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Abstract
Region-based methods have become increasingly popular for model-based, monocular 3D tracking of texture-less objects in
cluttered scenes. However, while they achieve state-of-the-art results, most methods are computationally expensive, requiring
significant resources to run in real-time. In the following, we build on our previous work and develop SRT3D, a sparse region-
based approach to 3D object tracking that bridges this gap in efficiency. Our method considers image information sparsely
along so-called correspondence lines that model the probability of the object’s contour location. We thereby improve on the
current state of the art and introduce smoothed step functions that consider a defined global and local uncertainty. For the
resulting probabilistic formulation, a thorough analysis is provided. Finally, we use a pre-rendered sparse viewpoint model to
create a joint posterior probability for the object pose. The function is maximized using second-order Newton optimization
with Tikhonov regularization. During the pose estimation, we differentiate between global and local optimization, using a
novel approximation for the first-order derivative employed in the Newton method. In multiple experiments, we demonstrate
that the resulting algorithm improves the current state of the art both in terms of runtime and quality, performing particularly
well for noisy and cluttered images encountered in the real world.

Keywords Region-based · 3D object tracking · Pose estimation · Sparse · Real-time

1 Introduction

Tracking a rigid object in 3D space and predicting its six
degrees of freedom (6DoF) pose is an essential task in com-
puter vision. Its application ranges from augmented reality,
where the location of objects is needed to superimpose digi-
tal information, to robotics, where the object pose is required
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for robust manipulation in unstructured environments. Given
consecutive image frames, the goal of 3D object tracking is to
estimate both the rotation and translation of a known object
relative to the camera. In contrast to object detection, track-
ing continuously provides information, which, for example,
allows robots to react to unpredicted changes in the envi-
ronment using visual servoing. While the problem has been
thoroughly studied, many challenges such as partial occlu-
sions, appearance changes, motion blur, background clutter,
and real-time requirements still exist. In this section, we first
provide an overview of common techniques. This is followed
by a survey of relatedwork on region-basedmethods. Finally,
we introduce our approach and summarize the contributions
to the current state of the art.

1.1 3D Object Tracking

In the past, many approaches to 3D object tracking have been
proposed. Based on surveys (Lepetit and Fua 2005; Yilmaz
et al. 2006), as well as on recent developments, techniques
can be differentiated by their use of key-points, explicit
edges, direct optimization, deep learning, depth information,
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and image regions. Key-point features such as SIFT (Lowe
2004), ORB (Rublee et al. 2011), or BRISK (Leutenegger
et al. 2011) have been widely used for 3D object tracking
(Wagner et al. 2010; Vacchetti et al. 2004), with more recent
developments like LIFT (Yi et al. 2016) and SuperGlue (Sar-
lin et al. 2020) introducing deep learning at various stages.
Explicit edges provide an additional source of information
that is used by many approaches (Huang et al. 2020; Bugaev
et al. 2018; Seo et al. 2014; Comport et al. 2006; Drummond
and Cipolla 2002; Harris and Stennett 1990). Also, direct
methods (Engel et al. 2018; Seo and Wuest 2016; Crivel-
laro and Lepetit 2014), which optimize a photometric error
and can be traced back to Lucas and Kanade (1981), have
been proposed. While all three classes of techniques have
valid applications, unfortunately, they also have significant
drawbacks. First, approaches based on key-points and direct
optimization require rich texture, limiting the range of suit-
able objects. At the same time, edge-based methods, which
perform better for low-textured objects, often fail in cluttered
scenes. Finally, motion blur changes the appearance of both
texture and edges, leading to additional problems.

To overcome these issues and train the algorithm on
data, recently, deep-learning-based approaches that use con-
volutional neural network (CNNs) to consider full image
information have been proposed. While they achieve good
results, only few approaches (Wen et al. 2020) run in real-
time, with most methods (Deng et al. 2021;Wang et al. 2019;
Li et al. 2018; Xiang et al. 2018; Garon and Lalonde 2017)
reporting less than 30 frames per second. However, even the
most efficient algorithms require significant resources from
high-end GPUs. In addition, typical disadvantages include
time-consuming training and the requirement for a textured
3D model. Another relatively new development is the avail-
ability of affordable depth cameras that measure the surface
distance for each pixel. While purely depth-based object
tracking is possible, most methods (Ren et al. 2017; Kehl
et al. 2017; Tan et al. 2017; Krull et al. 2015; Krainin et al.
2011) combine information from both depth and RGB cam-
eras. In general, this leads to superior results. Unfortunately,
in many applications, using an additional depth sensor is not
an option. Also, note that algorithms require images with
high quality. Depending on hardware, surface distances, sur-
face characteristics, and lighting conditions, such images are
hard to obtain.

Because of the discussed shortcomings, region-based
techniques (Stoiber et al. 2020; Zhong et al. 2020b; Tjaden
et al. 2018; Prisacariu and Reid 2012) have become increas-
ingly popular. The big advantage of such methods is that
they are able to reliably track a wide variety of objects in
cluttered scenes, using only a monocular RGB camera and
a texture-less 3D model of the object. The main assumption
is thereby that objects are distinguishable from the back-
ground. As a consequence, no object texture is needed.While

past approaches were computationally expensive, our sparse
formulation overcomes this disadvantage. Finally, based on
our experience, region-based methods are robust to motion
blur,making it possible to track fast-moving objects. Because
of these excellent properties, the following work focuses on
region-based techniques.

1.2 RelatedWork

Region-based methods use image statistics to differentiate
between a foreground region that corresponds to the object
and a background region. Typically, color statistics are used
to model the membership of each pixel. Based on the two
regions, the goal is to find the object pose and corresponding
silhouette that best explains the segmentation of the image.
The great potential of this technique was already demon-
strated by early approaches that allowed robust tracking in
many challenging scenarios (Schmaltz et al. 2012; Brox et al.
2010; Rosenhahn et al. 2007). Segmentation and pose track-
ing were thereby treated as independent problems, with an
initial step to extract the contour and a subsequent opti-
mization to find the pose. Dambreville et al. (2008) later
combined the two processes in a single energy function,
leading to improved tracking robustness. Building on this
approach and including the pixel-wise posterior member-
ship of Bibby and Reid (2008), Prisacariu and Reid (2012)
developed PWP3D, a real-time-capable algorithm that uses
a level-set pose embedding. It is the foundation of almost all
state-of-the-art region-based methods.

Based on PWP3D, multiple algorithms were suggested
that incorporate additional information, extend the segmen-
tation model, or improve efficiency. For the combination of
both depth- and region-based information, Kehl et al. (2017)
extended the energy function of PWP3D with a term that is
based on the Iterative Closest Point (ICP) algorithm. In a dif-
ferent approach, Ren et al. (2017) tightly coupled region and
depth information in a probabilistic formulation that uses 3D
signed distance functions. Recently, object texture was con-
sidered using direct optimization of pixel intensity values
(Liu et al. 2020; Zhong and Zhang 2019) or descriptor fields
(Liu et al. 2021). Also, a combination with an edge-based
technique that uses a contour-part model was introduced by
Sun et al. (2021). Later, Li et al. (2021) developed adap-
tively weighted local bundles that combine region and edge
information. To improve occlusion handling, Zhong et al.
(2020a) suggested the use of learning-based object segmen-
tation. Finally, the incorporation of measurements from a
mobile phone’s inertial sensor was suggested by Prisacariu
et al. (2015).

To improve segmentation, Zhao et al. (2014) extended
the appearance model of PWP3D with a boundary term that
considers spatial distribution regularities of pixels. Later,
Hexner and Hagege (2016) proposed the use of local appear-
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Fig. 1 Tracking of a marker pen in the real world. The image on the left
shows a rendered overlay of the object model for the initial pose. The
estimated pose after the optimization is visualized in the image on the
right. The three illustrations in the middle show yellow correspondence
lines for different scales s. High probabilities for the contour location

are illustrated in red. Pixel-wise posterior probabilities that describe
the probability that a pixel belongs to the background are encoded in
grayscale images. Note that during tracking, pixel-wise posteriors are
only calculated along correspondence lines (Color figure online)

ance models that were inspired by the localized contours
of Lankton and Tannenbaum (2008). The idea was further
improved by Tjaden et al. (2018) with the development of
temporally consistent local color histograms. Finally, Zhong
et al. (2020b) proposed a method that introduces polar-based
region partitioning and edge-based occlusion detection.

For better efficiency, Zhao et al. (2014) suggested a
particle-filter-like stochastic optimization that initializes a
subsequent damped Newton method. Later, a hierarchical
rendering approach that uses the Levenberg-Marquardt algo-
rithmwas developed by Prisacariu et al. (2015). Also, Tjaden
et al. (2018) proposed the use of a Gauss-Newton method to
improve convergence. In addition to optimization, another
idea towards better efficiency is the use of simplified signed
distance functions (Liu et al. 2020). A different approach by
Kehl et al. (2017) suggested the use of precomputed contour
points to represent the object’s 3D geometry and calculate
the energy function sparsely along rays. Finally, in our pre-
viouswork (Stoiber et al. 2020),we improved on this idea and
developed a sparse approach that is based on correspondence
lines, making our algorithm significantly more efficient than
the previous state of the art while achieving better tracking
results.

