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Abstract
Wepropose amethod for eliminating the temporal illumination variations in whisk-broom (point-scan) hyperspectral imaging.
Whisk-broom scanning is useful for acquiring a spatial measurement using a pixel-based hyperspectral sensor. However, when
it is applied to outdoor cultural heritages, temporal illumination variations become an issue due to the lengthy measurement
time. As a result, the incoming illumination spectra vary across the measured image locations because different locations
are measured at different times. To overcome this problem, in addition to the standard raster scan, we propose an additional
perpendicular scan that traverses the raster scan. We show that this additional scan allows us to infer the illumination
variations over the raster scan. Furthermore, the sparse structure in the illumination spectrum is exploited to robustly eliminate
these variations. We quantitatively show that a hyperspectral image captured under sunlight is indeed affected by temporal
illumination variations, that a Naïvemitigationmethod suffers from severe artifacts, and that the proposedmethod can robustly
eliminate the illumination variations. Finally, we demonstrate the usefulness of the proposed method by capturing historic
stained-glass windows of a French cathedral.

Keywords Computational photography · Hyperspectral imaging · Varying illumination · Low-rank approximation

Communicated by Takeshi Oishi.

This study is partly supported by JSPS and MAEDI under the
Japan–France Integrated Action Program (SAKURA), JSPS
KAKENHI JP20K21816, and Japan Science and Technology Agency
CREST Grant No. JPMJCR1764.

B Takuya Funatomi
funatomi@is.naist.jp

Kenichiro Tanaka
ken-t@fc.ritsumei.ac.jp

Yasuhiro Mukaigawa
mukaigawa@is.naist.jp

1 Graduate School of Science and Technology,
Nara Institute of Science and Technology,
8916–5 Takayama-cho, Ikoma, Nara 630–0192, Japan

2 College of Information Science and Engineering,
Ritsumeikan University, 1–1–1 Noji-higashi, Kusatsu,
Shiga 525–8577, Japan

3 Graduate School of Science and Engineering,
Chiba University, 1–33 Yayoi-cho, Inage-ku,
Chiba-shi, Chiba 263–8522, Japan

1 Introduction

Over the last two decades, hyperspectral imaging has been
gaining attention in the field of cultural heritage for study-
ing artworks (Morimoto et al., 2008; 2010; Cucci and Casini
2020). Hyperspectral imaging provides a spectrum at each
pixel in the image of a scene, providing rich color infor-
mation of the scene. Much progress has been made in both
hyperspectral imaging devices (Shmilovich et al., 2020) and
their applications, such as photogrammetry (Mathys et al.,
2019), pigment recognition (Cucci et al., 2011), and paint-
ing analysis (Cucci et al., 2013). Many of the applications
require high spectral-resolution (2 nm bins or even shorter,
according to (Cucci et al., 2013). However, hyperspectral
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(a) (b)

Fig. 1 We conduct hyperspectral imaging of a a stained-glass window
in b the Amiens cathedral (the Cathedral of Our Lady of Amiens, or
Cathédrale Notre-Dame d’Amiens)

imaging requires a long measurement time with careful light
calibration (Pillay et al., 2019), which limits its applicability
to on-site measurements of historic buildings and artifacts,
particularly for challenging subjects, such as stained-glass
windows (Babini et al., 2020).

In this paper, we aim to achieve a high spectral-resolution
hyperspectral imaging method under natural illumination for
digital preservation and analysis of cultural assets, with a par-
ticular focus on stained-glass windows of cathedrals (Fig. 1).
Some of these windows have been there since their establish-
ments, while others are said to have been broken and later
restored. Although 3-color RGB information is insufficient
for distinguishing these differences, spectral information is
expected to provide new clues for historians and archaeol-
ogists to inspect the windows and investigate the history of
the cathedrals.

There are a few technical difficulties that arise in the hyper-
spectral measurement of stained-glass windows. Unlike
paintings, stained-glass windows are transmissive, and their
reflectances are weak and less informative than the transmit-
tances. As with many other cultural heritages, they are firmly
installed in a building; therefore it is undesirable to detach
the windows from the building. These constraints restrict the
measurement to be conducted from inside the building. On
the other hand, the benefit is that natural sunlight can be uti-
lized as an illumination source, which has a broad range of
spectrum. Under this setting, it is preferred to use a snap-
shot approach, which can record a hyperspectral image in
one shot, because it can neglect temporal illumination vari-
ations. Unfortunately though, existing snapshot approaches
are limited in spatial resolution as they map three dimen-
sional spatial-spectral information into a two-dimensional
sensor array. Scanning-based approaches can address the
issue of spatial resolution; however, they require lengthy

measurement times, naturally suffer from the temporal illu-
mination variations. Although capturing a reference object
under the illumination during the scanning helps to compen-
sate for the variations, directmeasurement of the illumination
spectrum is difficult from inside the building.

