scan, in away that is coherentwith
the global shape while preserving fine local surface details.
This is a useful task for many real world applications since
occluded regions are normally present as part ofmost 3Ddata
capture processes within, e.g., SLAM or multi-view recon-
struction pipelines. State-of-the-art approaches targeting this
task are based on neural networks and mostly rely on learn-
ing how to deform a set of 2D grids at different scales into
3D points, based on global shape descriptors typically rep-
resented by PointNet (Qi et al. 2017a) features. Examples of
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these approaches are FoldingNet (Yang et al. 2018b), Atlas-
Net (Groueix et al. 2018) and PCN (Yuan et al. 2018).

To overcome the aforementioned problem related to infor-
mation loss due to feature compression at the level of the
encoder–decoder bottleneck, GRNet (Xie et al. 2020b) sug-
gests to preserve fine geometry details by discretizing the
features via volumetric featuremaps used at the different lay-
ers of the encoder. It also suggests using volumetric U-Net
(Yang et al. 2018a) to build skip connections between the
encoder and the decoder, eventually merging the obtained
features with the input point cloud. The idea of leveraging
skip connections among different layers of an encoder–
decoder model follows the successful paradigm already
exploited for volumetric shape completion, in particular 3D-
RecGAN (Yang et al. 2017) and ForkNet (Wang et al. 2019b).
While effective, converting sparse point cloud features into
volumetricmaps brings in all the disadvantages of discretized
3Ddata representationswith respect to point clouds, in partic-
ular the loss of fine shape details, the inability to flexibly deal
with local point density variations, as well as the unpractical
trade-off between 3D resolution and memory occupancy.

Recently, we have demonstrated how, by means of sort-
ing features based on their activations rather than applying
max pooling, we can build up point clouds embeddings that
store more informative features for a point cloudwith respect
to PointNet. This feature-learning approach, named Soft-
Pool (Wang et al. 2020b), obtained state-of-the-art results
for different point cloud-related tasks, such as completion
and classification. In this work, we build up on our previous
work (Wang et al. 2020b) to propose a more complete end-
to-end framework. Our contributions are two-folds and are
listed as follows:

1. We generalize our feature extraction technique into a
module called SoftPool++. This module introduces trun-
cated softpool features aimed to decrease the memory

requirements of the originalmethodduring training,mak-
ing it compatible with off-the-shelf GPUs. Notably, a
disadvantage of the SoftPool features (Wang et al. 2020b)
is that each point is processed independently from the
rest. Due to this, the proposed module further processes
the truncated softpool featureswith regional convolutions
in order to recognize the relationships between the fea-
ture points. In contrast toWang et al. (2020b) that applies
their feature once, this module can be applied multiple
times as demonstrated in our architecture, which uses it
across multiple layers.

2. We propose a novel encoder–decoder architecture char-
acterized by the use of point-wise skip connections. By
connecting corresponding layers between encoder and
decoder, this has the advantage of preserving fine geo-
metric details from the given partial input cloud. This is
to the best of our knowledge the first approach using skip
connections for unorganized sets of 3D feature maps,
relaxing the need of spatial discretization as deployed in
Xie et al. (2020b), with benefits in terms of completion
accuracy and memory occupancy. In addition, we also
adapt the discriminator from TreeGAN (Shu et al. 2019)
for the shape completion problem to further improve our
model.

Our method is evaluated on ShapeNet (Chang et al. 2015)
for the task of shape completion and on ModelNet (Zhirong
et al. 2015) and PartNet (Mo et al. 2019) for the task of
classification. Figure 1 illustrates a teaser of the shape com-
pletion results. It compares the architectures that are built on
PointNet (Qi et al. 2017a) and SoftPool (Wang et al. 2020b)
features. Visually, we show the advantage of the reconstruc-
tions that rely on SoftPool features as they are remarkably
more similar to the ground truth. Moreover, the figure also
highlights the improvements of SoftPool++ with respect to
our previous approach (Wang et al. 2020b).

(a) (b) (c) (c) (d) (e)

Fig. 1 Object completion results of the PointNet features such as FoldingNet (Yang et al. 2018b) and PCN (Yuan et al. 2018); and, the SoftPool
features such as SoftPoolNet (Wang et al. 2020b) and the proposed SoftPool++
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2 RelatedWork

Based on the focus of our contributions, we browse through
the relevant methods in 3D object completion from partial
scans and the use of skip connections with 3D data.

2.1 3D Object Completion

Inspired by the way humans perceive the 3D world from
2D projections, 3D-R2N2 (Choy et al. 2016) builds recur-
rent neural networks (RNNs) to fuse multiple feature maps
extracted from input RGB images sequentially to recover
the 3D geometries. To further improve the reconstruction, a
coarse-to-fine 3D decoder was presented in Pix2Vox (Xie et
al. 2019) as well as the residual refiner in Pix2Vox++ (Xie
et al. 2020a). Due to the recent popularity of the attention
mechanisms, AttSets (Yang et al. 2020) proposed to build
attention layers to correlate the image features from differ-
ent views. In contrast, our 3D reconstruction in this paper
focuses on only a single depth image.

Taking a depth imageof an object froman arbitrary camera
pose, the objective of 3D object completion is to complete its
missing structure and build its full reconstruction. Focusing
on learning-based completion,most relatedwork can be cate-
gorized depending on the input data they process—voxelized
grid or point cloud. Interestingly, a notable work from OcCo
(Wang et al. 2021a) demonstrates that the weights trained for
completion are also valuable for other tasks like segmenta-
tion and classification.

Voxelized Grid Due to the popularity of 2D convolution
operations in CNNs (Azad et al. 2019; Kirillov et al. 2020;
Yang et al. 2020) for RGB images, its straightforward exten-
sion to 3D convolutions on volumetric data also rose to fame.
3D-EPN (Dai et al. 2017) and 3D-RecGAN(Yang et al. 2017)
are the first works on this topic, where they extended the typ-
ical encoder–decoder architecture (Noh et al. 2015) to 3D.
Adopting a similar architecture, 3D-RecGAN++ (Yang et al.
2018a) and ForkNet (Wang et al. 2019b) utilize adversarial
trainingwith 3D discriminator to improve the reconstruction.

Themain advantage of volumetric completion is the struc-
ture of its data such that deep learningmethods developed for
RGB images can be extended to 3D. However, this advantage
is also its limitation. The fixed local resolution makes it hard
to reconstruct the object’s finer details without consuming a
huge amount of memory.

Point Cloud Having the inverse problem, point clouds have
the potential to reconstruct the object at a higher resolutions
but exhibited so far a limited application in deep learning
due to its unstructured data. Note that, unlike RGB images
or voxel maps, point clouds do not have a particular order,

and the number of points varies as we change the camera
pose or the object.

Targeted to solve the unordered structure of point clouds,
PointNet (Qi et al. 2017a) proposes to implement max-
pooling in order to achieve a permutation invariant latent
feature. Based on this one dimensional feature, FoldingNet
(Yang et al. 2018b) proposes an object completion solution
that deforms a 2D rectangular grids by multi-layer percep-
tron (MLP). By increasing the number of 2D rectangular
grids, AtlasNet (Groueix et al. 2018) and PCN (Yuan et
al. 2018) added more complexity as well as details into the
reconstruction. MSN (Liu et al. 2020) then further improves
the completion by adding restrictions to separate different
patches apart from each other. Moreover, Cycle4Completion
(Wen et al. 2021) is also based on PointNet features but
solves the problem by training with an unsupervised cycle
transformation. Moving away from the global feature rep-
resentation, PointNet++ (Qi et al. 2017b) samples the local
subset of pointswith farthest point sampling (FPS) then feeds
it into PointNet (Qi et al. 2017a). Based on this feature, PMP-
Net (Wen et al. 2020b) completes the entire object gradually
from the observed regions to the nearest occluded regions.
SnowflakeNet (Xiang et al. 2021) also uses the PointNet++
features to split points in the coarsely reconstructed object to
execute the completion progressively. In addition, building
a similar feature as PointNet, ME-PCN (Gong et al. 2021)
takes both the occupied and the empty regions on the depth
image as input for 3D completion, showing the advantage of
masking the empty regions in completion.