1.3 Contribution

Starting from the ideas presented in the previous section, we
focus on the development of SRT3D, a highly efficient, sparse
approach to region-based tracking. To keep complexity at a
minimum, we only use region information and, like PWP3D,
adopt a global segmentation model. For our formulation,
we build on our previous method and consider image infor-
mation sparsely along correspondence lines. Also, Newton
optimization with Tikhonov regularization is used to esti-
mate the object pose. An illustration of the tracking process
with converging correspondence lines at different scales is
given in Fig. 1. While the formulation is similar to our pre-

vious method (Stoiber et al. 2020), our main motivation is to
advance the approach and the current state of the art using
improved uncertaintymodeling and better optimization tech-
niques. In addition, we provide a more formal derivation and
analysis of the highly efficient correspondence line model.
In detail, the main contributions of this work are as follows:

– A formal definition of correspondence lines and a thor-
ough mathematical derivation of the probabilistic model
that describes the contour location.

– Novel smoothed step functions that allow the modeling
of both local and global uncertainty.

– A detailed theoretical analysis that shows how different
parameter settings affect the characteristics of posterior
probability distributions.

– Global and local optimization strategies and a new
approximation for the local first-order derivative.

In the remainder, we first provide a detailed derivation
of the correspondence line model. This is followed by the
development of a 3D tracking approach that combines the
correspondence linemodelwith a sparse representation of the
3D object geometry. Subsequently, implementation details
for the resulting algorithm are discussed. Finally, we conduct
a thorough evaluation on the RBOT and the OPT dataset,
showing that our approach outperforms the current state of
the art by a considerable margin in terms of efficiency and
quality.

2 Correspondence LineModel

In this section, we first provide a formal mathematical
definition of correspondence lines. This is followed by a
probabilistic model that considers the segmentation of a
correspondence line into foreground and background. To
improve computational efficiency, we extend this model and
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Fig. 2 Correspondence line defined by a center c and a normal vector
n. The illustration shows pixels along the correspondence line as well
as the foreground region ωf in yellow and the background region ωb in
blue. The contour distance d points from the correspondence line center
to an estimated contour, indicated by a dashed line (Color figure online)

provide a discrete scale-space formulation. Finally, we intro-
duce novel smoothed step functions and discuss how their
configuration affects the contour location’s posterior proba-
bility.

2.1 Correspondence Lines

In contrast to most state-of-the-art algorithms, we do not
consider image information densely over the entire image.
Instead, inspired by RAPID (Harris and Stennett 1990), pixel
values are processed sparsely along correspondence lines
(Stoiber et al. 2020). The name correspondence line is moti-
vated by the term correspondence point used in ICP (Besl
and McKay 1992). Similar to ICP, correspondences are first
defined and the optimizationwith respect to them is then con-
ducted in a second step. While for ICP, individual 3D points
are used as data, multiple pixel values along a line are consid-
ered in this case. A visualization of a single correspondence
line is shown in Fig. 2.

Starting from our earlier work (Stoiber et al. 2020) and
inspired by the commonly used definition of images as
I : Ω → {0, . . . , 255}3, we formally denote a correspon-
dence line as a map l : ω → {0, . . . , 255}3. In this notation
Ω ⊂ R

2 describes the image domain while ω ⊂ R is
considered the correspondence line domain. Image values
y, which are typically accessed using the image coordinate

x = [
x y

]�
and the image function y = I(x), are described

using the line coordinate r and the correspondence line func-
tion y = l(r). Correspondence lines are located in the image
and remain fixed once they have been established. The loca-
tion and orientation of each correspondence line is defined

by a center c = [
cx cy

]� ∈ R
2 in image coordinates and a

normal vector n = [
nx ny

]� ∈ R
2, with ‖n‖2 = 1. Using

this definition, the relation between an image I and a corre-
spondence line l is expressed as follows

l(r) = I(c+ rn), (1)

where image coordinates in I are rounded to the center of
the next closest pixel.

2.2 Probabilistic Model

Inspired by the generative model of Bibby and Reid (2008),
we derive a probabilistic model for the segmentation of a
correspondence line into a foreground region ωf and a back-
ground region ωb. Note that this is the 1D equivalent of the
segmentation of a 2D image into the regions Ωf and Ωb. We
assume that there is only one transition between foreground
and background. The location of this transition relative to the
line center c is described by the contour distance d ∈ R. A
visualization of the contour distance is shown in Fig. 2.

To derive the probabilisticmodel, we first describe the for-
mation process for a single pixel on the correspondence line.
The joint probability distribution writes thereby as follows

p(r , y, d,m) = p(r | d,m)p( y | m)p(m)p(d), (2)

where m ∈ {mf,mb} is the model parameter that can denote
either foreground or background. If we condition this distri-
bution on the image value y, we obtain

p(r , d,m | y) = p(r | d,m)p(m | y)p(d). (3)

Following Bibby and Reid (2008), we use Bayes’ theorem
and the marginalization over m to calculate the pixel-wise
posterior probability

p(mi | y) = p( y | mi )p(mi )∑
j∈{f,b} p( y | m j )p(m j )

, i ∈ {f, b}, (4)

where p( y | mf) and p( y | mb) are probability distributions
that describe how likely it is that a specific color value is part
of the foreground region or the background region, respec-
tively. The two distributions can be estimated by calculating
two color histograms, one over the foreground region and
one over the background region. A detailed explanation of
their computation is given in Sect. 4.2. Using the knowledge
that foreground and background are equally likely along the
correspondence line, i.e. p(mf) = p(mb), we obtain

p(mi | y) = p( y | mi )

p( y | mf) + p( y | mb)
, i ∈ {f, b}. (5)

Finally, based on Eq. (3), we are able to marginalize over
m and condition on r to express the posterior probability for
the contour distance d as

p(d | r , y) = 1

p(r)

∑

i∈{f,b}
p(r | d,mi )p(mi | y)p(d). (6)
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Fig. 3 Example of the relation between the unscaled space r along the
correspondence line and the scale-space rs. Neighboring pixels that are
combined into segments are visualized by the same color in blue or
yellow. Blue and yellow dots indicate the center of each segment and
the corresponding discretized value in the scale-space. An example of
the contour distance is illustrated in red. The offset Δr is chosen in a
way that ensures that discretized values in the scale-space are the same
for all correspondence lines. In this example, Δr points to the closest
edge between pixels (Color figure online)

To calculate the posterior probability over the entire
correspondence line domain ω, we assume pixel-wise inde-
pendence and, based on Eq. (6), write

p(d | ω, l) ∝
∏

r∈ω

∑

i∈{f,b}
p(r | d,mi )p(mi | l(r)). (7)

Note that p(r) and p(d) are considered to be uniform and
constant and are thus dropped. Also, while pixel-wise inde-
pendence does not hold in general, it is a well-established
approximation that allows us to avoid ill-defined assump-
tions for spatial regularities and is close enough to reality
to yield good results. The conditional line coordinate prob-
ability p(r | d,m) will be discussed in Sect. 2.4. Similar
to the probabilistic model of Bibby and Reid (2008), which
describes the probability of a shape kernel given information
from an image, Eq. (7) provides the probability of the contour
distance d given data from a correspondence line.

2.3 Discrete Scale-Space Formulation

Estimating the distribution of posterior probabilities is com-
putationally expensive since, for each distance d, the product
in Eq. (7) has to be computed over the entire domain ω.
This results in quadratic complexity for the calculation of the
entire distribution. In contrast, pixel-wise posterior probabil-
ities p(m | y) are used in the posterior probability calculation
of multiple distances d, leading to linear complexity. Shift-
ing computation from the calculation of the distribution to the
calculation of pixel-wise posterior probabilities thus allows
us to improve computational efficiency. Also, it is advan-
tageous to normalize correspondence lines in a way that
ensures that a line coordinate pointing to a segment center
for one correspondence line points to a segment center for
all correspondence lines. This uniformity can be used in the
precalculation of smoothed step function values to further
improve efficiency.

In the following, we thus adopt the discrete scale-space
formulation from our previous method (Stoiber et al. 2020)
to combine multiple pixels into segments. In addition, the
formulation projects from the continuous space along the
correspondence line into a discrete space that is independent
of a correspondence line’s location and orientation. An illus-
tration of this transformation is shown in Fig. 3. Both line
coordinates and contour distances are projected as follows

rs = (r − Δr)
n̄

s
, (8)

ds = (d − Δr)
n̄

s
, (9)

with s ∈ N
+ the scale that describes the number of pixels

combined into a segment, n̄ = max(|nx |, |ny |) the major
absolute normal component that projects a correspondence
line to the closest horizontal or vertical image coordinate,
and Δr ∈ R the offset from the correspondence line center
c to a defined pixel location.

Based on Eq. (7), the posterior probability in the discrete
scale-space is calculated as

p (ds | ωs, ls) ∝
∏

rs∈ωs

∑

i∈{f,b}
p (rs | ds,mi ) p (mi | ls (rs)) ,

(10)

where ωs is the scaled correspondence line domain and s =
ls(rs) a set-valued function that maps from the scaled line
coordinate rs to the segment s, which is a set of the closest s
pixel values y. Similar to pixel-wise posteriors in Eq. (5) and
assuming pixel-wise independence, segment-wise posteriors
are defined as

p (mi | s) =
∏

y∈s
p (y | mi )

∏

y∈s
p ( y | mf) + ∏

y∈s
p ( y | mb)

, i ∈ {f, b} .

(11)

The derived formulation allows to efficiently cover the cor-
respondence line domain ω, using the scale parameter s to
set the segment size and to adjust between accuracy and effi-
ciency. In the following, we will again drop the index s for all
variables to simplify the notation. Note, however, that all def-
initions and derivations are valid both for the original space
and for the discrete scale-space formulation.