To overcome the problem of both spatial resolution
and temporal illumination variations, this paper proposes a
whisk-broom hyperspectral imaging method that compen-
sates the unknown temporal illumination variations. Our
method can capture a few thousand spectral channels with
a spectral resolution of less than 1 nm for the visible and
near-infrared bands (400–2500 nm) with angular (or spa-
tial) resolution of 0.010◦ at maximum. At the heart of the
method, we propose the use of extra single scan that perpen-
dicularly traverses the whisk-broom scans.We show that this
extra scan allows us to infer the temporal illumination vari-
ations in the whisk-broom scans. In addition, we introduce
a method for robustly eliminating the temporal illumination
variations by exploiting the sparse structure in illumination
spectra. As a result, our method allows capturing high spatial
and spectral resolution images by effectively eliminating the
temporal illumination variations during the scan. The chief
contributions of this work are as follows:

– We introduce a scanning strategy for eliminating the
temporal illumination variations during thewhisk-broom
scanning for hyperspectral imaging with high spatial and
spectral resolutions.

– We develop a robust method against numerical instability
caused by noise for eliminating the temporal illumination
variations by exploiting the sparse structure of illumina-
tion spectra.

– Effectiveness of the proposed method is demonstrated by
recording the actual strained-glass windows in a French
cathedral in addition to evaluation using a public dataset.

2 Related work

2.1 Hyperspectral imaging

Hyperspectral imaging devices are grouped into four main
categories: Snapshot imaging spectrometers (Hagen&Kude-
nov, 2013), wavelength-scanning systems (Gat, 2000), point-
scanning systems, and line-scanning systems.

Recent studies using diffractive optics have described
snapshot approaches that are free from the effects of illu-
mination changes. Baek et al. (2017) proposed a compact
snapshot imaging system using a conventional digital single-
lens reflex (DSLR) camera and a prism. This method exploits
spectral information obtained from dispersion over edges in
a scene and computationally reconstructs the full hyperspec-
tral image of the scene. They demonstrated a reconstruction
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of a spectral cube with 860 × 600 × 23 spatial and spectral
resolution in the 430–650 nm. Jeon et al. (2019) pre-
sented a compact, diffraction-based snapshot hyperspectral
imaging method. They introduce a novel diffractive opti-
cal element (DOE) design that generates an anisotropic
shape for the spectrally varying point-spread function (PSF),
where the PSF shape rotates as the wavelength of light
changes, while its size remains virtually unchanged. They
also adopted an end-to-end network for spectral reconstruc-
tion. This method was able to perform hyperspectral imaging
with 1440 × 960 × 25 spatial and spectral resolution with a
fabricated DOE attached to a DSLR sensor. Hauser et al.
(2020) presented a deep learning-based technique for the
reconstruction of a spectral cube measuring 256× 256× 29
in the 420–700 nm visible spectral range from dispersed and
diffused (DD) monochromatic snapshots captured by a sin-
gle monochromatic camera equipped with a 2-D separable,
binary phase diffuser. Dun et al. (2020) presented a joint
learning algorithm with a diffractive achromats design and
an image recovery neural network.

Spectral filters are also used for snapshot hyperspectral
imaging. Hu et al. (2019) proposed a multispectral video
acquisition method for dynamic scenes that uses a spectral-
sweep camera, which is composed of a monochromatic
camera and a synchronized liquid crystal tunable filter. Mon-
akhova et al. (2020) proposed a lensless imaging systemwith
a 64-channel spectral filter array spanning the 386–898 nm
range and a randomized phase mask, allowing to recover
close to the full spatial resolution of the sensor. This approach
enables a flexible design in which either contiguous or non-
contiguous spectral filters with user-selected bandwidths can
be chosen; however, the spectral resolution fully depends on
the spectral filter array and cannot achieve many, say thou-
sands of, bands.

For compressive imaging architectures with coded aper-
ture snapshot spectral imaging (CASSI) (Gehm et al., 2007;
Wagadarikar et al., 2008; Lin et al., 2014), hyperspectral
image reconstruction algorithms using deep learning meth-
ods (Choi et al., 2017; Miao et al., 2019; Meng et al.,
2020) have been proposed. The above techniques can cap-
ture imageswith up to 100 channels, mostly at approximately
10 nm spectral resolution. There exists some limitations in
the optics and sensors for obtaining the snapshot and they
essentially result in a trade-off between spatial-spectral res-
olutions. Our study aims to capture a spectral image with
thousands of channels at less than 1 nm resolution, which
would be beneficial for pigment analysis (Cucci et al., 2011).
We captured a spectral cube with 1600 bands in 400–1100
nm spectral range from stained glasses.