Unlike the methods which are dependent on a vectorized
global feature to solve the permutation invariant problem,
RFNet (Huang et al. 2021) and PointTr (Yu et al. 2021) pro-
duce several global features in their encoder. On one hand,
RFNet (Huang et al. 2021) uses their features to complete the
object in an recurrent way by concatenating the incomplete
input and the predicted points level by level. On the other,
PointTr (Yu et al. 2021) relies on transformers to produce a
set of queries directly from the observed points with the help
of positional coding. In effect, PointTr (Yu et al. 2021) does
not need to compress the input into a single vector.

The recentwork fromPVD(Zhou et al. 2013),GRNet (Xie
et al. 2020b) and VE-PCN (Wang et al. 2021b) leverage both
the point cloud and the voxel grid representations. Unlike
most works that rely on Chamfer distance to optimize the
model, PVD (Zhou et al. 2013) uses a simple Euclidean loss
to optimize the shape generation model from the voxelized
point cloud representation. GRNet (Xie et al. 2020b) first
voxelizes the point cloud, processes the voxel grid with deep
learning and converts the results back to point cloud. While
this solves the unorganized structure of the point clouds,
its discretization removes its advantage on reconstructing in
higher resolutions. VE-PCN (Wang et al. 2021b) improves
the completion by supplementing the features of the decoder
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in the volumetric completion with the edges. This method
then converts the voxels to point clouds by Adaptive Instance
Normalization (Lim et al. 2019).

Another solution is presented in our previous work Soft-
PoolNet (Wang et al. 2020b) that builds local groups of
features by sorting them into a feature map. 2D convolu-
tions are then applied to the feature map. Consequently, this
approach is able to deal with unorganized point clouds and
achieve reconstruction results at high resolution. We build
upon SoftPoolNet (Wang et al. 2020b) and generalize the fea-
ture extraction into a module which we call SoftPool++. This
then allows us to connect multiple modules in an encoder–
decoder architecture. As a consequence, we achieve better
quantitive and qualitative results.

2.2 Skip Connections in 3D

Skip connections were initially proposed for image process-
ing (Mazaheri et al. 2019; Kim et al. 2016; Gao et al. 2019;
Azad et al. 2019) then later adapted for 3D volumetric recon-
struction (Yang et al. 2017, 2018a;Wang et al. 2019b). Given
a point cloud as input, the methods like GRNet (Xie et al.
2020b) and InterpConv (Mao et al. 2019) require to convert
the input point cloud to voxel grids.

Aiming at alleviating this limitation on point clouds, the
work from Std (Yang et al. 2019) bypasses the encoder fea-
tures into decoder point-by-point while GACNet (Wang et
al. 2019a) constructs a graph from the points then constructs
the skip connection with the graph. The problem of these
point-wise skip connections is that new points cannot be
introduced in the decoder. To solve this, SA-Net (Wen et
al. 2020a) groups PointNet++ (Qi et al. 2017b) features in
different resolutions with KNN. The skip connection from
the encoder then matches the resolution of the decoder.

Contrary to these methods, in the context of object com-
pletion, the objective of our skip connection is compensate
for the lost data in the encoder and bypass the observed geom-
etry to the decoder. We also introduce the concept of feature
transformation to compensate for the difference between the
features from the encoder and decoder. Later in our evalu-
ation, we found that the skip connection is a crucial step to
achieve higher accuracy. Moreover, the SoftPool++ features
also contribute to make our skip connection simpler. Since it
is an organized feature, we avoid the time-consuming KNN,
which significantly decreases our inference time.

3 Feature Extraction

Given the partial scan of an object, the input to our network
is a point cloud with Nin points written in matrix form as

Pin = [xi ]Nin
i=1, where each point is represented as the 3D

coordinates xi = [xi , yi , zi ].
On one hand, the first objective of this section is to build

a feature descriptor from the unorganized point cloud such
that the feature remains the same for any permutation of the
point cloud in Pin. On the other hand, the second objective is
to generalize this process into a feature extractionmodule that
takes an arbitrary input Pin. In this way, the proposed module
can be implemented at multiple instances in our architecture.

3.1 SoftPool Feature

From the point cloud vector, we then convert each point into a
feature vector fi with N f elements by projecting every point
with a point-wise multi-layer perceptron (Qi et al. 2017a)
with its parameters assembled inWMLP. Thus, we define the
Nin×N f feature matrix as F = [fi ]Nin

i=1. Note that we applied
a softmax function to the output neuron of the perceptron so
that the elements in fi range between 0 and 1.

Throughout this section, we refer to the toy example in
Fig. 2 to visualize the various steps. This example assumes
that there are only five points in the point cloud such that
Nin = 5 as shown in Fig. 2a.

One of the main challenges in processing a point cloud is
its unstructured arrangement. If we look at Fig. 2a, changing
the order of the points in Pin reorganizes the rows of the
feature map F . There is consequently no guarantee that the
feature map remains constant for the same set of points. To
solve this problem,we propose to organize the feature vectors
in F so that their k-th elements are sorted in a descending
order, which is denoted asF′

k . Note that k should not be larger
than N f . This is demonstrated inFig. 2awherewe arrange the
five feature vectors from F = [fi ]5i=1 to F

′
k = [fi ]i={3,5,1,2,4}

by comparing the k-th element of each vector.
The features in SoftPoolNet (Wang et al. 2020b) repeat

this process for all of the N f elements in fi . Altogether, the
feature is a 3D tensor with the dimension of Nin × N f × N f

denoted as F′ = [F′
1,F

′
2, . . .F

′
N f

] in Fig. 2b. Finally, we
assemble the SoftPool features F∗ by taking the Nr rows
with the highest activations of all F′

i in F
′. Since each row in

F′
i is equivalent to a point, we can then interpret the Nr rows

of F′
i as one region in the point cloud, summing up to all N f

regions in F∗.
Although both PointNet (Qi et al. 2017a) and SoftPoolNet

(Wang et al. 2020b) utilize MLP in their architecture, they
have significant differences on handling the results thereof.
Compared to the max-pooling operation in PointNet (Qi et
al. 2017a), themotivation of the SoftPool feature is to capture
a larger amount of information and to further process it with
regional convolution operations, as explained later in Sect. 4.
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(a) (b)

Fig. 2 Toy examples of the truncated SoftPool feature. Given 5 points
in (a), they go through Multi-layer Perceptron (MLP) to produce F. At
the k-th element, the vectors are sorted to build F′

k and consequently F
′.

In (b), we concatenation of the first Nr rows of F′
k to construct the 3D

tensor F∗ which corresponds to the regions with high activations then
truncated to assemble F̂

3.2 Generalizing and Truncating the SoftPool
Feature

In practice, we noticed that we can generalize the SoftPool
feature formulation to an arbitrary input feature Pin—thus,
alleviating the definition of points—to produce the Soft-
Pool features F′. From this perspective, we can construct
an architecture with a series of SoftPool feature extractions.
Therefore, we take the point cloud as the input to the archi-
tecture and extract the first SoftPool features. Then, after
processing the first features, we can then extract the second
features from themand so on. This is discussed later in Sect. 4
with an encoder–decoder architecture.

However, the drawback of such architecture is the size of
the SoftPool features.With a dimension of Nr ×N f ×N f , the
memory footprint increases with the size of the feature but
we are constrained by the memory size of our off-the-shelf
GPU. Notably, in Wang et al. (2020b), they set the feature
dimension N f to a small value of 8. In this work, since we
are interested in building a series of SoftPool features in an
encoder–decoder architecture, N f increases up to 256 in the
latent space.

Hence, we propose to further truncate the SoftPool fea-
tures to Nr × N f × Ns , where the third dimension takes the
first Ns matrices in F∗ as illustrated in Fig. 2b. To distinguish
from Wang et al. (2020b), we refer this as the Truncated
SoftPool feature, denoted as F̂ in Fig. 2b.

3.3 Regional Convolutions

Considering that each point in the cloud independently goes
through MLP while the operations thereafter to produce the
truncated SoftPool features rely on sorting, each row of our
feature remains independent from each other. However, in
contrast to max-pooling which produces a vector, our feature
is a 3D tensor which can undergo convolutional operations.