2.4 Smoothed Step Functions

To model the conditional probabilities of the line coordinate
p(r | d,mf) and p(r | d,mb), different smoothed step func-
tions hf and hb have been used. While most state-of-the-art
algorithms (Zhong et al. 2020b; Tjaden et al. 2018) use a
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Fig. 4 Smoothed step functions hf and hb that model the conditional
line coordinate probabilities p(r | d,mf) and p(r | d,mb). The func-
tions hf(x) = 1

2 − 1
π
tan−1

( x
sh

)
and hb(x) = 1

2 + 1
π
tan−1

( x
sh

)
used

by Zhong et al. (2020b) and Tjaden et al. (2018) are illustrated by
dash-dotted gray lines. The definitions hf(x) = 1

2 − 1
2 tanh

( x
2sh

)
and

hb(x) = 1
2 + 1

2 tanh
( x
2sh

)
from our previous work (Stoiber et al. 2020)

are shown as dashed yellow lines. In both plots, the slope parameter
sh = 1 is used. For the proposed functions in Eqs. (12) and (13), solid
red lines correspond to αh = 1

3 and sh = 1, while dotted blue lines show
the functions for αh = 1

3 and sh → 0. In addition to visualizing the
definitions from our previous work, the dashed yellow lines illustrate
the proposed functions for αh = 1

2 and sh = 1 (Color figure online)

function based on the arctangent, we previously proved that
a hyperbolic tangent results in a Gaussian distribution for the
posterior probability p(d | ω, l) (Stoiber et al. 2020). In both
functions, the smoothed slope is used to model a local uncer-
tainty with respect to the exact location of the foreground and
background transition. Considering the plots of the twomod-
els in Fig. 4, one notices that the functions quickly converge
towards either zero or one for increasing absolute values of
x = r − d. Except for a small area around zero, both models
thus assume that, given the model m and the contour dis-
tance d, one knows perfectly on which side of the contour
the line coordinate r lies. In the following, we will argue that
for real-world applications, this assumption is wrong.

While the pixel-wise posterior probability in Eq. (5) pro-
vides very good predictions for the model m, it is still an
imperfect simplification of the real world. Typical effects
that are not considered by the statistical model are image
noise or fast appearance changes that can lead to pixel col-
ors that are not yet present in the color histograms. Another
effect originates from pixels that are wrongly classified due
to imperfect segmentation and that are then assigned to the
wrong color histograms. Finally, there also remains the ques-
tion if a statistical model that purely relies on pixel colors is
sufficient to capture all the statistical effects in the real world
and is able to perfectly predict the model m.

To take those limitations into account and consider a con-
stant, global uncertainty in the foreground and background
model, we extend the formulation from our previous work
(Stoiber et al. 2020) and propose the following functions

hf(x) = 1

2
− αh tanh

(
x

2sh

)
, (12)

hb(x) = 1

2
+ αh tanh

(
x

2sh

)
. (13)

Note that the amplitude parameter αh ∈ [0, 0.5]was added to
the original definitions that only considered the slope param-
eter sh ∈ R

+. For αh = 1
2 the equations are equal to our

previous formulation. Examples of the proposed functions
are shown in Fig. 4.

In addition to viewingαh as a simple amplitude parameter,
we are able to demonstrate that there is also another interpre-
tation. For this, we assume that the modelm is extended with
a third class mn that considers external effects that are inde-
pendent of the foreground and backgroundmodelmf andmb.
For this scenario, we can show that p(mf) = p(mb) = αh

and that p(mn) = 1− 2αh. Following this interpretation, the
amplitude parameter thus allows us to set the probability that
a pixel’s color is generated by the foreground or background
model in contrast to some other effect that is considered as
noise. This again shows that the amplitude parameter αh is
able to model a constant, global uncertainty. Note that in this
scenario, the original smoothed step functions that converge
to zero or one are used for p(r | d,mf) and p(r | d,mb)

and a constant function p(r | d,mn) = 1
2 is adopted for the

noise model. A detailed derivation of this extended model
and a proof of its equivalence to the use of the functions in
Eqs. (12) and (13) is given in Appendix A.

2.5 Posterior Probability Distribution

Given the smoothed step functions hf and hb that model the
conditional line coordinate probabilities p(r | d,mf) and
p(r | d,mb), the final expression of the posterior probability
distribution from Eq. (7) can be written as

p(d | ω, l) ∝
∏

r∈ω

hf(r − d)pf(r) + hb(r − d)pb(r), (14)

with the abbreviations pf(r) = p(mf | l(r)) and pb(r) =
p(mb | l(r)). In the following, we provide a detailed analysis
to understand how the slope parameter sh and the amplitude
parameter αh affect this distribution. We thereby assume a
contour at the correspondence line center and step func-
tions for the pixel-wise posteriors pf and pb. Note that the
assumption of step functions corresponds well with real-
world experiments that show that, in most cases, there is
a distinct split between foreground and background.

For the analysis, we start with the calculation of the
first-order derivative of the log-posterior with respect to the
contour distance d. The derivation is conducted similar to
our previous work (Stoiber et al. 2020) and assumes contin-
uous functions with infinitesimally small pixels. Based on
a detailed derivation given in Appendix B, the closed-form
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Fig. 5 First-order derivatives of the log-posterior with respect to the
contour distance d for different slope and amplitude parameters sh and
αh. The solid red line shows the derivative for αh = 1

3 and sh = 1,
which yields a function with a smooth transition from an upper bound
to a lower bound. The dashed yellow line shows the function for αh = 1

2
and sh = 1. This produces a linear first-order derivative. Finally, using
αh = 1

3 and sh → 0 results in a perfect step function illustrated by the
dotted blue line (Color figure online)

solution is written as

∂ ln
(
p(d | ω, l)

)

∂d
= −2 tanh−1

(
2αh tanh

(
d

2sh

))
. (15)

A visualization of this function for different slope and ampli-
tude parameters αh and sh is given in Fig. 5. The plot shows
that the amplitude parameter αh controls not only the ampli-
tude of hf and hb but also the amplitude of the first-order
derivative. For αh = 1

2 , the first-order derivative converges
to a linear function. At the same time, the parameter sh affects
both the slope of hf and hb and the slope of the first-order
derivative. For sh → 0 it leads to a perfect step function.

For the two edge cases with αh = 1
2 and sh → 0, Eq. (15)

can be simplified, and we are able to calculate a closed-form
solution for the posterior probability distribution. In the case
of αh = 1

2 , for which we obtain the smoothed step functions
of our previous approach (Stoiber et al. 2020), the posterior
probability distribution results in a perfect Gaussian

p(d | ω, l) = 1√
2πsh

exp

(
− d2

2sh

)
, (16)

where the slope parameter sh is equal to the variance. In the
case of sh → 0, which leads to sharp step functions for hf and
hb, the posterior probability distribution becomes a perfect
Laplace distribution

p(d | ω, l) = 1

2b
exp

(
− |d|

b

)
, b = 1

2 tanh−1(2αh)
,

(17)

where b ∈ R
+ is the scale parameter of the Laplace dis-

tribution that depends on αh. A detailed derivation of the
two functions is provided in Appendix C. Examples for both
distributions, as well as a mixed posterior distribution with
sh = 1 and αh = 1

3 , are visualized in Fig. 6. The plot shows

Fig. 6 Posterior probability distributions for different slope and ampli-
tude parameters sh and αh. The solid red line shows the function for
αh = 1

3 and sh = 1, which leads to a very flat distribution. Note that the
function was computed numerically. Using αh = 1

2 and sh = 1 results
in a Gaussian distribution shown by the dashed yellow line. The param-
eters αh = 1

3 and sh → 0 yield a Laplace distribution for the posterior
probability that is illustrated by a dotted blue line (Color figure online)

thatwhile theLaplace distribution has a pronounced peak, the
Gaussian distribution has a smoothed maximum for which
nearby values have similarly high probabilities. This coin-
cides with our intuition that the slope parameter sh controls
local uncertainty, allowing multiple values d to be almost
equally likely. At the same time, the amplitude parameter αh

controls the size of the peak compared to its surroundings,
thereby controlling global uncertainty. Combining the two
parameters in a mixed distribution results in a function that
is able to consider both local and global uncertainty simulta-
neously.Given the detailed knowledge about correspondence
lines and the posterior probability distribution, we are now
able to develop SRT3D, a highly efficient, sparse approach
to region-based 3D object tracking.

3 Region-Based 3D Tracking

In this section, we first define basic mathematical concepts.
This is followed by the description of a sparse viewpoint
model, which avoids the rendering of the 3D model during
tracking. Combining this geometry representation with the
correspondence line model developed in the previous sec-
tion, we are able to formulate a joint posterior probability
with respect to the pose. The probability is maximized using
Newton optimization with Tikhonov regularization. Finally,
we define the required gradient vector andHessianmatrix for
the Newtonmethod.We thereby differentiate between global
and local optimization to ensure both fast convergence and
high accuracy.

3.1 Preliminaries

In the following work, we define 3D model points as X =
[
X Y Z

]� ∈ R
3 and use the tilde notation to write the homo-

geneous form ˜X = [
X Y Z 1

]�
. For the projection of a 3D

model point X into the image space, we assume an undis-
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Fig. 7 Illustration of a 2D rendering computed from a 3D mesh model.
The model reference frame M is shown at the center of the object,
while a camera reference frame C is shown at the right upper corner of
the image. The transformation from the model to the camera reference
frame that is described by CTM is indicated by a dashed arrow. The
contour of the rendered model is highlighted by a yellow line. Red
points and blue arrows illustrate 2D contour points and approximated
normal vectors (Color figure online)

torted image and use the pinhole camera model

x = π(X) =
[ X
Z fx + px
Y
Z fy + py

]
, (18)

with fx and fy the focal lengths and px and py the principal
point coordinates given in units of pixels. The inverse opera-
tion, which is the reconstruction of a 3Dmodel point from an
image coordinate x and corresponding depth value dZ along
the optical axis, can be written as

X = π−1(x, dZ ) = dZ

⎡

⎢
⎣

x−px
fx

y−py
fy
1

⎤

⎥
⎦ . (19)

To describe the relative pose between the model reference
frameMand the camera reference frameC,we use the homo-
geneous matrix CTM ∈ SE(3). For the transformation of a
3D model point, we can then write

C ˜X = CTMM ˜X =
[
CRM C tM
0 1

]

M ˜X, (20)

where C ˜X and M ˜X are 3D model points written in the cam-
era reference frame C and the model reference frame M,
respectively, and where CRM ∈ SO(3) and C tM ∈ R

3 are
the rotation matrix and the translation vector that define the
transformation from M to C. An illustration of the two ref-
erence frames and a homogeneous transformation matrix is
given in Fig. 7.