Wavelength- and line-scanning systems use a scanning
mechanism to capture additional dimensions. A typical
wavelength-scanning systemuses a tunablefilterwhose spec-
tral transmission can be electronically controlled (Gat, 2000).

It has many advantages in terms of cost, compactness, and
operability; however, wavelength-scanning systems usually
have coarse spectral resolutions (∼10 nm) due to their broad
bandwidth. Compressive sensing approaches have also been
proposed for this architecture. Wang et al. (2018) proposed a
coded aperture tunable filter spectral imager, which is capa-
ble of compressive sensing on both the spatial and spectral
domains, and produced a reconstructed imagewith 400×400
spatial resolution and 170 spectral bands from a measure-
mentwith 25different coded aperture patterns and22 spectral
bands for the 500–710 nm wavelength range. Although they
also proposed a multichannel spectral coding method to
decrease the number of measurements required while main-
taining the reconstruction quality, it still requires multiple
measurements. Oiknine et al. (2018) proposed a compres-
sive sensing miniature ultra-spectral imaging camera, which
multiplexes image spectra with a liquid crystal (LC) phase
retarder and demonstrated a reconstructed image with 700×
700 spatial resolution and 391 spectral bands in the 410–800
nm wavelength range from 32 spectrally multiplexed shots.
Later, the same group also proposed a reconstruction algo-
rithm using deep learning (Gedalin et al., 2019). Recently,
Saragadam and Sankaranarayanan (2019) adopted both spa-
tial coding with a coded aperture and spectral coding with a
combination of a diffractive grating and a single spatial light
modulator to measure a low-rank approximation of a scene’s
hyperspectral image. They demonstrated a 560× 500× 256
spectral cube for 400–700 nmwith 2.9 nm spectral resolution
from six spectral and six spatial measurements.

Many commercial systems adopt a line-scanning archi-
tecture, also known as push-broom imaging, in which a slit
is equipped as the aperture and spatial 1-D and spectral axes
are mapped onto a 2-D sensor. These systems capture a line
in the scene with one shot and scan along the other spa-
tial axis to capture a spectral cube. Similarly, point-scanning
systems, utilizing so-called whisk-broom imaging, capture
the spectrum at one point and scan the scene to fill the 2-D
spatial axes. Push-broom imaging requires less time for scan-
ning than whisk-broom imaging; however, the 2-D sensor
limits the spatial and spectral resolutions, whereas whisk-
broom imaging enables the best spectral resolution and a
great degree of flexibility for spatial scanning.

These approaches enable the capture of an imagewith fine
spatial and spectral resolutions; however, they suffer from
temporally varying illumination when the measurements are
conducted outside a controllable environment such, e.g.
outdoors.

2.2 Illumination and reflectance spectra separation

Captured hyperspectral images are influenced by the illu-
mination spectrum. A simple way to compensate for the
illumination variations is the use of an ideal reference
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target such as a reflectance or transmittance standard to
capture the illumination variations itself during the mea-
surement. By employing a scanning approach, Wendel and
Underwood (2017) recently addressed the problem of scan-
ning an agricultural field under natural illumination by
mounting a reference panel at the edge of the field of view
of the camera. However, there is nowhere to place such a
reference target that could be directly illuminated by the
sunlight when measuring the illumination through a stained-
glass window.

Decomposing a hyperspectral image into illumination and
object spectra is referred to as the illumination and reflectance
spectra separation problem. Chen et al. (2017) and Drew
and Finlayson (2007) recovered the spectral reflectance of an
object under varying illumination by reproducing the color
constancy mechanism of human eyes. Ho et al. (1990) intro-
duced linear models of low dimensionality into both the
illuminance and reflectance spectra to separate these com-
ponents in hyperspectral images. Additionally, Chang and
Hsieh (1995) and Drew and Finlayson (2007) improved
the accuracy and the speed of computation by applying
constraints and introducing a logarithmic finite-dimensional
model to the spectrum. Zheng et al. (2015) demonstrated
that the separation problem could be modeled as low-rank
matrix factorization, showing that the separation is unique
up to an unknown scale under the standard assumption of
low dimensionality of reflectivity and developing a scal-
able algorithm. Different from the above, Su et al. (2018)
proposed a method for directly estimating the illumination
component from specularities, where many methods assume
Lambertian surfaces. These methods are effective in decom-
posing the captured spectra into the scene reflectance and
the illumination; however, they do not suppose a temporally
varying environment, as they assume that the hyperspec-
tral image is captured under a constant illumination. As
an extension of (Zheng et al., 2015), Chen et al. (2017)
relaxed the assumptions to a case of spatially varying illu-
mination caused by multiple light sources by addressing the
problem as a conditional random field (CRF) optimization
task over local separations. However, this method is unable
to compensate for the hyperspectral images captured by
wavelength- and point-scanning systems under temporally
varying illumination.