Instead of applying the same kernel to all regions asWang
et al. (2020b), we generalize the regional convolutions and
impose distinct kernels for each region. We first split F̂ =

[F̂r ]Ns
r=1 into separate regions F̂r and correspondingly apply a

set of kernelsWconv = {Wr }Ns
r=1. Assigning the concatenated

output tensor as Fout = [Pr ]Ns
r=1, we can formally describe

this operation as

Pr (i, j) =
N f∑

l=1

Nk∑

k=1

F̂r (i + k, l)Wr ( j, k, l) (1)

for the r -th region.
The dimension of each kernel is Nk×N f ×Nout, where Nk

indicates the number of neighbors to consider and Nout is the
desired size of the output Pr . Note that the kernels convolves
on the entire width of F̂r , i.e.corresponding to its width N f .
This implies that we only pad on the vertical axis. Similar
to other convolutional operators, the stride s distinguishes
between a convolutional and deconvolutional operation. If
the stride is greater than 1, F̂r is downsampled, while it is
upsampled if the stride is less than 1.

3.4 SoftPool++Module

Now, we have all the components to build the feature extrac-
tion module as shown in Fig. 3, which we call SoftPool++.
Since Pin is defined as the input point cloud, we generalize
the input of the module as Fin where we set Fin = Pin in
the first layer. Hence, the input matrix Fin goes through a 3-
layer perceptron then builds the truncated SoftPool features.
Thereafter, we perform regional convolution and reshape the
results by squeezing the third dimension to finally acquire
our output feature matrix Fout.

Fig. 3 Overview of the feature extraction module called SoftPool++
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Fig. 4 Object completion results with MSN (Liu et al. 2020) while
using PointNet (Qi et al. 2017a) features and SoftPool++ features on its
encoder

When constructing our architecture in Sect. 4, the encoder
and decoder are distinguished primarily on the stride s. In this
paper, we show the versatility of this novel module to act as
an encoder and decoder as well as to refine a coarse point
cloud with more elaborate details.

The differences between decoding from PointNet features
and SoftPool++ features are evident in Fig. 4, where we
replace the PointNet feature in MSN (Liu et al. 2020) with
a SoftPool++ feature with the same size of 1024. By replac-
ing the PointNet (Qi et al. 2017a) encoder in MSN (Liu et
al. 2020) with our SoftPoolNet++ encoder, we show that the
SoftPool++ feature supplements the MSN’s decoder where
all the wheels are clearly separated from the body of the
SUV, while the original PointNet feature in MSN follow the
more generic structure of a vehicle with tiny gaps between
wheel and body. This proves that SoftPool++ makes our

decoder able to take all observable geometries into account
to complete the shape, while the max-pooled PointNet fea-
ture cannot deal with geometric structures which are rarely
or not at all seen in the training data.

4 Network Architecture

The volumetric U-Net (Çiçek et al. 2016; Yang et al. 2018a)
in 3D-RecGAN (Yang et al. 2017) and GRNet (Xie et al.
2020b) has shown significant improvements in object com-
pletion as it injects more data from the encoder to the decoder
in order to supplement the compressed latent feature. With-
out the skip connection in U-Net, we end up losing most of
the input data as it goes through the encoder. Consequently,
the decoder starts hallucinating the overall structure without
being faithful to the given information. Inspired by this idea,
we introduce a novel U-Net connection that directly takes
the point cloud as input, i.e.without the need of voxelization
at any stage of the network.

Our network architecture is composed of an encoder–
decoder structure with a skip connection as shown in Fig. 5.
Such connection between encoder and decoder makes the
completion more likely to preserve input geometries. The
encoder is composed of consecutive feature extraction mod-
ules from Sect. 3.4 to downsample the input to the latent
feature while the decoder is composed of the similar feature
extractionmodules to upsample to the output.As discussed in
Sect. 3.4, the stride s is a significant parameter to distinguish
the two layers. Table 1 lists the values of all the parameters
for the module in the convolution and deconvolution layers.

Fig. 5 Overview of our object completion architecture where the
parameters for the convolution and deconvolution operations based on
the feature extractionmodule are listed in Table 1. Note that, in our eval-

uation, we compare three point cloud results from the decoder: (1) the
skip-connection output; (2) the coarse output; and, (3) the fine-grained
output which is the final reconstruction
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Table 1 Dimensions and parameters on each feature extraction module in our architecture

Feature extraction module Conv1 Conv2 Deconv1 Deconv2 MDS Deconv3 Deconv4

Input variable Pin Fconv1
out Fconv2

out [Fdeconv1
out ,Fconv1

out R] Fdeconv2
out PMDS Fdeconv3

out

Number of rows Nin Nin/8 256 512 + Nin/8 1024 + Nin/4 2048 4096

Number of columns 3 256 256 256 3 3 3

Stride (s) 8 2 1/2 1/2 – 1/2 1/4

Feature dimension (N f ) 256 256 256 256 3 256 256

Number of rows in the region (Nr ) Nin 32 Nin Nin – Nin Nin

Truncation size (Ns ) 1 8 1 1 – 1 1

Kernel size (Nk ) 8 8 4 4 – 4 4

Dimension of output feature (Nout) 256 256 256 3 3 3 3

Output variable Fconv1
out Fconv2

out Fdeconv1
out Fdeconv2

out PMDS Fdeconv3
out Pout

Number of rows Nin/8 256 512 1024 + Nin/4 2048 4096 16,384

Number of columns 256 256 256 3 3 3 3

Note that the input to the architecture is the point cloud Pin with a dimension of Nin ×3 while the output is another point cloud Pout with 16,384×3

Skip Connection with Feature Transform We bridge the
encoder and decoder with a skip connection to build a U-
Net-like (Çiçek et al. 2016; Yang et al. 2018a) structure. This
connection links the results of conv1, denoted as Fconv1

out , to the
results of deconv1, denoted as Fdeconv1

out . However, instead of
simply concatenating them, we introduce a square matrix
R that transforms the features from the encoder as Fconv1

out R.
Note that the multiplication by the transform is on the
right side because the points are arranged row-wise in Pin,
which implies that the feature vectors are also arranged row-
wise. Subsequently, we concatenate the two matrices into
[Fdeconv1

out ,Fconv1
out R] that serves as the input to the feature extrac-

tion module, producing Fdeconv2
out .

In order to avoid randomly large values in the transfor-
mations and attain numerical stability during training, we
regularize the transformation matrix to be orthonormal such
that all elements are between [−1, 1] and it mathematically
satisfies RR� = I where I is an identity matrix. Geometri-
cally, the regularizer imposes to rotate the features by R.

Minimum Density Sampling Since the number of points in
the input cloud vary, the results of deconv2 would also pro-
duce a varying number of points, i.e.with 1024 + Nin

4 points
from Table 1, since it depends on the input dimension. Thus,
we include a Minimum Density Sampling (MDS) (Liu et al.
2020) in the decoder to standardize the output to a coarse res-
olution of 2048 points. The coarse resolution is then refined
with two deconvolutional operations to 16,384 points. The
motivation of adding the MDS is to help the final deconvo-
lutional layers to converge faster during training. Later in
Sect. 6, we investigate further the differences between the
point clouds from the skip-connection as well as the coarse
and fine as illustrated in Fig. 5.

5 Loss Functions

Since the main goal here is point cloud completion (Groueix
et al. 2018; Yang et al. 2018b; Yuan et al. 2018), we first
analyse whether the predicted point feature Pout matches the
given ground truth Pgt through the Chamfer distance

Lcomplete = Chamfer(Pout,Pgt) . (2)

Furthermore, we optimize our architecture with two sets of
loss functions that are related to the feature extraction mod-
ule for all the convolution and deconvolution layers in the
architecture from Sect. 3.4 as well as the skip connection
with the feature transform from Sect. 4.

5.1 Optimizing the Feature ExtractionModule

For the feature extraction module that utilizes SoftPool fea-
tures, we adopt the same loss terms as inWang et al. (2020b),
where their main objective is to optimize the distribution of
the features across different regions.