For small variations, the angle-axis representation, which
is a minimal representation, is used. With the exponential

map, the rotation matrix writes as

R = exp([r]×) = I + [r]× + 1

2! [r]
2× + 1

3! [r]
3× + ..., (21)

where [r]× is the skew-symmetric matrix of r ∈ R
3.

By neglecting higher-order terms of the series expansion,
Eq. (21) can be linearized. We are then able to write the lin-
ear variation of a 3D model point in the camera reference
frame C as

C ˜X(θ) =
[
CRM C tM
0 1

] [
I + [θ r]× θ t

0 1

]

M ˜X, (22)

with the rotational variation θ r ∈ R
3, the translational vari-

ation θ t ∈ R
3, and the full variation vector θ� = [

θ�
r θ�

t

]
.

Note that, since the object is typically moved significantly
more than the camera, it is more natural to variate 3D points
in the model reference frame M instead of the camera ref-
erence frame C. Also, the variation in the model reference
frame has the advantage that a simple extension of the algo-
rithm to multiple cameras is possible.

3.2 Sparse Viewpoint Model

In contrast to most state-of-the-art region-based methods,
we do not use the 3D geometry in the form of a mesh model
directly. Instead, similar to Tan et al. (2017), we employ a
representation that we call a sparse viewpoint model. To cre-
ate this model, the 3D geometry is rendered from a number
of nv viewpoints all around the object. Virtual cameras are
thereby placed on the vertices of a geodesic grid that sur-
rounds the object. For each rendering, nc points xi ∈ R

2

are randomly sampled from the contour of the model. Sub-
sequently, the vectors ni ∈ R

2 that are normal to the contour
are approximated for each point. Note that ‖ni‖2 = 1. An
illustration of a rendering with sampled 2D contour points
and normal vectors is shown in Fig. 7. Based on the 2D enti-
ties, 3D vectors with respect to the model reference frame
are then reconstructed as follows

M ˜X i = MTC π̃−1
(xi , dZi ) , (23)

MN i = MRC

[
ni
0

]
, (24)

where the tilde notation in π̃−1 indicates that the 3D model
point is returned in homogeneous form and dZi is the depth
value from the rendering. Note that in this case, C denotes
the reference frame of the virtual camera from which the
rendering was created. In addition to those vectors, we also
compute the orientation vector Mv = MRCeZ that points

from the camera to the model center, where eZ = [
0 0 1

]�
.
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The computed 3D model points, normal vectors, and the ori-
entation vector are then stored for each view.

The sparse viewpoint model allows for a highly efficient
representation of the model contour. Given a specific pose
with MRC and C tM, the process of rendering the model and
computing the contour reduces to a simple search for the
closest precomputed view iv

iv = argmaxi∈{1,...,nv}(Mv�
i MRCC tM), (25)

and the subsequent projection of the corresponding 3Dmodel
points and normal vectors into the image. Note that this high
efficiency is especially important during the optimization of
the joint posterior probability,where the pose changes in each
iteration.

3.3 Joint Posterior Probability

In the following, we combine the developed sparse viewpoint
model with the correspondence line model from Sect. 2 to
define a joint posterior probability with respect to the pose
variation. However, before probabilities can be calculated,
the location and orientation of correspondence lines need to
bedefined. For this, 3Dmodel points andnormal vectors from
the closest view of the sparse viewpoint model are projected
into the image using the following equations

ci = π
(
CTMM ˜X i

)
, (26)

ni ∝ (
CRMMN i

)
2×1, (27)

where the normal vector ni is normalized to ||ni ||2 = 1 and
()2×1 denotes the first two elements of a vector.

Once all correspondence lines have been defined, we are
able to variate the current pose and calculate contour dis-
tances di with respect to the pose variation vector θ . Contour
distances are thereby calculated as the distances along normal
vectors ni from correspondence line centers ci to projected
3D model points X i

di (θ) = n�
i

(
π(CX i (θ)) − ci

)
. (28)

Note that the same3Dmodel points X i are used as for the def-
inition of correspondence lines. Also, while we do not write
this explicitly, 3Dmodel points CX i and contour distances di
also depend on the current pose estimate CTM, which might
be different from the pose that was used to define correspon-
dence lines. An example of multiple correspondence lines
with variated contour distances is shown in Fig. 8.

Finally, assuming a number of nc independent correspon-
dence lines and using the discrete scale-space formulation
from Sect. 2.3 to improve efficiency, the joint posterior prob-

Fig. 8 Correspondence lines defined by a center ci and a normal vector
ni . Variated contour distances di are measured along the correspon-
dence lines from the centers ci to the projected 3D model points CX i
that depend all on the same pose variation θ . The object contour of the
original pose estimate, which was used to define the correspondence
lines, is indicated by a dotted line. The current estimate of the con-
tour that depends on the pose variation vector θ is shown by a dashed
line. The ground truth segmentation that we try to estimate is given by
the foreground region Ω f in yellow and the background region Ωb in
blue. Note that while contours are illustrated as continuous lines, in our
method, they are represented by points and normal vectors from the
closest view of the sparse viewpoint model (Color figure online)

ability can be calculated as

p(θ | D) ∝
nc∏

i=1

p(dsi (θ) | ωsi , lsi ), (29)

where D describes the data from all correspondence lines.
Note that the transformation of contour distances di from
the original space to the discrete scale-space is given by
Eq. (9). The developed joint posterior probability describes
howwell the current pose estimate explains the segmentation
of the image into a foreground region, that corresponds to the
tracked object, and a background region.

3.4 Optimization

To maximize the joint posterior probability, we estimate the
variation vector θ̂ and iteratively update the pose. For a single
iteration, the variation vector is calculated using the Newton
method with Tikhonov regularization

θ̂̂θ̂θ =
(

− HHH +
[
λrIII 3 000
000 λtIII 3

] )−1

ggg, (30)

where ggg is the gradient vector, HHH is the Hessian matrix, III 3
the 3× 3 identity matrix, and λr and λt are the regularization
parameters for rotation and translation, respectively. The gra-
dient vector and the Hessian matrix are defined as the first-
and second-order derivatives of the joint log-posterior

g� = ∂

∂θ
ln

(
p(θ | D)

)∣∣∣
θ=0

, (31)
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H = ∂2

∂θ2
ln

(
p(θ | D)

)∣∣∣
θ=0

. (32)

Using the logarithm has the advantage that scaling terms van-
ish and products turn into summations. Note that the Hessian
represents the curvature of the distribution at a specific loca-
tion,which forGaussian probability functions is constant and
directly corresponds to the negative inverse variance. Given
this probabilistic interpretation, it can be argued that regu-
larization parameters correspond to a prior probability. This
prior controls howmuchwebelieve in the previous pose com-
pared to the current estimate described by the gradient and
Hessian. Consequently, for directions in which the Hessian
indicates high uncertainty, the regularization helps to keep
the optimization stable and to avoid pose changes that are
not supported by sufficient data.

Finally, given a robust estimate for the variation vector,
the predicted pose can be updated as follows

CTM = CTM

[
exp([θ̂ r]×) θ̂ t

0 1

]
. (33)

Because of the exponential map, no orthonormalization is
necessary. By iteratively repeating this process,we are able to
optimize towards the pose that best explains the segmentation
of the image.

3.5 Gradient and Hessian Approximation

In the following, the gradient vector and the Hessian matrix
are approximated in a way that ensures both fast convergence
and high accuracy. Using the chain rule, we write

g� =
nc∑

i=1

∂ ln (p (dsi | ωsi , lsi ))
∂dsi

∂dsi
∂CX i

∂CX i

∂θ

∣∣∣∣
θ=0

, (34)

H ≈
nc∑

i=1

∂2 ln (p (dsi | ωsi , lsi ))

∂dsi 2

(
∂dsi
∂CX i

∂CX i

∂θ

)�

(
∂dsi
∂CX i

∂CX i

∂θ

) ∣∣∣
∣
θ=0

.

(35)

Note that for the Hessian matrix, second-order partial deriva-
tives with respect to dsi and CX i are neglected. Resulting
errors are left to the iterative nature of the optimization.Using
Eq. (22), the first-order derivative of the 3Dmodel point CX i

is calculated as

∂CX i

∂θ
= CRM

[− [MX i ]× I3
]
. (36)

With respect to the scaled contour distance dsi , both Eq. (28)
and (9) are used to write

∂dsi
∂CX i

= n̄i
s

1

CZ2
i

[
nxi fxCZi nyi fyCZi

−nxi fxCXi − nyi fyCYi
]
.

(37)

For the calculation of the required first- and second-order
derivatives of the log-posterior, we differentiate between
global and local optimization. To some extent, this is similar
to our previous approach (Stoiber et al. 2020). However, in
contrast to that work, we propose different approximations
for the local optimization. Also, we either apply global or
local optimization and use the same definition of derivatives
for all correspondence lines instead of mixing them.