3 Proposedmethod

In this section, we propose a method for eliminating tem-
porally varying illumination in whisk-broom hyperspectral
imaging without a reference object, starting from the math-
ematical model of hyperspectral imaging. For the proposed
method, we first introduce an extra single-column scan as
reference for the mitigation. Then, we explain a Naïve

(a) (b)

Fig. 2 Whisk-broom imaging system. a Overview of the system devel-
oped in this study. b Blue arrows illustrate the whisk-broom raster
scanning for forming an image. The red arrow illustrates the extra
single-column scan conducted in the proposed method (Color figure
online)

mitigation method using the extra scan. Since there is no
guarantee that the extra scan captures the “ideal reference
target”, the method can result in the creation of artifacts.
Finally, we propose a method to overcome the potential arti-
fact problem by utilizing low dimensionality in the spectral
aspect of illumination.

3.1 Notations and problem setting

A hyperspectral image, also known as spectral cube, has
multiple channels along the spectrum. The image can be rep-
resented by a tensor I ∈ R

M×N×L+ , where M and N are the
height andwidth of the image, respectively, and L is the num-
ber of spectral channels.We usem ∈ {1, . . . , M} (≡ M) and
n ∈ {1, . . . , N } (≡ N ) as indices for the pixel locations. We
call the tube of this tensor at pixel location (m, n) a spectral
vector denoted as im,n . The measured spectral vector im,n is
represented as

im,n = l � ρm,n, (1)

where ρm,n ∈ R
L+ is the reflectance (or transmittance)

spectrum of the scene at point (m, n), l ∈ R
L+ is the incom-

ing illumination spectrum, and � represents the Hadamard
(element-wise) product. We assume that the scene is static
during recording; therefore, ρm,n is unchanged over time but
is spatially varying.

Our whisk-broom imaging device consists of a high
spectral-resolution spectrometer and a two-dimensional
mechanical scanning head, as shown in Fig. 2a. The spec-
trometer measures the spectral distribution of a single scene
point, and the mechanical scanner head spatially sweeps the
scene to form a hyperspectral image I. The scan order is
from left to right in each row, and row-by-row from top to
bottom, as illustrated by the blue arrows in Fig. 2b. While
our device can capture a hyperspectral image with thou-
sands of spectral channels, it takes a long time to scan the
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whole scene, e.g., a few hours for megapixel resolution
(Cucci et al., 2016). Because the scanning time is non-
negligible, we consider the illumination spectrum to vary
over time during the scanning; thus, the illumination spec-
trum l is considered a function of time t , or l(t).

Given the measured hyperspectral image I affected by
unknown variations in the illumination spectra, our goal is to
recover a hyperspectral image unaffected by these variations.
In other words, we wish to recover spectral vectors {îm,n}
under a reference illumination spectrum lref as follows:

îm,n = lref � ρm,n . (2)

In our setting, we treat both the illumination spectra {l(t)}
and the reflectance spectra {ρm,n} as unknowns. A reference
illumination spectrum lref can be arbitrarily defined, e.g., it
can be chosen from any of the illumination spectra in {l(t)}.
Row-wise constant illumination spectra assumption: Obvi-
ously, the problem stated above is ill-posed, because one can
arbitrarily form the estimate of the spectral vectors {îm,n}
with unknown reflectance spectra {ρm,n} and the reference
illumination spectrum lref . Tomake the problem tractable, we
assume that the illumination changes are negligible during
the scanning of each single row in an image. In the interest
of brevity, we denote the illumination spectrum of row m as
lm,: ∈ R

L+. As a result, Eq. (1) is rewritten as

im,n = lm,: � ρm,n . (3)

The problem is still ill-posed, however, because each row
of the hyperspectral image I is independently affected by
changes in the illumination spectrum {lm,:}.
Extra single-column scan as a constraint To solve this prob-
lem, we propose the use of an extra single-column scan in
addition to the full row-wise scan, which corresponds to the
red arrow in Fig. 2b. It is again assumed that the illumination
variation during the single-column scan is negligible. The
extra scan em,n′ at column n′ is written as

em,n′ = l:,n′ � ρm,n′ , (4)

where l:,n′ is the corresponding illumination spectrum of the
single column. Using the extra column scan, we develop a
method for estimating the spectral vectors {îm,n}, inwhich the
temporal variation of the illumination spectrum is eliminated.

In summary, our problem is stated as follows. Given the
measured spectral vectors {im,n} under unknown row-wise
illumination spectrum {lm,:} and spatially varying, unknown
but constant reflectance spectra {ρm,n}, we estimate the

spectral vectors {îm,n} that are unaffected by the row-wise
(temporal) variation in the illumination spectra using the
extra-single column scan em,n′ . We first discuss a Naïve

approach to this problem, then develop a robust method for
stably deriving better solutions.