Intra-regional Entropy The ideal case for the feature vector
fi is a one-hot code, i.e. each vector gets assigned to only
one region. To accomplish this goal, we measure the proba-
bility of fi belonging to region k in all Ns regions by directly
applying the softmax on the elements of the vector as

P(fi , k) = efi [k]
∑Ns

j=1 e
fi [ j]

. (3)

This implies that P is maximized when fi is a one-hot code,
with the k-th element equal to one. However, in presence of
multiple peaks in the vector, P(fi , k) might decrease signif-
icantly. Therefore, by taking the entropy into account, the
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(a)

(b) (c) (d)

Fig. 6 Our object completion results with and without the influence of
Lboundary

intra-regional loss function

Lintra = − 1

Nin

1

B

Nin∑

i=1

B∑

j=1

Ns∑

k=1

P(fi , k) log P(fi , k) (4)

where B is the batch size, tries to enforce the feature vector to
have one peak so that it confidently falls into just one region.

Inter-regional Entropy The drawback ofLintra is that all fea-
ture vectors have the same peak at the k-th element. Looking
at a more holistic perspective, the inter-regional loss function
aims at distributing the features across different regions. It
relies on maximizing the regional entropy

Er = − 1

B

B∑

j=1

Ns∑

k=1

P̄k · log P̄k (5)

given that

P̄k = 1

Nin

Nin∑

i=1

P(fi , k) . (6)

We can then define the loss function as

Linter = log(Ns) − Er (7)

since the upper-bound of Er is computed as − log 1
Ns

or sim-
ply log(Ns).

Boundary Overlap Minimization In addition to optimizing
the holistic distribution of the points, we also incorporate a
loss function that is applied on pairs of regions i and j . We
collect a set of points Bi

j from region i with activations of
region j larger than a threshold τ , i.e.set to 0.3. Similarly,

we also take the inverse B j
i . Consequently, we squeeze the

overlaps between the two regions.
By minimizing the Chamfer distance between Bi

j and B j
i ,

we obtain the loss

Lboundary =
Ns∑

i=1

Ns∑

j=i

Chamfer(B j
i ,Bi

j ) (8)

that tries to make the overlapping sets of points smaller, ide-
ally down to just a line. In Fig. 6, we visualize the difference
of optimizing with and withoutLboundary, where the distribu-
tion of the point cloud is less noisy on the occluded regions
such as the armrest.

Notably, this loss function is general enough to be effec-
tively applied also on othermethods that rely on a subdivision
of the point cloud into different regions, such as AtlasNet
(Groueix et al. 2018), PCN (Yuan et al. 2018) and MSN (Liu
et al. 2020). In Sect. 7.2, we formally evaluate these methods
with and without Lboundary.

Feature Duplicate Minimization The last loss term

Lpreserve = Earth-moving(F̂,F) (9)

imposes that the resulting truncated SoftPool feature F̂ takes
most of the features from original F so that it avoids dupli-
cates. To make the earth moving distance (Li et al. 2013)
more efficient, 256 vectors are randomly selected from F
and F̂. In practice, Fig. 7 visualizes the effects of Lpreserve in
the reconstruction, where lower weights of this loss produce
a large hole, while incorporating this loss builds a point cloud
with similar densities.

5.2 Optimizing the Skip Connection

Wefirst visualize a subset of the architecture and focus on the
skip connection as shown in Fig. 8. Here, we define Ppartial

as the partial reconstruction on Fdeconv2
out contributed by the skip

connection with the feature transform. However, note that
Ppartial is not a subset of Fdeconv2

out . It is produced by taking
the input point cloud through conv1, feature transform and
deconv2.

Since the skip connection aims tomaintain the given input
structure, we define a loss function that acts as an auto-
encoder such that

Lskip = Chamfer(Ppartial,Pin) . (10)

In addition, based on Sect. 4, we regularize the values in the
feature transform such that

LR = ‖RR� − I‖2 (11)
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(a) (b) (c) (d) (e) (f)

Fig. 7 Our object completion results while increasing the weight of Lpreserve

Fig. 8 Subset of the architecture that focuses on the skip connection

makes R orthonormal.

5.3 Discriminative Training

Recognizing the advantages fromTreeGAN(Shuet al. 2019),
we also investigate applying discriminative training condi-
tions on the input partial scan Pin. In this case, we first
introduce the conditional feature maps Pout|Pin and Pgt|Pin

by concatenating them along the point axis. We build our
discriminator D with the same parametric model proposed
in Shu et al. (2019). By restricting the output of the discrim-
inator to a range between 0 and 1, we can then apply

Linfer = − log(D(Pout|Pin)) , (12)

to optimize our completion architecture while

Ldiscri = − log(D(Pgt|Pin)) − log(1 − D(Pout|Pin)) (13)

to optimize the discriminator D. In practice, we impose
the loss functions in (12) and (13) alternatively in order to
optimize the completion architecture and the discriminators
separately.

6 Experiments

For all evaluations, we train ourmodelwith anNVIDIATitan
V and parameterize it with a batch size of 8. Moreover, we
apply the Leaky ReLU with a negative slope of 0.2 on the
output of each regional convolution.

6.1 Completion on ShapeNet

We evaluate the performance of the geometric completion of
a single object on the ShapeNet (Chang et al. 2015) database
where they have the point clouds of the partial scanning as
input and the corresponding ground truth completed shape.
To make it comparable to other approaches, we adopt the
standard 8 category evaluation (Yuan et al. 2018) for a sin-
gle object completion. Both sampled fromShapeNetmeshes,
PCN (Yuan et al. 2018) and TopNet (Tchapmi et al. 2019)
supplement two set of datasets individually for low and
high resolutions evaluation, which contain 2048 and 16,384
points, respectively, where the inputs are provided with 2048
points. Notice that the low resolution dataset provided by
TopNet is also commonly referred to Completion3D bench-
mark. Since previous works report their results in terms of
L1/L2 metric of the Chamfer distance separately, we also
report our results in both resolutions (2048 and 16,384) and
metrics (L1 and L2).

We compare against state-of-the-art point cloud comple-
tion approaches such as PCN (Yuan et al. 2018), FoldingNet
(Yang et al. 2018b), AtlasNet (Groueix et al. 2018), Point-
Net++ (Qi et al. 2017b), MSN (Liu et al. 2020) and GRNet
(Xie et al. 2020b). To show the advantages over volumet-
ric completion, we also compare against 3D-EPN (Dai et al.
2017) and ForkNet (Wang et al. 2019b) with an output reso-
lution of 64 × 64 × 64. As for point cloud resolutions, PCN
(Yuan et al. 2018), GRNet (Xie et al. 2020b) and SoftPoolNet
(Wang et al. 2020b) report the best performance with 16,384
points whileMSN (Liu et al. 2020) presents their final output
resolution with 8192 points. Aiming at a fair numerical com-
parison at different resolutions, we modify the last layers of
these architectures so as to attain the same resolution for all
methods.

Low Resolution At low resolution, we achieve competitive
results, attaining the 0.13 × 10−4 from PMP-Net (Wen et
al. 2020b) with the L2-Chamfer distance in Table 2, while
we achieve state-of-the-art results when evaluating on the
L1-Chamfer distance in Table 3.
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Table 2 Evaluation on the object completion based on the Chamfer distance trained with L2 distance (multiplied by 104) with the output resolution
of 2048

Method Plane Cabinet Car Chair Lamp Sofa Table Vessel Avg.

Completion3D (Tchapmi et al. 2019) benchmark, Output Resolution = 2048, L2 metric

FoldingNet (Yang et al. 2018b) 12.83 23.01 14.88 25.69 21.79 21.31 20.71 11.51 19.07

PointSetVoting (Zhang et al. 2020a) 6.88 21.18 15.78 22.54 18.78 28.39 19.96 11.16 18.18

AtlasNet (Groueix et al. 2018) 10.36 23.40 13.40 24.16 20.24 20.82 17.52 11.62 17.77

PCN (Yuan et al. 2018) 9.79 22.70 12.43 25.14 22.72 20.26 20.27 11.73 18.22

TopNet (Tchapmi et al. 2019) 7.32 18.77 12.88 19.82 14.60 16.29 14.89 8.82 14.25

GRNet (Xie et al. 2020b) 6.13 16.90 8.27 12.23 10.22 14.93 10.08 5.86 10.64

SA-Net (Wen et al. 2020a) 5.27 14.45 7.78 13.67 13.53 14.22 11.75 8.84 11.22

PMP-Net (Wen et al. 2020b) 3.99 14.70 8.55 10.21 9.27 12.43 8.51 5.77 9.23

SoftPoolNet (Wang et al. 2020b) 6.39 17.26 8.72 13.16 10.78 14.95 11.01 6.26 11.07

Ours 4.59 15.82 6.78 11.41 8.82 13.37 9.15 4.93 9.36

Without skip-connection 4.63 16.35 9.10 13.40 10.55 13.85 10.90 6.23 10.63

Without D 5.07 16.12 6.86 11.56 8.88 13.67 9.21 5.33 9.59

Without LR 5.38 17.04 9.93 14.13 11.35 14.52 11.63 6.81 11.35

Bold indicates the best performance achieved in certain column

Table 3 Evaluation on the object completion based on the Chamfer distance trained with L1 distance (multiplied by 104) with the output resolution
of 2048

Method Plane Cabinet Car Chair Lamp Sofa Table Vessel Avg.