In the case of global optimization, the posterior probability
distribution of individual correspondence lines is approxi-
mated by a normal distributionN (dsi | μi , σ

2
i ). The required

mean and standard deviation μi and σi are thereby esti-
mated from a set of discretized contour distances dsi and
their corresponding probability values. An example of the
approximation of a discrete posterior probability distribu-
tion is shown in Fig. 9. Based on the normal distribution, the
first- and second-order derivatives are calculated as

∂ ln (p (dsi | ωsi , lsi ))
∂dsi

≈ − 1

σ 2
i

(dsi − μi ) , (38)

∂2 ln (p (dsi | ωsi , lsi ))

∂dsi 2
≈ − 1

σ 2
i

. (39)

The approximatedderivatives direct the optimization towards
the mean μi , using the variance σ 2

i to consider uncertainty.
Note that while in the real world, the mean does not exactly
coincide with the maximum, it is typically quite close. At the
same time, using the approximation has the advantage of fast
convergence and that the optimization avoids local minima
resulting from invalid pixel-wise posteriors and image noise.

Once the optimization is closer to themaximum, the global
mean is not a good enough estimate, andmore detailed refine-
ment is required. In such cases, the algorithm switches to
local optimization. We thereby use the probability values of
the two discrete contour distances d−

si and d
+
si that are closest

to the current estimate dsi (θ) and approximate the first-order
derivatives using a weighting term αs

σ 2
i
and finite differences

∂ ln (p (dsi | ωsi , lsi ))
∂dsi

≈ αs

σ 2
i

ln

(
p

(
d+
si | ωsi , lsi

)

p
(
d−
si | ωsi , lsi

)

)

. (40)

For second-order derivatives, the global approximation from
Eq. (39) is used. Note that weighting the first-order derivative
with the variance σ 2

i improves robustness because corre-
spondence lines with high uncertainty are considered less
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Fig. 9 Discrete posterior probability distribution with noisy measure-
ments. For global optimization, the distribution is approximated by a
normal distribution N (dsi | μi , σ

2
i ). The normal distribution and its

mean μi are illustrated in blue. In the case of local optimization, only
two discrete probability values that are closest to the current estimate
of the contour distance dsi (θ) are considered. The two discrete proba-
bility values p(d−

si | ωsi , lsi ) and p(d+
si | ωsi , lsi ), which are used to

approximate the first-order derivative, are colored in red (Color figure
online)

important. Simultaneously, the step size αs helps to balance
the weight and specifies how far the optimization proceeds,
directly scaling the variation vector θ̂ . The same first- and
second-order derivatives can also be derived using inverse-
variance weighting and a constant curvature of 1

αs
for the

second-order derivative. A detailed derivation of this inter-
pretation is given in Appendix D.

Finally, apart from the choice of derivatives, the parame-
terization of smoothed step functions and the corresponding
shape of posterior probability distributions significantly
influences the optimization. To study this effect, we con-
sider the first-order derivatives of the log-posteriors that are
shown in Fig. 5. While for Gaussian distributions, linear
first-order derivatives lead to the estimation of the weighted
mean over all correspondence lines, for Laplace distribu-
tions, binary derivatives guide the optimization towards the
weighted median. Note that this again corresponds well to
the interpretation of local and global uncertainty modeled by
the slope parameter sh and the amplitude parameter αh. If
only local uncertainty exists, it is advantageous to consider
the magnitude of errors in the contour distance and optimize
for the mean. At the same time, in the case of global noise,
it is reasonable to only consider the direction of errors, and
conduct the optimization with respect to the median.

4 Implementation

The following section provides implementation details for
the developed algorithm. We thereby start with the gener-
ation of the sparse viewpoint model and the calculation of
color histograms. This is followed by a description of the
tracking process. Finally, we explain how known occlusions
can be considered. All mentioned parameter values are care-
fully chosen tomaximize tracking qualitywhile not requiring
unreasonable amounts of computation. Note that the source

code of SRT3D is publicly available on GitHub1 to ensure
reproducibility and to allow full reusability.

4.1 Sparse Viewpoint Model

For the sparse viewpoint model, nv = 2562 different views
are considered. They are generated by subdividing the tri-
angles of an icosahedron 4 times, resulting in an angle of
approximately 4◦ between neighboring views. Virtual cam-
eras that are used for the rendering are placed at a distance
of 0.8m to the object center. For all views, the orientation
vector Mv and a constant number of nc = 200 model points

MX i and normal vectors MN i are computed. In addition, for
each point and view, we also compute so-called continuous
distances for the foreground and background. Continuous
distances thereby describe the distance from the 2D model
point xi along the line defined by the normal vector ni for
which the foreground and background are not interrupted by
each other. After their computation in the rendered image,
they are converted and stored in meters. The values are later
used by the tracker to disable individual correspondence lines
for which continuous distances are below a certain threshold,
and the assumption that only a single transition between fore-
ground and background is present in the correspondence line
is not sufficiently fulfilled.

4.2 Color Histograms

For the estimation of the color probability distributions
p( y | mf) and p( y | mb), color histograms are used.
Each dimension of the RGB color space is discretized by
32 equidistant bins, leading to a total of 32768 values. The
computation of the color histograms is started either from
the current pose estimate or from an initial pose, provided,
for example, by a 3D object detection pipeline. Based on this
pose, 3D model points and normal vectors are projected into
the image using Eqs. (26) and (27). After an offset of one
pixel, the first 18 pixels are considered in both the positive
andnegative direction of the normal vector. Pixel colors along
this line are assigned to either the foreground or background
histogram, depending on which side of the projected model
point they are. Note that fewer than 18 pixels are considered
if a transition between foreground and background occurs
within a shorter distance. Also, in cases where the contour
location is more uncertain, it is reasonable to use an offset
larger than one pixel.

Due to motion or dynamic illumination, color statistics
of both the foreground and background are continuously
changing during tracking. To take those changes into account
while at the same time considering previous observations, we
use online adaptation. Based on Bibby and Reid (2008), we

1 https://github.com/DLR-RM/3DObjectTracking.
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thereby update the histograms as follows

pt ( y | mi ) = αi p ( y | mi ) + (1 − αi ) pt−1 ( y | mi ) , (41)

with i ∈ {f, b} and αf = 0.2 and αb = 0.2 the learning
rates for the foreground and background, respectively. Note
that p( y | mi ) is the observed histogram, while pt ( y | mi )

and pt−1( y | mi ) are the adapted histograms of the current
and previous time step, respectively. For initialization, we
directly use the observedhistograms insteadof blending them
with previous values.

4.3 Tracking Process

To start tracking, an initial pose is required, which is typically
provided either from a 3D object detection pipeline or from
dataset annotations. Based on this pose and a correspond-
ing camera image, the color histograms for the foreground
and background are initialized.After initialization, a tracking
step is executed for each new image that is streamed from the
camera. An overview of all computation that is performed in
a single tracking step is given in Algorithm 1.

Algorithm 1 Tracking Step
1: Update camera image
2: for i = 1, 2, . . . , 7 do
3: Optional: Render occlusion mask
4: Find closest view of the sparse viewpoint model
5: Define correspondence lines in the image
6: Compute discrete distributions p(dsi | ωsi , lsi )
7: for j = 1, 2 do
8: Calculate gradient g and Hessian H
9: Estimate variation θ̂ and update pose CTM
10: end for
11: end for
12: Update color histograms p( y | mf) and p( y | mb)

Starting from a new image and the previous pose esti-
mate CTM, we first retrieve the closest view of the sparse
viewpoint model. Model points MX i and normal vectors

MN i are then projected into the image plane to define cor-
respondence lines. After that, continuous distances from
the sparse viewpoint model are used to reject correspon-
dence lines with distances that are below 6 segments. For
the remaining correspondence lines, the posterior probabil-
ity distribution p(dsi | ωsi , lsi ) is evaluated at 12 discrete
values dsi ∈ {−5.5,−4.5, . . . , 5.5}. In the calculation, we
use 8 precomputed values for the smoothed step functions hf
and hb, corresponding to x ∈ {−3.5,−2.5, . . . , 3.5}. Also,
a minimal offset Δri is chosen such that the line coordinates
ri point to pixel centers while the scaled line coordinates rsi
ensure matching values for x = rsi − dsi . In our case, this
means that rsi ∈ Z. Having computed the distributions, two

Fig. 10 Overview of all objects in the RBOT dataset (Tjaden et al.
2018). Objects from the LINEMOD dataset (Hinterstoisser et al. 2013)
and Rigid Pose dataset (Pauwels et al. 2013) are marked with � and �,
respectively

Fig. 11 Images from the RBOT dataset (Tjaden et al. 2018) with one
example image for the regular, dynamic light, noise, and occlusion
sequence. The sequences show the ape, candy, glue, and vise objects,
respectively. In addition, the occlusion sequence features a squirrel
object that occludes the vise

iterations of the regularized Newton optimization are exe-
cuted. For the first iteration, the global optimization is used
to quickly converge towards a rough pose estimate. In the
second iteration, the local optimization is employed to refine
this pose, using a step size of αs = 1.3. As regularization
parameters, we use λr = 5000 and λt = 500000.

To find the final pose, the process is repeated seven times.
We thereby choose larger scales of s = 5 for the first iteration
and s = 2 for the second and third iterations. In all other
iterations, a scale of s = 1 is adopted. This choice has the
effect that a large area with low resolution is considered in
the beginning, while short lines with high resolution are used
in later iterations. An example of correspondence lines at
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.1 different scales is shown in Fig. 1. Note that scale values

typically depend on the area that needs to be covered by
the tracker and the size of frame-to-frame pose differences.
Finally, having estimated the pose for the current image, the
prediction is used to update the color histograms. After that,
the tracker waits for a new image to arrive.