3.2 The Naïve approach

In hyperspectral image coordinates, the pixels in column n′,
the site of the extra column scan, are associated with two sets
of measured spectral vectors, i.e., {im,n′ |m ∈ M} from the
full row-wise scan and {em,n′ |m ∈ M} from the extra single-
columnscan.The spectral vectors of the row-wise scan {im,n′ }
suffer from the variation in the illumination spectrum over
the rows, while those of the column scan {em,n′ } are free from
these illumination variations. From this,we can compute vec-
tors of spectrum coefficients {cm,n′ |m ∈ M} representing the
variation in the illumination spectra as

cm,n′ = em,n′ � im,n′

= (
l:,n′ � ρm,n′

) � (
lm,: � ρm,n′

)

= l:,n′ � lm,:, (5)

where � is element-wise division.
Bymultiplying the spectrum coefficients cm,n′ by themea-

sured spectrum vectors im,n at other pixels (m, n), n 	= n′,
we can normalize the illumination spectra to the column scan
illumination spectrum l:,n′ as follows:

îm,n = cm,n′ � im,n

= (
l:,n′ � lm,:

) � (
lm,: � ρm,n

)

= l:,n′ � ρm,n, (6)

where îm,n is the reconstructed spectral vector in which the
illumination variations are eliminated.

TheNaïvemethodworkswell when themeasurements are
free from imaging and quantization noise and zero divisions
do not occur. However, in practice, imaging and quantization
noise are inevitable and are amplified due to the division oper-
ations in Eq. (5), particularly when the scene’s reflectance
spectrum ρm,n′ is small. This causes unstable estimation
of the spectrum coefficients {cm,n′ }, and as a result, the
reconstructed spectral vectors îm,n suffer from strong visi-
ble artifacts.

3.3 Solution based on robust principal component
analysis

To stably estimate the spectrum coefficients {cm,n′ }, we
exploit the observation that the illumination can be naturally
assumed to have a low-dimensional spectral structure (Judd
et al., 1964; Drew and Finlayson, 2007). Based on this obser-
vation, we approximate the logarithm of the illumination
spectrum log (l) by a linear combination of a small number
of basis spectra {bs}, s ∈ {1, . . . , S} as follows:
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log
(
lm,:

) 

S∑

s=1

wm,sbs, (7)

log
(
l:,n′

) 

S∑

s=1

wn′,sbs, (8)

where S is the number of basis spectra, and w·,s ∈ R is the
weighting factor associated with basis spectrum bs . Using
this low-dimensional approximation, we can rewrite Eq. (5)
as

log
(
cm,n′

) 
 dm,n′ = log
(
l:,n′

) − log
(
lm,:

)

=
S∑

s=1

(wn′,s − wm,s)bs ≡ Lwm,n′ , (9)

where L is an L × S matrix whose s-th column vector is
bs , and wm,n′ = [

wn′,1 − wm,1, . . . , wn′,S − wm,S
]� is a

weighting vector defined for the m-th row.
Now, letCbe an L×Mmatrix composedof a stackof coef-

ficient vectors {log (
cm,n′

)} fromEq. (5). Its low-dimensional
approximation can be written as

C 
 [
d1,n′ , . . . ,dM,n′

] = LW ≡ D ∈ R
L×M , (10)

where W = [
w1,n′, . . . ,wM,n′

] ∈ R
S×M . By assuming

the number of basis spectra S to be smaller than either
L and M , the coefficient matrix D has a low-dimensional
structure; however, the actual coefficient matrix C obtained
from Eq. (5) may not, due to outliers introduced by numer-
ical instability. We therefore cast the problem as a low-rank
matrix decomposition by explicitly accounting for the out-
liers E ∈ R

L×M as

C = D + E. (11)

By assuming the outlier matrix E is sparse and the low-
dimensional coefficient matrixD is smooth overm, meaning
that the illumination change is temporally smooth, the
problem can be solved by implementing the total variation-
regularized low-rank matrix factorization (LRTV) method
proposed by He et al. (2016) with regularization-weight fac-
tors μ and λ as

D∗,E∗ = argmin
D,E

‖D‖∗ + μ‖D‖HTV + λ‖E‖1
s.t. ‖C − D − E‖ ≤ ε, rank (D) ≤ S, (12)

where D∗ and E∗ are respectively the recovered coefficient
and outliers matrices, ‖ · ‖∗, ‖ · ‖1, ‖ · ‖HTV represent the
nuclear norm, �1 norm, and the total variation along m,
respectively. Note that λ is a hyperparameter that needs to
be tuned, but it can be determined according to the size

Fig. 3 Experimental setup. The scene is an uncontrollable environment
near a window. Under a partly cloudy sky, the everchanging sunlight
illuminates the color chart of the ColorChecker Passport

of matrix C, as proposed in (Candès et al., 2011). Using

the recovered coefficient matrix D∗ =
[
d∗
1,n′ , . . . ,d∗

M,n′
]
,

Eq. (6) can be rewritten as

îm,n = exp
(
d∗
m,n′

)
� im,n, (13)

by which the reconstructed spectrum vectors {îm,n} have a
constant illumination spectrum.