Completion3D (Tchapmi et al. 2019) benchmark, output resolution = 2048, L1 metric

FoldingNet (Yang et al. 2018b) 11.18 20.15 13.25 21.48 18.19 19.09 17.80 10.69 16.48

AtlasNet (Groueix et al. 2018) 10.37 23.40 13.41 24.16 20.24 20.82 17.52 11.62 17.69

AtlasNet + Lboundary 9.25 22.51 12.12 22.64 18.82 19.11 16.50 11.53 16.56

PCN (Yuan et al. 2018) 8.09 18.32 10.53 19.33 18.52 16.44 16.34 10.21 14.72

PCN + Lboundary 6.39 16.32 9.30 18.61 16.72 16.28 15.29 9.00 13.49

TopNet (Tchapmi et al. 2019) 5.50 12.02 8.90 12.56 9.54 12.20 9.57 7.51 9.72

SA-Net (Wen et al. 2020a) 2.18 9.11 5.56 8.94 9.98 7.83 9.94 7.23 7.74

SoftPoolNet (Wang et al. 2020b) 4.76 10.29 7.63 11.23 8.97 10.08 7.13 6.38 8.31

Ours 3.50 9.95 7.01 10.48 8.45 8.86 5.99 5.60 7.48

Without skip-connection 4.29 10.24 7.76 11.10 9.13 9.72 6.33 6.46 8.13

Without D 3.72 10.07 7.23 10.76 8.50 9.15 6.10 5.92 7.68

Without LR 4.68 10.54 8.06 11.42 9.45 10.03 6.70 6.77 8.46

Without Linter 9.81 19.49 13.24 18.20 16.83 17.00 15.64 7.16 14.67

Without Lintra 3.70 15.93 10.78 12.97 12.89 11.79 11.33 5.60 10.62

Without Linter, Lintra 9.07 19.62 14.31 19.17 16.46 17.82 14.34 7.60 14.80

Without Lboundary 4.71 10.43 8.14 11.27 9.27 10.57 7.43 7.36 8.65

Without Lpreserve 7.43 18.84 11.58 15.68 17.38 17.53 14.46 6.49 13.68

Bold indicates the best performance achieved in certain column

High Resolution We achieve the best results on most objects
with the high resolution as presented in Tables 4 and 5 with
8.31×10−3 and 2.55×10−3, respectively. Table 5 also shows
that volumetric approaches like 3D-EPN (Dai et al. 2017)
and ForkNet (Wang et al. 2019b) having large issues when
evaluated in Chamfer distance because the converted point
clouds from the fixed volumetric grids are at much smaller
local resolutions.

Validating with F-Score@1% Since the Chamfer distance
hardly reflect the errors in the local geometry as suggested
in Tatarchenko et al. (2019), the evaluation in GRNet (Xie et
al. 2020b) uses the metric F-Score@1% that computes the F-
Score after matching the predicted point cloud to the ground
truth with a distance threshold of 1% of the side length of
the reconstructed volume. The evaluations on reconstructing
higher resolutions are reported in Tables 6 and 7 on ShapeNet
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Table 4 Evaluation on the object completion based on the Chamfer distance trained with L1 distance (multiplied by 103) with the output resolution
of 16,384

Method Plane Cabinet Car Chair Lamp Sofa Table Vessel Avg.

PCN (Yuan et al. 2018) dataset, Output Resolution = 16,384, L1 metric

3D-EPN (Dai et al. 2017) 13.16 21.80 20.31 18.81 25.75 21.09 21.72 18.54 20.15

ForkNet (Wang et al. 2019b) 9.08 14.22 11.65 12.18 17.24 14.22 11.51 12.66 12.85

PointNet++ (Qi et al. 2017b) 10.30 14.74 12.19 15.78 17.62 16.18 11.68 13.52 14.00

FoldingNet (Yang et al. 2018b) 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99 14.31

AtlasNet (Groueix et al. 2018) 6.37 11.94 10.11 12.06 12.37 12.99 10.33 10.61 10.85

TopNet (Tchapmi et al. 2019) 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12 12.15

PCN (Yuan et al. 2018) 5.50 10.63 8.70 11.00 11.34 11.68 8.59 9.67 9.64

PCN + Lboundary 5.13 9.12 7.58 9.35 9.40 9.31 7.30 8.91 8.26

MSN (Liu et al. 2020) 5.60 11.96 10.78 10.62 10.71 11.90 8.70 9.49 9.97

GRNet (Xie et al. 2020b) 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04 8.83

PMP-Net (Wen et al. 2020b) 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25 8.73

CRN (Wang et al. 2020a) 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05 8.51

SoftPoolNet (Wang et al. 2020b) 6.93 10.91 9.78 9.56 8.59 11.22 8.51 8.14 9.20

Ours 5.50 10.02 8.73 9.05 7.53 10.24 8.01 7.43 8.31

Without skip-connection 6.72 10.46 9.70 9.12 8.42 10.85 8.48 7.80 8.95

Without D 5.73 10.19 8.79 9.10 7.55 10.47 8.12 7.75 8.46

Without LR 5.77 11.92 11.60 11.47 9.02 12.14 11.82 9.87 10.45

Bold indicates the best performance achieved in certain column

Table 5 Evaluation on the object completion based on the Chamfer distance trained with L2 distance (multiplied by 103) with the output resolution
of 16,384

Method Plane Cabinet Car Chair Lamp Sofa Table Vessel Avg.

PCN (Yuan et al. 2018) dataset, Output Resolution = 16,384, L2 metric

FoldingNet (Yang et al. 2018b) 3.15 7.94 4.68 9.23 9.23 8.90 6.69 7.33 7.14

FoldingNet + SoftPool++ 3.02 7.86 4.50 9.07 9.03 8.69 6.49 7.31 7.00

AtlasNet (Groueix et al. 2018) 1.75 5.10 3.24 5.23 6.34 5.99 4.36 4.18 4.52

TopNet (Tchapmi et al. 2019) 2.15 5.62 3.51 6.35 7.50 6.95 4.78 4.36 5.15

NSFA (Zhang et al. 2020b) 1.75 5.31 3.43 5.01 4.73 6.41 4.00 3.56 4.28

PCN (Yuan et al. 2018) 1.40 4.45 2.45 4.84 6.24 5.13 3.57 4.06 4.02

PCN + SoftPool++ 1.10 4.37 2.40 4.81 5.67 4.70 3.41 3.82 3.79

MSN (Liu et al. 2020) 1.54 7.25 4.71 4.54 6.48 5.89 3.80 3.85 4.76

MSN + SoftPool++ 1.13 7.24 4.64 4.21 6.28 5.83 3.57 3.45 4.54

PF-Net (Huang et al. 2020) 1.55 4.43 3.12 3.96 4.21 5.87 3.35 3.89 3.80

CRN (Wang et al. 2020a) 1.46 4.21 2.97 3.24 5.16 5.01 3.99 3.96 3.75

GRNet (Xie et al. 2020b) 1.53 3.62 2.75 2.95 2.65 3.61 2.55 2.12 2.72

SoftPoolNet (Wang et al. 2020b) 1.63 3.79 3.05 3.27 2.95 3.78 2.59 2.25 2.91

Ours 1.27 3.43 2.65 2.98 2.67 3.38 2.27 1.85 2.55

Without skip-connection 1.53 3.75 2.96 3.15 2.90 3.59 2.35 1.96 2.77

Without D 1.37 3.59 2.78 3.13 2.74 3.51 2.43 2.03 2.69

Without LR 1.42 4.74 2.91 4.63 3.66 4.14 2.83 2.29 3.33

Bold indicates the best performance achieved in certain column
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Table 6 Evaluation on the object completion based on the F-Score@1% trained with L2 Chamfer distance and the output resolution of 16,384

Method Plane Cabinet Car Chair Lamp Sofa Table Vessel Avg.