4.4 OcclusionModeling

While the algorithm is quite robust to unknown occlusions,
tracking results can be further improved by explicitly con-
sidering known occlusions. For this, an ID is assigned to
each known object. All objects are then rendered into a depth
image and an image that contains object ID values. Using a
custom shader, we combine information from the two images
and compute an occlusion mask that binary encodes in each
pixel which objects are visible. To consider uncertainty in
the object pose, the shader evaluates a region with a radius
of 4 pixels and assigns the object ID with the smallest depth
value to the center. If only the background is present, all
object IDs are considered visible. In order to improve effi-
ciency, a smaller imagewith a fourth of the camera resolution
is used. Finally, to reject occluded correspondence lines, the
algorithm simply checks occlusionmask values at correspon-
dence line centers.

5 Evaluation

In this section, we present an extensive evaluation of our
approach, SRT3D. Both the Region-Based Object Tracking
(RBOT) dataset (Tjaden et al. 2018) and the Object Pose
Tracking (OPT) dataset (Wu et al. 2017) are used to com-
pare our method to the current state of the art in region-based
tracking. We thereby evaluate the quality of the predicted
pose as well as the speed of the algorithm. Also, a detailed
parameter analysis is conducted that assesses the importance
of different settings. Finally, we discuss essential design
considerations and remaining limitations. In addition to the
content in this section, we provide real-world videos on our
project site2 that demonstrate the tracker’s performance.

5.1 RBOT Dataset

In the following, we first introduce theRBOT dataset, discuss
the conducted experiments, and finally compare our results
to the current state of the art. The RBOT dataset consists
of a collection of 18 objects that are shown in Fig. 10. For
each object, four sequences exist: a regular version, one with
dynamic light, a sequence with both dynamic light and Gaus-
sian noise, and one with dynamic light and an additional

2 https://rmc.dlr.de/rm/staff/manuel.stoiber/ijcv2021.
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squirrel object that leads to occlusion. An example image for
each sequence is shown in Fig. 11. Each sequence consists of
1001 semi-synthetic monocular images, where objects were
rendered into real-world images, recorded from a hand-held
camera that moves around a cluttered desk.

In the evaluation, experiments are performed as defined by
Tjaden et al. (2018). The required translational and rotational
errors are calculated as

et(tk) = ∥∥C tM(tk) − C tMgt(tk)
∥∥
2, (42)

er(tk) = cos−1
(
trace

(
CRM(tk)�CRMgt(tk)

) − 1

2

)
, (43)

where CRMgt(tk) and C tMgt(tk) are the ground-truth rota-
tion matrix and translation vector for the frame k ∈
{0, . . . , 1000}. A pose is considered successful if both
et(tk) < 5 cm and er(tk) < 5◦. After the initialization of the
tracker with the ground-truth pose at t0, the tracker runs until
either the recorded sequence ends or tracking was unsuc-
cessful. In the case of unsuccessful tracking, the algorithm is
re-initialized with the ground-truth pose at tk . For the occlu-
sion sequence, the method is evaluated with and without
occlusion modeling. In the case of occlusion modeling, both
objects are tracked simultaneously. Unsuccessful tracking of
the occluding squirrel object is not considered in the reported
tracking success. Finally, for the remaining tracker settings,
we use αh = 0.36 and sh → 0. A detailed analysis of this
choice is given in Sect. 5.3.

Results of the evaluation are shown in Table 1. Our
approach is compared to the current state of the art in region-
based tracking, as well as the edge-based methods of Huang
et al. (2020), algorithms of Li et al. (2021) and Sun et al.
(2021) that combine edge and region information, and the
method of Liu et al. (2021) that uses descriptor fields in addi-
tion to region-based techniques. The comparison shows that
SRT3D performs significantly better than previous methods,
achieving superior results for most objects and performing
best on average. This difference becomes even larger for
purely region-based methods, with our algorithm perform-
ing best for almost all objects and sequences. Considering the
average success rate, our approach performs about five per-
centage points better than the combined method of Sun et al.
(2021), six percentage points better than Stoiber et al. (2020),
nine percentage points better than Li et al. (2021), and more
than 14 percentage points better than the next best, dense,
region-based approach by Zhong and Zhang (2019). The
superior tracking success compared to our previous approach
is especially interesting since the main differences are only
an extended smoothed step function and some changes with
respect to optimization. Also, in comparison to all other,
dense approaches, no advanced segmentation model is used,
which, in theory, is a significant disadvantage.

Table 2 Average runtimes per frame and usage of a GPU for state-
of-the-art approaches. Methods that are not purely region-based are
indicated by a �. For the occlusion modeling scenario, which considers
the tracking of two objects, values are shown in parenthesis

Approach No GPU Runtime

Tjaden et al. (2018) ✗ 15.5 ∼ 21.8ms

Zhong et al. (2020b) ✗ 41.2ms

Huang et al. (2020)� ✗ 33.1ms

Stoiber et al. (2020) ✓(✗) 1.0ms (7.4ms)

Liu et al. (2021)� ✗ 6.9ms

Li et al. (2021)� ✗ 32.1ms

Sun et al. (2021)� ✗ 40.0 ∼ 50.0ms

SRT3D (Ours) ✓(✗) 1.1ms (5.1ms)

In addition to tracking success, we also compare average
runtimes. A summary for the different algorithms is given in
Table 2. The evaluation of SRT3D and our previous method
was conducted on the same computer with an Intel Xeon E5-
1630 v4 CPU and a Nvidia Quadro P600 GPU. Because of
the similarities of the two approaches, we obtain a compara-
ble average runtime of 1.1ms for the case without occlusion
modeling and an improved average execution time of 5.1ms
for the modeled occlusion scenario. Note that in the case of
occlusion modeling, occlusion masks have to be rendered,
and the reported time is for the simultaneous tracking of two
objects. In comparison, except for the algorithm of Liu et al.
(2021), for which the execution time is six times higher, all
other methods report average runtimes that are more than
one order of magnitude larger. The difference is even more
impressive since SRT3D and our previous approach only
utilize a single CPU core and do not require a GPU. In con-
trast, most competing methods typically use multithreading
and heavily depend on a GPU. In conclusion, while differ-
ent resources and computers were used, the obtained results
highlight the superior efficiency of our sparse region-based
method.

5.2 OPT Dataset

While the semi-synthetic RBOT dataset features a large
number of objects, a difficult, highly cluttered background,
and perfect ground-truth, objects are simulated with limited
realism, and only very little motion blur is applied. Those
shortcomings are complemented by the OPT dataset (Wu
et al. 2017), which contains real-world recordings of 3D
printed objects on a white background with different speeds
and levels of motion blur. In total, the dataset includes six
objects and consists of 552 real-world sequences with vari-
ous lighting conditions and defined trajectories recorded by
a robot arm. An example image for each object is shown in
Fig. 12. The sequences are classified into the following cate-
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Fig. 12 Images from the OPT dataset (Wu et al. 2017), featuring the
soda, chest, ironman, house, bike, and jet object

gories: translation, forward and backward, in-plane rotation,
out-of-plane rotation, flashing light, moving light, and free
motion.

In the experiments, the metric of Wu et al. (2017) is used.
For this, we compute the average vertex error

ev(tk) = 1

n

n∑

i=1

∥∥(
M X̃̃X̃Xi − MTTTMgt(tk)M X̃̃X̃X i

)
3×1

∥∥
2, (44)

with ˜X i a vertex in the 3D mesh geometry of the object and
n the number of vertices. Tracking is considered successful
if ev(tk) < ked, where d is the object diameter computed
from the maximum vertex distance and ke is an error thresh-
old. The tracking quality for all frames is then measured
using an area under curve (AUC) score that integrates the per-
centage value of successfully tracked poses over the interval
ke ∈ [0, 0.2]. This results in AUC scores between zero and
twenty. For the tracker, the amplitude parameter αh = 0.42
and the slope parameter sh = 0.5 are used. Also, for the
rotationally symmetric soda object, a larger rotational regu-
larization parameter of λr = 500000 is adopted. The main
reason is that the object geometry of the soda object does not
constrain the rotation around the vertical axis. In such cases,
fluctuations in the gradient and Hessian can lead to drift in
the object’s orientation. Using more regularization allows us
to mitigate this problem.

Results for the experiments on theOPT dataset are shown
in Table 3. We thereby compare SRT3D to state-of-the-art
region-based tracking approaches, as well as an approach
from Bugaev et al. (2018) and prominent methods such as
PWP3D (Prisacariu and Reid 2012), ElasticFusion (Whelan
et al. 2015),UDP (Brachmann et al. 2016), andORB-SLAM2

(Mur-Artal and Tardós 2017). Note that not all algorithms are
dedicated 3D tracking solutions. UDP is a monocular pose
detection method, while ElasticFusion andORB-SLAM2 are
visual SLAM approaches for camera pose localization that
are applied to the silhouette of the object. For more informa-
tion on the evaluation of those algorithms, please refer toWu
et al. (2017).

The comparison shows that our approach performs signif-
icantly better than the current state of the art in region-based
tracking developed by Li et al. (2021), Zhong et al. (2020b)
and Tjaden et al. (2018), achieving higher AUC scores for
each of the six objects. Also, compared to none region-based
approaches,we are able to report the highest score for four out
of six objects and perform best on average. This is even more
remarkable since ORB-SLAM2, which reports better results
for the house object, uses gradient-based corner features. In
contrast to SRT3D, the algorithm is thus not constrained to
the contour but considers information over the entire silhou-
ette. Also, the edge-based algorithm of Bugaev et al. (2018),
which performs best for the jet object, uses basin-hopping
for global optimization, and, with an average reported run-
time of 683ms, is not real-time capable. In conclusion, the
obtained results demonstrate that the excellent performance
of SRT3D on simulated data translates well to applications
in the real world.