4 Experiments

We developed an imaging system comprising a single-point
spectrometer and a scanning head. Figure 2a illustrates the
composition of the system. The spectrometer is a Maya2000
Pro (Ocean Optics, Inc.), which outputs 2068 channels over
a spectrum ranging from 199.50 to 1118.15 nm with a reso-
lution of approximately 0.5 nm. The scanner is a RobotEye
REHS25 (Ocular Robotics Ltd.), which scans with a spatial
resolution up to 0.01◦ for 360◦ in the yaw direction and 70◦ in
the pitch direction. It enables to capture awide spectral range,
400–2500 nm.[funa:Check] The devices are connected with
an optical fiber. The effective field of view of the point scan
depends on the size of the fiber core.1 We chose 600 and
200 µm fiber core for the experiment in Sects. 4.1 and 4.2,
respectively.

4.1 Quantitative evaluation

Subject We captured two hyperspectral images of a Col-
orChecker Passport (X-Rite, Inc.) under temporally varying
sunlight on a patly cloudy day, as shown in Fig. 3. One is a
horizontally scanned image, which is the target image im,n

from which the illumination variations are going to be elimi-
nated, and the other is a vertically scanned image whose one
column is used as the extra scan em,n′ .

1 Please refer to the REHS25 user manual for detailed descrip-
tion. https://www.ocularrobotics.com/wp-content/uploads/2016/11/
RobotEye-REHS25-User-Manual.pdf, accessed 9 September, 2021.
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(a) (b) (c) (d)

Fig. 4 The RGB images synthesized from the scanned images and the mitigated results. The illumination variations appear in the scanned images.
One column of the vertical scan was used for mitigating the variation in the horizontal scan image

Figure 4 depicts the RGB images synthesized by an open-
source Python package for colour science (Mansencal et al.,
2020) from the horizontal scan, the vertical scan, and the
results of the Naïve and the proposed methods. The scan
times were 1099 s for the horizontal image and 4 s for one of
the columns of the vertical image. Since the vertical image
consists of 140 columns, the total scan time was 552 s.2 The
figure shows that the images scanned under natural sunlight
are strongly affected by the temporal variation of the illu-
mination, whereas the Naïve and the proposed methods are
capable of mitigating this variation.

Figure 5 shows some of the mitigated results at several
wavelengths. It can be seen that the Naïve method exhibits
artifacts along the horizontal scanline, which could not be
visually identified in Fig. 4. In contrast, the proposed method
successfully suppresses such artifacts.

Figure 6 illustrates the low-dimensional structure
extracted during the mitigation procedure by the proposed
method. Here, the rank of D was constrained to 3. The upper
part of the figure shows the basis spectra {bs}, and the lower
left part shows the corresponding weights. The vertical axis
for this latter part of the figure represents m and corresponds
to the row shown on the right. w1, drawn in blue, has the
strongest impact on the coefficients. b1 is smooth and flat
along the wavelength axis, and thus it mainly represents the
changes in terms of intensity. The figure shows thatw1 corre-
sponds to the temporal changes in the illumination intensity
during the horizontal scan shown on the right.

The other weight vectors ws are of lower amplitude, and
the corresponding basis vectors bs have spectral dependen-
cies. Thus, they are interpreted to be involved in mitigating
the changes in a manner dependent on the spectrum. Each
weightws undergoes a sudden change whenm = 40, 56, 72,
at which the black-colored frames appear in the image. This
artifact can be suppressed by making μ in Eq. (12) suffi-
ciently large; however, this would also suppress the effect
of mitigation, e.g., the strong illumination around m = 30
would remain in the mitigated results. The best parameter

2 Although the vertical image has the same spatial resolution as the
horizontal image, the scanning times are different since the total lengths
of the scanning paths differ.

μ depends on the scan; thus, the proposed method requires
hyperparameter tuning. It was set to 0.1 in this experiment.

Evaluation using a spectral library: We use the spectral
library from (Myers, 2020) for quantitative evaluation. The
values in the spectral cube depend on the illumination spec-
trum. Thus, we estimated the illumination spectrum by
comparing the values with the reflectance in the spectral
library and canceled it out from the cube. Since the spectral
library has spectra ranging from 380–730 nm with 10 nm
resolution, we preprocessed the spectral cubes as follows:

1. Manually select a region of 8 × 8 pixels for each of 24
color patches.

2. Select 36 spectral channels whose corresponding wave-
lengths are nearest to those in the library.

3. For each wavelength, estimate the illumination amplitude
in the cube using the 8 × 8 × 24 values within it and the
reflectance of the corresponding 24 patches in the library.