PCN (Yuan et al. 2018) dataset, output resolution = 16,384, F-Score@1%

FoldingNet (Yang et al. 2018b) 0.642 0.237 0.382 0.236 0.219 0.197 0.361 0.299 0.322

FoldingNet + SoftPool++ 0.687 0.347 0.455 0.237 0.236 0.257 0.377 0.428 0.378

AtlasNet (Groueix et al. 2018) 0.845 0.552 0.630 0.552 0.565 0.500 0.660 0.624 0.616

TopNet (Tchapmi et al. 2019) 0.771 0.404 0.544 0.413 0.408 0.350 0.572 0.560 0.503

PCN (Yuan et al. 2018) 0.881 0.651 0.725 0.625 0.638 0.581 0.765 0.697 0.695

PCN + SoftPool++ 0.880 0.671 0.777 0.723 0.755 0.578 0.819 0.661 0.733

MSN (Liu et al. 2020) 0.885 0.644 0.665 0.657 0.699 0.604 0.782 0.708 0.705

MSN + SoftPool++ 0.903 0.727 0.721 0.736 0.718 0.633 0.796 0.750 0.748

GRNet (Xie et al. 2020b) 0.843 0.618 0.682 0.673 0.761 0.605 0.751 0.750 0.708

SoftPoolNet (Wang et al. 2020b) 0.831 0.605 0.685 0.649 0.715 0.601 0.746 0.721 0.694

Ours 0.867 0.693 0.706 0.712 0.794 0.689 0.825 0.804 0.761

Without skip-connection 0.836 0.658 0.670 0.671 0.753 0.652 0.753 0.791 0.723

Without D 0.843 0.672 0.700 0.686 0.767 0.653 0.768 0.796 0.736

Without LR 0.824 0.634 0.593 0.670 0.695 0.575 0.686 0.755 0.679

Bold indicates the best performance achieved in certain column

objects provided by the Completion3D (Tchapmi et al. 2019)
andMVP (Pan et al. 2021), respectively. Here, the average F-
Score with SoftPool++ outperforms the other methods. The
tables also validate the benefit of our individual contribu-
tions in the overall result. In addition, Table 7 shows that, by
applying our SoftPool++ module on the variational coarse
sub-architecture of VRCNet (Pan et al. 2021), the average
performance of the fine reconstruction reached the state-of-
the-art with the improvement from 78.1 to 79.9%.
Advantage over SoftPoolNet Wang et al. (2020b).

Compared to SoftPoolNet (Wang et al. 2020b), our contri-
butions in the proposed SoftPool++ features improve (Wang
et al. 2020b) by 0.83× 10−4 in the L1 Chamfer distance and
1.71 × 10−4 for L2. Strikingly, even without the skip con-
nections, we have already outperformed SoftPoolNet (Wang
et al. 2020b). This then demonstrate the strength of the pro-
posed SoftPool++ over (Wang et al. 2020b).

Moreover, the results from high resolution reconstruc-
tion also validates our conclusion when evaluating against
SoftPoolNet (Wang et al. 2020b). With or without the skip
connections, our SoftPool++ performs better than (Wang et
al. 2020b).

6.2 Qualitative Evaluation

Similar to Sect. 6.1, the objects in this section are also trained
from and evaluated on ShapeNet (Chang et al. 2015). How-
ever, for the qualitative results in Fig. 9, we show the results
in the original points resolution specified in their respective
methods.
Comparison against PointNet (Qi et al. 2017a) feature.

From Fig. 9, themax-pooling operation from the PointNet
(Qi et al. 2017a) feature is embedded in FoldingNet (Yang et
al. 2018b), PCN (Yuan et al. 2018) andMSN (Liu et al. 2020).
We noticed that these methods are either over-smoothens the
reconstruction or start introducing noise.

On one hand, FoldingNet (Yang et al. 2018b) and PCN
(Yuan et al. 2018) smoothens out the reconstruction so that
the fine details such as the armrest of the chair are no longer
visible and the wheels of the car are no longer separated. On
the other, MSN (Liu et al. 2020) tries to reconstruct the finer
details but produces a noisy point cloud. Contrary to these
methods, we achieve a smoother surface reconstruction with
with visible geometric details of the object like the armrest
and the wheels.

Advantage of Skip Connections We also explore the com-
bination of 3D-GCN (Lin et al. 2020) and TreeGAN (Shu et
al. 2019) that uses graph convolutions in an encoder–decoder
architecture. Its latent feature is presented as a vector with a
length of 1024.Without the skip connection, several inconsis-
tencies emerge. For instance, the shape of the boat is slimmer
than the ground truth while one dimension of the bookshelf
is thicker. These information are part of the input but are not
propagated to the output.

Among these methods, GRNet (Xie et al. 2020b) achieves
similar quantitative results compared to our approach in
Table 5. They also build skip connections between their
encoder and decoder. However, as input to the architecture,
they first voxelize the input point cloud. After going through
the encoder–decoder, they convert the 3D grid back to point
cloud. Due to the discretization of the point cloud, this affects
the results of GRNet (Xie et al. 2020b). It fails to reconstruct
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Table 7 Evaluation on the object completion based on the F-Score@1% trained with L2 Chamfer distance and the output resolution of 16,384

Method Plane Cabinet Car Chair Lamp Sofa Table Vessel Avg.

MVP (Pan et al. 2021) dataset, Output Resolution = 16,384, F-Score@1%

TopNet (Tchapmi et al. 2019) 0.789 0.621 0.612 0.443 0.387 0.506 0.639 0.609 0.576

PCN (Yuan et al. 2018) 0.816 0.614 0.686 0.517 0.455 0.552 0.646 0.628 0.614

PCN + SoftPool++ 0.853 0.643 0.729 0.563 0.472 0.566 0.670 0.643 0.642

MSN (Liu et al. 2020) 0.879 0.692 0.693 0.599 0.604 0.627 0.730 0.696 0.690

MSN + SoftPool++ 0.914 0.717 0.727 0.620 0.638 0.649 0.765 0.726 0.719

GRNet (Xie et al. 2020b) 0.853 0.578 0.646 0.635 0.710 0.580 0.690 0.723 0.677

ECG (Pan 2020) 0.906 0.680 0.716 0.683 0.734 0.651 0.766 0.753 0.736

NSFA (Zhang et al. 2020b) 0.903 0.694 0.721 0.737 0.783 0.705 0.817 0.799 0.770

CRN (Wang et al. 2020a) 0.898 0.688 0.725 0.670 0.681 0.641 0.748 0.742 0.724

VRCNet (Pan et al. 2021) 0.928 0.721 0.756 0.743 0.789 0.696 0.813 0.800 0.781

VRCNet + SoftPool++ 0.947 0.745 0.768 0.759 0.810 0.720 0.829 0.813 0.799

PoinTr (Yu et al. 2021) 0.888 0.681 0.716 0.703 0.749 0.656 0.773 0.760 0.741

SoftPoolNet (Wang et al. 2020b) 0.843 0.568 0.636 0.623 0.698 0.568 0.680 0.710 0.666

Ours 0.862 0.622 0.704 0.695 0.783 0.649 0.776 0.778 0.734

Without skip-connection 0.862 0.555 0.648 0.652 0.716 0.603 0.703 0.719 0.682

Without D 0.856 0.624 0.666 0.664 0.732 0.622 0.738 0.770 0.709

Without LR 0.822 0.488 0.602 0.573 0.661 0.500 0.667 0.696 0.626

Bold indicates the best performance achieved in certain column

thin structures like the antenna on the boat and the vertical
stabilizers of the jet. In addition, it tried to fill up the hole in
the box which should have remained empty. In contrast, our
method that processes directly on the point cloud can handle
these cases.
Improvements from SoftPoolNet (Wang et al. 2020b). More-
over, we compared the proposedmethod against the previous
SoftPoolNet (Wang et al. 2020b) to reveal the advantages
of our novel approach. From Fig. 9, while the previous
method fails to reconstruct the four corners of the box and
the wheels of the jet, the new method is more consistent to
the ground truth. Overall, our novel approach reconstructs
sharper geometries with less noise and less holes.