5.3 Parameter Analysis

Having evaluated the performance of our approach, we want
to foster our understanding of different parameter values.
For this, the average success rate for the RBOT dataset and
the average AUC score for the OPT dataset are plotted over
different parameter values. The plots are shown in Fig. 13.
Note that the success rate and AUC score are computed over
all objects and sequences. Except for the parameter that is
analyzed, the same settings as in Sects. 5.1 and 5.2 are used.

The evaluation of the amplitude parameter αh shows that
while it significantly influences the tracking success, the
effect on the AUC score is much smaller. Knowing that the
amplitude parameter models a constant level of noise, this
makes sense since theRBOT dataset features highly cluttered
images while theOPT dataset only contains a constant white
background. For the slope parameter sh, the highest tracking
success is observed for sh → 0, and the best AUC score is
obtained at sh = 0.5. Again, this is well explained by the the-
oretical interpretation according towhich the slope parameter
models local uncertainty. Given perfect information about
the object geometry for the semi-synthetic RBOT dataset,
we do not expect any local uncertainty. At the same time,
for the OPT dataset, with imperfectly 3D printed objects
and recorded real-world images, it is important that a larger
parameter is chosen that allows for a defined level of uncer-
tainty.
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Table 3 AUC scores between
zero and twenty for the
evaluation on the OPT dataset
(Wu et al. 2017), comparing our
approach to multiple other
algorithms. The best results are
highlighted in bold. The
second-best values are
underlined

Approach Soda Chest Ironman House Bike Jet Avg.

PWP3D 5.87 5.55 3.92 3.58 5.36 5.81 5.01

ElasticFusion 1.90 1.53 1.69 2.70 1.57 1.86 1.87

UDP 8.49 6.79 5.25 5.97 6.10 2.34 5.82

ORB-SLAM2 13.44 15.53 11.20 17.28 10.41 9.93 12.97

Bugaev et al. (2018) 14.85 14.97 14.71 14.48 12.55 17.17 14.79

Tjaden et al. (2018) 8.86 11.76 11.99 10.15 11.90 13.22 11.31

Zhong et al. (2020b) 9.01 12.24 11.21 13.61 12.83 15.44 12.39

Li et al. (2021) 9.00 14.92 13.44 13.60 12.85 10.64 12.41

SRT3D (Ours) 15.64 16.30 17.41 16.36 13.02 15.64 15.73

Fig. 13 Average tracking success for the RBOT dataset and average
AUC score for the OPT dataset over different values of the amplitude
parameter αh, slope parameter sh, step size αs, and the rotational and
translational regularization parameters λr and λt. For the evaluation of
the regularization parameters, we set λt = 100λr

Studying theplot of the step sizeαs,weobserve a relatively
large plateau around one, with maximum values at αs = 1.3
for both the tracking success and the AUC score. This sug-
gests a low dependency between the parameter and different
image data. Particularly interesting are also the results for
αs = 0. For this setting, no local optimization is consid-
ered, showing the capability of the global optimization alone.
The good results highlight the excellent performance of the
adopted global approximation.

Finally, for the evaluation of regularization, the rotational
and translational parameters are modified simultaneously. To
consider the different units of radians and meters, we define

λt = 100λr. Like in previous evaluations of the soda object,
we increase the rotational parameter and use λr = λt. The
resulting plot of the tracking success and the AUC score
demonstrates the high importance of regularization. If val-
ues are chosen too small, the optimization is unstable for
directions in which no or very little information is available.
At the same time, if parameters are too large, the optimiza-
tion is slowed down, and the final pose might not be reached.
It is thus important to find values that lie in between. In our
experience, a good approximation is to use regularization
parameters that are in the same order of magnitude as the
maximum rotational and translational diagonal elements of
the Hessian matrix.

In conclusion, the parameter analysis demonstrates that
theoretical interpretations from Sects. 2 to 3 correspond well
to experimental results. In addition to fostering our under-
standing, this explainability helps to guide the parameter
search for new applications. Moreover, the results in Fig. 13
demonstrate that all parameters are well-behaved, with large
plateaus around the maximum and no sudden jumps. This
has the advantage that parameters are easy to tune, with a
broad range of values achieving satisfying results.

5.4 Discussion

The conducted experiments demonstrate the excellent per-
formance of SRT3D. In the following, we want to discuss
design considerations that are essential in achieving those
results and shed some light on the remaining limitations of
the algorithm. With respect to computational efficiency, the
biggest performance gain is attributed to the correspondence
line model and the sparse nature of the method. In addition,
the sparse viewpoint model provides a highly efficient rep-
resentation, which requires only a simple search to obtain
the object contour for the current pose. Also, in contrast to
dense methods, it is not necessary to compute a 2D signed
distance function, but one can simply use the contour dis-
tance. Finally, the discrete scale-space formulation reduces
the amount of computation further by combining multiple
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pixels into segments and supporting the use of precomputed
smoothed step functions.

For the quality of the pose estimate, multiple aspects
have to be considered. The first important factor is the use
of smoothed step functions that provide a realistic model-
ing of local and global uncertainty. Consequently, this leads
to reliable posterior probability distributions. Also, due to
the one-dimensionality of correspondence lines and the dis-
crete scale-space implementation, we are able to sample
values over posterior probability distributions in reasonable
time. This allows us to calculate the mean and the vari-
ance. Both estimates constitute the basis for fast-converging
global optimization that is independent of local minima.
In addition, knowledge about the uncertainty of individual
correspondence lines is also used for local optimization,
where numerical first-order derivatives are weighted accord-
ing to the inverse variance. Finally, Tikhonov regularization
is another important factor, which helps to constrain the
estimate with respect to the previous pose, stabilizing the
optimization for directions in which no or very little infor-
mation is available.

While the described algorithmachieves remarkable results
and works very well in a wide variety of applications, some
challenges remain. The main limitations are thereby very
similar to other region-basedmethods. The biggest constraint
is that objects have to be rigid and that an accurate 3D model
has to be known. Also, the background has to be distinguish-
able from the object. If large areas in the background contain
colors that are also present in the object, the final result might
be perturbed. Another challenge comes from ambiguities
where the object silhouette is very similar in the vicinity
of a particular pose. Naturally, in such cases, there is not
enough information, and it is impossible for the algorithm to
converge towards the correct pose. Also, like most tracking
approaches, the algorithm can only be used for local opti-
mization with a limit to the maximum pose difference from
one frame to the next. Finally, if large parts of the object are
occluded, the visible part of the contour might not fully con-
strain the pose of the object, leading to erroneous estimates.
To illustrate all the described failure cases,weprovide a video
on our project site3.

6 Conclusion

In this work, we proposed SRT3D, a highly efficient, sparse
approach to region-based 3D object tracking that uses cor-
respondence lines to find the pose that best explains the
segmentation of the image. In addition to a thorough mathe-
matical derivation of correspondence lines, a big contribution
of this work is the development of smoothed step functions

3 https://rmc.dlr.de/rm/staff/manuel.stoiber/ijcv2021.

that allow the modeling of both local and global uncertainty.
The effects of this modeling were analyzed in detail with
respect to both theoretical posterior probability distributions
and the quality of the final tracking result. For the maxi-
mization of the pose-dependent joint posterior probability,
we proposed the use of an initial, global optimization towards
the mean and a consecutive, local optimization that consid-
ers discrete distribution values. We also developed a novel
approximation for the local first-order derivative that weights
the finite difference value with the inverse variance. Finally,
in multiple experiments on the RBOT and the OPT dataset,
we demonstrated that our algorithm outperforms the current
state of the art in region-based tracking by a considerable
margin both in terms of quality and efficiency.

Thanks to this superior performance, we are confident that
our approach is useful to a wide range of applications in
robotics and augmented reality. Because of its general formu-
lation, it is easy to conceive ideas that extend themethod.One
possible direction would be to include other developments in
region-based tracking, such as advanced segmentation mod-
els or occlusion detection. Also, it might be useful to consider
additional information, like depth or texture. Finally,wewant
to highlight that the developed correspondence line model is
not limited to the context of 3D tracking but might also be
useful to other applications. One possible example is image
segmentation. Other methods might thereby show similar
progress in terms of quality and efficiency, improving their
applicability to the real world.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A Extended Probabilistic Model

In the following, we establish the relation between the
smoothed step functions proposed in Sect. 2.4 and an
extended probabilistic model with m ∈ {mf,mb,mn}. For
the derivation, we start from an extended definition of the
pixel-wise posterior probability

p (mi | y)= p ( y | mi ) p (mi )∑
j∈{f,b,n} p

(
y | m j

)
p(m j )

, i ∈{f, b, n} , (45)
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where, in contrast to Eq. (4), a noise model mn is consid-
ered in addition to the foreground and background model.
Using the parameter αh ∈ [0, 0.5], the model probabilities
are defined as

p (mf) = p(mb) = αh, (46)

p (mn) = 1 − 2αh. (47)

For the conditional color probability given the noise model,
the conditional probabilities with respect to the foreground
and background are combined as follows

p ( y | mn) = 1

2
(p (y | mf) + p ( y | mb)) . (48)

Introducing thedefinitions fromEqs. (46) to (48) intoEq. (45)
and performing some simplifications results in the follow-
ing pixel-wise posterior probabilities for the foreground and
background model

p (mi | y) = 2αh p ( y | mi )

p ( y | mf) + p ( y | mb)
, i ∈ {f, b} . (49)

Also, we obtain the following constant pixel-wise posterior
probability for the noise model

p (mn | y) = p (mn) = 1 − 2αh. (50)

Based on Eq. (6), the extended posterior probability can
be calculated as follows

p (d | r , y) ∝
∑

i∈{f,b,n}
p (r | d,mi ) p (mi | y) . (51)

To abbreviate some of the terms in Eq. (49), the following
definition of pixel-wise posterior probabilities from Eq. (5)
is introduced

pi (r) = p( y | mi )

p( y | mf) + p( y | mb)
, i ∈ {f, b}. (52)

We then use the derived pixel-wise posterior probabilities
from Eqs. (49) to (50) together with the abbreviation from
Eq. (52) to write the posterior probability in Eq. (51) as fol-
lows

p (d | r , y) ∝ 2αhhf(r − d)pf(r)

+ 2αhhb(r − d)pb(r) + 1

2
(1 − 2αh) ,

(53)

where a constant probability p(r | d,mn) = 1
2 was used

to model the indifference of the line coordinate r given the
noise model mn, and where the smoothed step functions hf
and hb model the line coordinate probabilities p(r | d,mf)

and p(r | d,mb). For the extension of Eq. (53), we apply the
following definitions

hf(x) = 1

2
− f (x), (54)

hb(x) = 1

2
+ f (x), (55)

and the identity

pf(r) + pb(r) = 1, (56)

to write

p(d | r , y) ∝ αh pf(r) − 2αh f (r − d)pf(r)

+ αh pb(r) + 2αh f (r − d)pb(r)

+ 1

2

(
pf(r) + pb(r)

) − αh
(
pf(r) + pb(r)

)
.