4. Cancel the estimated illumination spectrum from the cube
to be comparable to that of the library.

Figure 7 shows the spectra of each color patch from the
scans and the mitigated results. The spectra from both scans
are different from those of the library since the temporal
variation in the illumination affects the estimation of the illu-
mination spectrum.Meanwhile, the results mitigated by both
the Naïve and the proposed methods are much closer to the
library’s spectra. However, the spectra of the Naïve method
are noisier than those of the proposed method and the library.

We then quantitatively evaluated these results using the
root-mean-square error (RMSE) as the error metric. RMSE
had been calculated over the entire spectral channels. Fig-
ure 8a–d display the errormaps of the cubes, with the average
RMSE shown beneath each panel. As expected from Fig. 7,
both the horizontal and vertical scans produce large errors
mainly from the illumination changes, while, the mitigated
results have much smaller errors. Figure 8e presents a com-
parisonof the error between theNaïve andproposedmethods.
The negative values, represented in blue, indicate that the
Naïve method results in a larger error than the proposed
method; that is, the proposed method outperforms the Naïve
method in all regions.
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Fig. 5 Image slices. While the Naïve method results in significant artifacts along the horizontal dimension, the proposed method produces smoother
results. This can be observed for all wavelengths. The images are automatically adjusted using 1 and 99 percentile values and γ = 1/2.2

Figure 9 illustrates the spectral distributions at a point
(POI) and the corresponding reference point used for the
mitigation. The Naïve method outputs a noisy spectrum with
outliers affected by the selection of an unsuitable reference
point from a ‘black’ patch, which has low reflectance. How-
ever, the proposed mitigation has less noise and no outliers.

Performance evaluation against column selection: The set of
results presented above illustrate an exampleof themitigation

procedure; the results depend on the selection of the addi-
tional column. Therefore, we investigated the robustness of
the methods against the selection of the column for the extra
scan. Figure 10 shows the performance of the methods, eval-
uated as the mean error over all patches, with respect to the
column selected for the extra scan. Bothmethodsmitigate the
temporal variability in the illumination well when the extra
scan is performed on a suitable patch. However, the errors
increase when the extra scan is performed close to or on a
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Fig. 6 The low-dimensional structure extracted from coefficient
matrix C when S = 3 and μ = 0.1. The upper part of the figure
shows the basis spectra {bs}. The lower left part of the figure shows the
weights of the bases. The vertical axis represents m and corresponds to
the rows shown on the right

black frame, which has low intensity on all spectral channels
irrespective of the illumination. Otherwise, the most difficult
mitigation occurred over the ‘white’ patch when the extra
scan was performed on a ‘black’ patch, corresponding to the
results shown above. The proposed method always outper-
forms the Naïve method regardless of the column selected,
even if the extra scan column contains dark elements. This
analysis demonstrates the robustness of the proposedmethod.

Performance with respect to low rankness: The performance
of the proposed method also depends on the selection of
the rank S. Although the dimension representing the illu-
mination variation was discussed in the literature (Ho et al.,
1990; Drew and Finlayson, 2007; Zheng et al., 2015), we also
conducted an analysis to investigate how S affects the per-
formance of our method, as shown in Fig. 11. Similar to the
results obtained in the literature, the performance was best
when S = 3 and stably comparable when S ∈ [3, 10], but
worse for a very low dimensionality (for example, S = 1, 2)
and for dimensionalities higher than 15.

4.2 Experiment in the wild

We captured images of stained-glass windows in a cathe-
dral using the proposed system. As the scan speed of the

RobotEye is 25 points/s, it takes a certain amount of time to
capture a hyperspectral image, e.g., approximately 1 hour for
a resolution of 300 × 300 pixels.

We conducted a horizontal raster scan and an extra single-
column scan for three stained-glass windows. The spatial
resolution and the time spent on the scans are summarized in
Table 1. For each measurement, the raster scan took approx-
imately 1 h, whereas the extra single-column scan took
less than 20 s and was negligibly affected by changes in
sunlight.

As in Sect. 4.1, we applied both mitigation methods to the
hyperspectral images of the stained-glass windows. μ was
set to 0.3 in this experiment. Because these measurements
were performed under natural sunlight, it was impossible to
avoid the temporal changes in sunlight due to natural phe-
nomena such as the movement of clouds and the sun. As we
were unable to obtain a ground-truth hyperspectral image,
we conducted only qualitative evaluations here.