Other Methods There have been some trend to re-purpose
method that were originally tailored for semantic segmen-
tation such as PointCNN (Li et al. 2018) to train for object
completion. Since they both use point clouds, the intuition is
to use the local convolutions fromLi et al. (2018) to upsample
the point cloud from its partial scan to its completed structure.
Unfortunately, these methods fails to reconstruct the objects
because it is not the intended purpose of the architecture—
in semantic segmentation, their input and output point cloud
remains the same.

6.3 Classification onModelNet and PartNet

In addition to shape completion, we also evaluate our
approach in terms of classification on the ModelNet10 (Zhi-

rong et al. 2015), ModelNet40 (Zhirong et al. 2015) and
PartNet (Mo et al. 2019) datasets. Note that ModelNet40
contains 12,311 CAD models classified into 40 categories
while PartNet contains 26,671 models with 24 categories.

Similar to the other approaches such as 3D-GAN(Wuet al.
2016), RS-DGCNN (Sauder et al. 2019), VConv-DAE (Shar-
maet al. 2016), FoldingNet (Yang et al. 2018b) and KCNet
(Shen et al. 2018), we also implemented a self-supervised
training to extract features from the input point cloud then a
supervised training to train a linear Support Vector Machine
(SVM) (Cortes and Vapnik 1995) to predict the categori-
cal classification. The former relies on the 57,448 ShapeNet
models (Chang et al. 2015) as its training dataset while the
latter relies on ModelNet (Zhirong et al. 2015) and PartNet
(Mo et al. 2019).

It is noteworthy to mention that there is a significant dif-
ference from RS-DGCNN (Sauder et al. 2019) in the details
of the self-supervised training. On one hand, our method ran-
domly subsamples the point cloudwhile, on the other, Sauder
et al. (2019) includes an additional data augmentation step
that randomly decomposes the 3D input structure into differ-
ent parts then repositions these parts by translation. Since we
did not include the additional augmentation from Sauder et
al. (2019), our evaluation is a fair comparison against other
methods.

The evaluation in Table 8 reports that our model out-
performs the accuracy of RS-DGCNN (Sauder et al. 2019)
by 4.11% on the ModelNet40 dataset, a sign of the higher
descriptiveness in terms of categorical information. The
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Fig. 9 Qualitative results on the ShapeNet (Chang et al. 2015) dataset. Note that the three results from our method corresponds to different parts
of the architecture as explained in Fig. 5. Here, (k) represents our final reconstruction
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Table 8 Object classification
accuracy on ModelNet40
(Zhirong et al. 2015),
ModelNet40 (Zhirong et al.
2015) and PartNet (Mo et al.
2019) datasets

Method ModelNet40 (%) ModelNet10 (%) PartNet (%)

VConv-DAE (Sharmaet al. 2016) 75.50 80.50 –

3D-GAN (Wu et al. 2016) 83.30 91.00 74.23

Latent-GAN 85.70 95.30 –

FoldingNet (Yang et al. 2018b) 88.40 94.40 –

VIP-GAN (Han et al. 2019) 90.19 92.18 –

RS-PointNet (Sauder et al. 2019) 87.31 91.61 76.95

RS-DGCNN (Sauder et al. 2019) 90.64 94.52 –

KCNet (Shen et al. 2018) 91.0 94.4 –

SoftPoolNet (Wang et al. 2020b) 92.28 96.14 84.32

Ours 94.75 96.99 87.25

Without skip-connection 93.17 96.34 85.26

Without Linter 91.23 95.11 83.07

Without Lintra 84.98 91.35 81.91

Without Linter, Lintra 84.21 91.77 80.55

Without Lboundary 89.70 94.14 82.39

Without Lpreserve 87.84 93.15 81.32

Without LR 79.22 85.40 76.48

Bold indicates the best performance achieved in certain column

improvement of 2.47% from our approach compared to Soft-
PoolNet (Wang et al. 2020b) is also obvious, proving that the
proposed SoftPool++ feature and skip-connection together
are more advantageous for classification. Similar results are
also obtained onModelNet10 (Zhirong et al. 2015) and Part-
Net (Mo et al. 2019).

6.4 Efficiency

In addition to the evaluation in terms of shape completion
and categorical classification, we also compare in Table 9
the properties of our model such as its memory footprint and
inference speed, as well as the type of data being processed.

The cost of outperforming SoftPoolNet (Wang et al.
2020b) becomes evident on the memory footprint and the
inference time. Compared to SoftPoolNet (Wang et al.
2020b), thememory footprint of ourmethod is approximately
doubled due the increase in the number of parameters from
the multiple feature extraction modules in our architecture.
This also triggers a larger inference time than SoftPoolNet
(Wang et al. 2020b) from 0.04 to 0.11 seconds. A similar
trend is associated to other approaches that divides the point
cloud into regions such as AtlasNet (Groueix et al. 2018)
andMSN (Liu et al. 2020), i.e.we achieve significantly higher
accuracy in reconstruction but also increase thememory foot-
print and the inference time.

However, if we look at the overall data, we observe that
the proposed method at 61.7MB consumes remarkably less
memory than the other point cloud approaches such asGRNet
(Xie et al. 2020b) at 293MB and PointCNN (Li et al. 2018)

at 497MB, as well as the volumetric approaches such as 3D-
EPN (Dai et al. 2017) at 420MB and ForkNet (Wang et al.
2019b) at 362MB. An important reason why their models are
so large in memory usage is that 3D convolutions are applied
in multiple layers of their architectures, while our approach
is mainly composed of 2D convolutions only. Among those
approaches with large memory consumption, GRNet (Xie et
al. 2020b) is one of the top performers in point cloud com-
pletion. Since their architecture relies on volumetric grids
where they convert the input point cloud to voxel grid then
convert back to a point cloud, this affects not only their mem-
ory footprint but also their inference time, which is 8 times
higher than ours.

Compared to approaches composed mainly of MLPs, our
model reports a comparable size to PCN (Yuan et al. 2018)
while having a faster inference time than MSN (Liu et al.
2020). The reason is that although our 2D convolution ker-
nels introduces a additional dimensions, the newly added
dimension Nk of 32 is comparablymuch smaller than the fea-
ture dimension N f of 256 at which MLPs operates. Notably,
approaches based on KNN search such as PointCNN (Li et
al. 2018) and 3D-GCN (Lin et al. 2020) usually take much
longer for inference.

7 Ablation Study

Based on the evaluation from ShapeNet (Chang et al. 2015),
we further analyze our proposed method’s behavior through
an ablation study. In this section, we demonstrate the advan-
tage of SoftPool++ over PontNet; expound on the claims of

123



1160 International Journal of Computer Vision (2022) 130:1145–1164

Table 9 Overview of different
object completion methods.
Note that the inference time is
represented by the amount of
time to conduct inference on a
single object

Size Inference Core Data With
Method (MB) Time (s) Operator Type KNN

3D-EPN (Dai et al. 2017) 420.0 – 3D Conv Voxels No

ForkNet (Wang et al. 2019b) 362.0 – 3D Conv Voxels No

GRNet (Xie et al. 2020b) 293.0 0.88 3D Conv Points No

PointCNN (Li et al. 2018) 497.0 1.20 3D Conv Points Yes

DeepSDF (Park et al. 2018) 7.4 9.72 MLP SDF No

FoldingNet (Yang et al. 2018b) 19.2 0.05 MLP Points No

AtlasNet (Groueix et al. 2018) 2.0 0.32 MLP Points No

PCN (Yuan et al. 2018) 54.8 0.11 MLP Points No

MSN (Liu et al. 2020) 12.0 0.21 MLP Points No

3D-GCN (Lin et al. 2020) (coder) 2.1 0.82 2D Conv Points Yes

SoftPoolNet (Wang et al. 2020b) 37.2 0.04 2D Conv Points No

Ours 61.7 0.11 2D Conv Points No

our loss function; investigate the value of the skip connection
with feature transform in our architecture; and; delve deeper
on what happens in the SoftPool++ module.