(57)

This can then be simplified to

p(d | r , y) ∝
(
1

2
− 2αh f (r − d)

)
pf(r)

+
(
1

2
+ 2αh f (r − d)

)
pb(r).

(58)

Finally, after introducing the slope function
f (x) = 1

2 tanh
( x
2sh

)
of Stoiber et al. (2020), we obtain

p(d | r , y) ∝
(
1

2
− αh tanh

(
r − d

2sh

))
pf(r)

+
(
1

2
+ αh tanh

(
r − d

2sh

))
pb(r).

(59)

This is the same probability function as the one derived in
Sect. 2.4. Note, however, that in Sect. 2.4 the smoothed step
functions hf and hb from Eqs. (12) to (13) were used instead
of a noise model mn to take into account a defined con-
stant uncertainty. In conclusion, this shows that extending the
probabilisticmodelwith a noisemodelmn and using the fore-
ground and background probabilities p(mf) = p(mb) = αh

is equivalent to the introduction of a simple amplitude param-
eter αh into the smoothed step functions.

Appendix B Derivative of Log-Posterior

To analyze the posterior probability distribution, it is desir-
able to have a closed-form solution that allows an easy
interpretation. In the following, we will thus derive a general
formulation for the first-order derivative of the log-posterior,
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which will then be used in Appendix C to calculate the
posterior probability distribution for specific parameter con-
figurations. Note that the derivation is similar to the proof
of Gaussian equivalence developed in our previous work
(Stoiber et al. 2020).

For the derivation, we assume a contour at the line center
and perfect step functions for the pixel-wise posterior prob-
abilities defined by

pf(r) = 1

2
− 1

2
sgn(r), (60)

pb(r) = 1

2
+ 1

2
sgn(r). (61)

Also, we consider infinitesimally small pixels and write the
posterior probability distribution fromEq. (14) in continuous
form for an infinite correspondence line

p(d | ω, l) ∝
∞∏

r=−∞

(
hf(r − d)pf(r) + hb(r − d)pb(r)

)dr
.

(62)

Starting from those assumptions, we first convert the prod-
uct integral to the classical Riemann integral

p(d | ω, l) ∝ exp

(∫ ∞

r=−∞
ln

(
hf(r − d)pf(r)

+ hb(r − d)pb(r)
)
dr

)
.

(63)

The integral is then split at r = 0, and the pixel-wise posterior
probabilities from Eqs. (60) to (61) are introduced

p(d | ω, l) ∝ exp

(∫ 0

r=−∞
ln

(
hf(r − d)

)
dr

+
∫ ∞

r=0
ln

(
hb(r − d)

)
dr

)
.

(64)

Finally, we substitute x = r − d to write

p(d | ω, l) ∝ exp

(∫ −d

r=−∞
ln

(
hf(x)

)
dx

+
∫ ∞

r=−d
ln

(
hb(x)

)
dx

)
.

(65)

The first-order derivative with respect to d of the log-
posterior can now be calculated using Leibniz’s rule for
differentiation under the integral

∂ ln
(
p(d | ω, l)

)

∂d
= − ln

(
hf(−d)

) + ln
(
hb(−d)

)
. (66)

We then adopt the definitions of the smoothed step functions
from Eqs. (12) to (13) to write

∂ ln
(
p(d | ω, l)

)

∂d
= − ln

(
1

2
− αh tanh

(−d

2sh

))

+ ln

(
1

2
+ αh tanh

(−d

2sh

))
.

(67)

Finally, using the inverse hyperbolic tangent

2 tanh−1(x) = − ln

(
1

2
− x

2

)
+ ln

(
1

2
+ x

2

)
, (68)

one is able to write the following closed-form expression for
the first-order derivative of the log-posterior

∂ ln
(
p(d | ω, l)

)

∂d
= −2 tanh−1

(
2αh tanh

(
d

2sh

))
. (69)

Appendix C Closed-Form Posteriors

Building on Appendix B, we derive closed-form posterior
probability distributions for the two edge caseswith either the
amplitude parameter αh = 1

2 or the slope parameter sh → 0.
We thereby start from the closed-formfirst-order derivative of
the log-posterior that is given inEq. (69). The full distribution
can then be calculated using integration with a subsequent
normalization

p(d | ω, l) ∝ exp

(∫
∂ ln

(
p(d | ω, l)

)

∂d
dd

)
. (70)

For the case with an amplitude parameter αh = 1
2 , the

first-order derivative in Eq. (69) simplifies to

∂ ln
(
p(d | ω, l)

)

∂d
= − d

sh
. (71)

Introducing this term in Eq. (70) and calculating the integral
leads to the following expression for the posterior probability
distribution

p(d | ω, l) ∝ exp

(
− d2

2sh

)
. (72)

Because the posterior probability distribution has to be a
valid probability density function (PDF) that integrates to
one, there is only one possible solution. Knowing that, except
for a constant scaling factor, the function looks like a Gaus-
sian distribution, the final solution can only be the Gaussian
distribution itself

p(d | ω, l) = 1√
2πsh

exp

(
− d2

2sh

)
. (73)
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For configurations with a slope parameter sh → 0, the
first-order derivative in Eq. (69) simplifies to

∂ ln
(
p(d | ω, l)

)

∂d
= −2 tanh−1(2αh) sgn(d). (74)

Introducing this term in Eq. (70) and calculating the inte-
gral leads to the following closed-form posterior probability
distribution

p(d | ω, l) ∝ exp
( − 2 tanh−1(2αh)|d|). (75)

Similar to the previous derivation, we know that, with the
exception of a constant scaling factor, the function is equal
to a Laplace distribution, which again is a valid PDF. Intro-
ducing the scale parameter b, the final solution can thus only
be the Laplace distribution itself

p(d | ω, l) = 1

2b
exp

(
− |d|

b

)
, b = 1

2 tanh−1(2αh)
.

(76)

Appendix D Inverse-VarianceWeighting

In the following, we demonstrate that the derivatives for
the local optimization that were defined in Sect. 3.5 can be
derived using inverse-variance weighting and a constant cur-
vature of 1

αs
for the second-order derivative. Instead of the

joint posterior probability defined in Eq. (29), we start with
an energy function that combines probabilities from individ-
ual correspondence lines using inverse-variance weighting

E(θ) =
nc∑

i=1

1

σ 2
i

ln
(
p(dsi (θ) | ωsi , lsi )

)
. (77)

Based on this function, the gradient vector and the Hessian
matrix are calculated as the first- and second-order derivative
with respect to θ

g� =
nc∑

i=1

1

σ 2
i

∂ ln
(
p(dsi | ωsi , lsi )

)

∂dsi

∂dsi
∂θ

∣∣∣
∣
θ=0

, (78)

H ≈
nc∑

i=1

1

σ 2
i

∂2 ln
(
p(dsi | ωsi , lsi )

)

∂dsi 2

(
∂dsi
∂θ

)�(
∂dsi
∂θ

) ∣∣∣∣
θ=0

.

(79)

For the first-order derivative of the scaled contour distance
dsi , the derivations from Eqs. (36) to (37) can be used. In
contrast to Eq. (40), we use the definition of finite differ-
ences without a weighting term to calculate the first-order

derivative of the log-posterior

∂ ln
(
p(dsi | ωsi , lsi )

)

∂dsi
≈ ln

(
p(d+

si | ωsi , lsi )

p(d−
si | ωsi , lsi )

)
, (80)

where d−
si and d

+
si are again the two discrete contour distances

that are closest to dsi (θ). Because the variance is already con-
sidered in the energy function, we simply define a constant
curvature for the second-order derivative of the log-posterior

∂2 ln
(
p(dsi | ωsi , lsi )

)

∂dsi 2
≈ 1

αs
. (81)

Knowing that constant scaling terms do not affect the New-
ton optimization, both the gradient vector and the Hessian
matrix can be multiplied with the step size αs. Together with
the inverse variance 1

σ 2
i
that is already present in Eq. (78) and

(79), this results in exactly the same expressions for the gra-
dient vector and the Hessian matrix as defined in Sect. 3.5.
In conclusion, the derivation thus shows that weighting the
first-order derivative in Eq. (40) with a factor αs

σ 2
i
is the same

as using inverse-variance weighting and a constant curvature
of 1

αs
for the second-order derivative.
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