Figure 12 shows the synthesized RGB images from the
scan and the mitigated results. We also captured an RGB
image using a Ricoh Theta for reference, which is shown in
Fig. 12a. To visualize the mitigation effect, we also show the
difference between the scan and the result of the proposed
method in Fig. 12e. Compared with the scan, the mitigated
result has a lower intensity in the blue areas of the difference
image and a higher intensity in the red areas.

Some of the spectral channels in the scan and the miti-
gated results are shown in Fig. 13. The figures, especially at
longer wavelengths, reveal that the scan images demonstrate
gradual intensity changes. The Naïve mitigation results con-
tain noticeable horizontal artifacts, similar to those seen in
Fig. 5. On the other hand, the proposed method suppresses
these artifacts and recovers smoother images.

Figure 14 also shows the spectral distributions at a point
POI and the corresponding reference point. In Fig. 14, the
spectrum of the Naïve method at POI is noisy and contains
some outliers, while the spectrum of the proposed method is
much more acceptable. These results indicate that the pro-
posed method achieves a better mitigation effect than the
Naïve method.

Figure 15 illustrates the low-dimensional structure
extracted from the mitigation by the proposed method. As
in Fig. 6, w1 mostly corresponds to the temporal changes in
the illumination intensity during the scan. We can also see
that the extracted bases have similar forms but differ in their
details. There is some room to improve the mitigation effects
by optimizing the method to share the bases, but this remains
the subject of future work.
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Fig. 7 Comparison of spectra in each color patch. The spectra in both
the horizontal and vertical scans are different from the ones of the library
due to illumination variations during the scanning. The spectra of the

Naïvemethod are noisy.Meanwhile, the spectra of the proposedmethod
is much closer to the ones (Color figure online)

(a) (b)

(c) (d) (e)

Fig. 8 The error maps of a the horizontal and b vertical scans and
the mitigated results from c the Naïve and d the proposed methods. e
Comparison of the errors from the mitigation methods. The blue values

indicate that the Naïve method produces larger errors than the proposed
method. The numbers below figures represent the spatial average of
RMSEs (Color figure online)
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Fig. 9 The spectra at point POI and the corresponding reference point.
The spectrum mitigated by the Naïve method is noisy and contains
outliers, whereas the proposed method suppresses these artifacts

Fig. 10 Mean error in the mitigated results with respect to the column
selected for the extra scan. The horizontal axis is associated with the
overlaid RGB image synthesized from the vertical scan. The proposed
method always outperforms the Naïve method

Fig. 11 The distribution of RMSE with respect to rank (D). Low-
rankness generally improved the performance comparing to the Naïve
result. The best performance was achieved when S = 3 and stably
comparable when S = 3, · · · , 10

Table 1 Spatial resolution and time consumed for the scans

ID Subject Resolution Time for scan

2D (s) Column (s)

(1) Saint Bishop 400 × 200 3217 15

(2) South Portal 400 × 220 3926 17

(3) Saint Peter 280 × 140 1632 12

Fig. 12 Captured image and mitigation results from a field experiment
in a cathedral. Each hyperspectral image was converted to an RGB
image using (Mansencal et al., 2020). a An RGB image photographed
by aRicoh Theta (Ricoh, Inc.), b a horizontal scan, c the result mitigated
by theNaïvemethod,d the resultmitigated by the proposedmethod, and
e the difference between the horizontal scan and the mitigated result,
which represents the intensity changes in the sunlight during the hori-
zontal scan with respect to those during the single-column scan. f–i are,
respectively, magnified images from the middle of images a–d. Note
that the images have been adjusted for better visualization. Some areas
that appear to be saturated are not in the actual hyperspectral images
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Fig. 13 Narrowband images of the scan and the mitigated results at several wavelengths. While the Naïve correction suffers from scanline artifacts,
the proposed method mitigates these artifacts. The gamma correction is applied (γ = 1/1.8)
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Fig. 14 Spectral distributions at a point POI and the corresponding reference point. The results from the Naïve method have an unnatural spectral
distribution caused by outliers

Fig. 15 The low-dimensional structure extracted by the proposed method

5 Conclusion

We proposed a method for eliminating the temporal illumi-
nation variations in whisk-broom hyperspectral imaging by
introducing an extra single-column scan. While the Naïve
method suffers if the reference scan contains dark pixels,
the proposed method successfully alleviates these artifacts
thanks to the low-dimensional structure of the spectra of the
resulting image. The proposed method allows the capture of
a hyperspectral image of high spatial and spectral resolution
under an environment containing temporal illumination vari-
ations with few extra measurements. Hence, it has a wide
range of applications such as the measurement of histori-
cal assets in their own natural environment where lighting
cannot be mastered. As an example, we measured historic
stained-glass windows, which took approximately 1 hour for

scanning. The proposed method is expected to mitigate the
temporal illumination variations within tens of seconds. We
believe our method serves for digitally preserving large cul-
tural heritages with as high spatial resolution as time allows
for the scanning.
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