7.1 Replacing PointNet with SoftPool++

In addition to the comparison in Table 5, we also evaluate
the results by replacing the latent features in other point
cloud completion approaches [i.e.FoldingNet (Yang et al.
2018b), MSN (Liu et al. 2020), and PCN (Yuan et al. 2018)]
with our SoftPool++ features, while keeping their decoders
unchanged. In this way, we have a one-to-one comparison of
PointNet and SoftPool++ features.

Since these works depend on a PointNet features (having
a dimensionality of 1024), we also build up our SoftPool++
features with the same size. Remarkably, the use of Soft-
Pool++ features improves performance in all testedmethods,
i.e.the performance of FoldingNet (Yang et al. 2018b), PCN
(Yuanet al. 2018) andMSN(Liu et al. 2020) improves respec-
tively by 0.14 × 10−3, 0.23 × 10−3 and 0.22 × 10−3.

7.2 Loss Functions

Tables 3 and 8 include an ablation study that investigates the
effects of the individual loss functions from Sect. 5. For both
experiments, we notice that all loss functions are critical to
achieve state-of-the-art results. Note that we have shown in
Fig. 6 and cabinet completion in Fig. 7 to demonstrate the
contributions of Lboundary and Lpreserve in the reconstruction.
Lboundary in other methods. An interesting idea is the capac-
ity of Lboundary to be integrated in other existing methods
that join multiple deformed 2D patches together to form the
final output. Since the patches in AtlasNet (Groueix et al.
2018), PCN (Yuan et al. 2018) andMSN (Liu et al. 2020) are
frequently overlapping nearby patches, we tried to integrate

Fig. 10 Object completion results with and without the influence of the
skip-connection

Lboundary into their loss functions. Tables 4 and 3 evaluate this
idea and prove that this activation helps FoldingNet (Yang et
al. 2018b), PCN (Yuan et al. 2018) and AtlasNet (Groueix
et al. 2018) perform better, improving the Chamfer distance
with at least 1×10−4 on the resolution of 2048 and 1×10−3

on resolution of 16,384.

7.3 Skip Connection with Feature Transform

One of the key contributions in this paper is the introduc-
tion of skip connections with feature transforms on point
cloud. Our ablation study in Tables 3 and 2 also includes the
numerical advantage of having the skip connection in our
architecture, improving the Chamfer distance by 0.65×10−4

in L1 and 1.27 × 10−4 in L2.
In addition to the numerical advantage, we also interpret

these values through some examples in Fig. 10 where we
reconstruct lamps. Without the skip connection, the model
recursively simplifies the given partial scan until it reaches
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Fig. 11 Visualization of the first row of F on the first SoftPool++ mod-
ule in our architecture

the latent feature. Due to the oversimplification, the output
then builds the closest generic shape of the lamp. Contrary
to that, with the skip connection, the model preserves the
input structure and incorporates the given partial scan into
the final reconstruction. In effect, the result is closer to the
ground truth.

We also perform an ablation study on the regularization
LR of the feature transform R in Tables 4, 5, 3 and 2. Com-
pared to our complete framework, the results trained without
the skip-connection drops by 0.64 × 10−4. However, when
trained with the skip-connection but without the regular-
ization of R, the results drops by 2.14 × 10−4 which is
significantly larger. Therefore, it is noteworthy to mention
that training with skip-connection but without the regular-
ization performs worse than removing the skip-connection
altogether. This clearly shows the advantage of the regular-
ization term on the feature transform.

7.4 Activations from the SoftPool++ Features

Given the input point cloud,we explore howSoftPool++ sorts
the points on the first feature extraction module in the archi-
tecture. For this experiment, we visualize the points based on
the value of the first column inFwhich is the result ofMLP as
shown in Fig. 2. Therefore, Fig. 11 highlights the activations
associated to this feature. Noticeably, due to MLP, the points
can undergo much more than just a linear transformation of
its absolute coordinates.

Continuing our analysis, we move further into examining
how the truncation sizes (Ns, Nr ) and the output dimension
N f influence the completion. Table 10 summarizes this eval-
uation on ShapeNet (Chang et al. 2015) as we vary these
values on the second SoftPool++ module in our architecture.
As described in Table 1, since our SoftPool++ feature is fixed
with 256 rows, we then set Nr ×Ns = 256. Note that the next
ablation study focuses on changing the number of rows by

Table 10 Influence of N f and (Ns , Nr ) on the L2 Chamfer distance
(multiplied by 103), evaluated on the output resolution of 2048 points

Ns Nr N f

32 64 128 256 512

1 256 17.33 16.50 13.45 11.24 10.39

2 128 17.28 17.06 15.22 14.62 13.10

4 64 16.32 15.66 13.65 11.29 11.31

8 32 17.55 11.18 10.27 9.59 9.58

16 16 17.97 11.26 10.21 9.60 9.59

32 8 17.31 11.89 10.32 9.59 9.58

Bold indicates the best performance achieved in certain column

Table 11 Influence of Ns and Nr on the L2 Chamfer distance (multi-
plied by 103), evaluated on the output resolution of 2048 points

Ns Nr

8 16 32 64 128 256

1 – – 14.99 14.82 14.64 11.24

2 – 14.99 14.97 14.73 14.62 11.26

4 14.79 12.85 12.27 11.29 11.08 9.91

8 11.56 10.62 9.59 9.59 9.62 9.64

16 10.07 9.59 9.62 9.62 9.61 9.63

32 9.60 9.61 9.61 9.62 9.61 9.61

Here, N f is set to 256
Bold indicates the best performance achieved in certain column

independently setting Nr and Ns . For the ease of training and
evaluation for all (Ns, Nr ) and N f , we do not apply discrim-
inative training D for Table 10. The table indicates that we
reach the minimum Chamfer distance as soon as Ns reaches
8, Nr reaches 32 and N f reaches 256. After then, only small
improvements of around 0.01 × 10−3 are attained. There-
fore, we select Ns = 8, Nr = 32 and N f = 256 so that there
are less parameters in the model to train which consequently
lead to less memory footprint.

The next ablation study alleviates the constraint of having
a fixed latent feature dimension where we set Nr ×Ns = 256
in Table 10. In Table 11, we consider different values of
Nr and Ns while setting N f to 256, where we observe that
that the error plateaus when Ns is 8 and Nr is 32. Note that
these values matches the optimum values from Table 10 and
validates the advantage of truncation.

Considering the numerical advantages of Ns , we also
explore it visually while keeping N f and Nr constant to
256 and 32, respectively. Similar to Fig. 11, Fig. 12 plots
the points from the input point cloud that are truncated by
Ns . By increasing Ns from 4 to 16, the resulting feature
also increases the amount of structures from the plane. For
instance, the wings becomemore andmore visible on the fig-
ure. This then raises the question of how much information
from the partial scans does the network need to reconstruct
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Fig. 12 Visualization of the truncated points on the input point cloud
with different values of Ns

the object. Evidently, this question is answered by our abla-
tion study in Table 10 where we found the optimum value of
Ns , i.e.8. Comparisons in Fig. 12 shows that larger values of
Ns does not further add the points on the body of the plane
which is a common part for plane category.

8 Conclusion

We propose a novel feature extraction technique called Soft-
Pool++ that directly processes the point cloud. Compared to
the counterpart that heavily relies on the max-pooling oper-
ation in PointNet (Qi et al. 2017a), our feature extraction
method captures a higher amount of data from the input point
cloud by alleviating the limitation of taking only the maxi-
mum while also establishing the relation between different
points through our regional convolutions.

Structuring multiple SoftPool++ in an encoder–decoder
structure, this paper becomes the first to propose a point-wise
skip connection with feature transformation. Considering
that the given point cloud is continuously downsampled in
the encoder, the main advantage of such connection is the
capacity to incorporate the input data into the decoder. This
then overcomes the loss of information in the encoder.

Examining our contributions on 3D object completion,
we discovered that we perform the state-of-the-art especially
on high-resolution reconstructions. We also visually demon-
strate our advantage and concluded that our reconstructions
are sharper, i.e.with less noise in our point cloud; and, cap-
tures the finer details, i.e.without over-smoothing different
parts of the object.
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