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Abstract
A 3D scene is more than the geometry and classes of the objects it comprises. An essential aspect beyond object-level
perception is the scene context, described as a dense semantic network of interconnected nodes. Scene graphs have become a
common representation to encode the semantic richness of images, where nodes in the graph are object entities connected by
edges, so-called relationships. Such graphs have been shown to be useful in achieving state-of-the-art performance in image
captioning, visual question answering and image generation or editing. While scene graph prediction methods so far focused
on images, we propose instead a novel neural network architecture for 3D data, where the aim is to learn to regress semantic
graphs from a given 3D scene. With this work, we go beyond object-level perception, by exploring relations between object
entities. Our method learns instance embeddings alongside a scene segmentation and is able to predict semantics for object
nodes and edges. We leverage 3DSSG, a large scale dataset based on 3RScan that features scene graphs of changing 3D
scenes. Finally, we show the effectiveness of graphs as an intermediate representation on a retrieval task.

Keywords Scene graphs · 3D scene understanding · Semantic segmentation

1 Introduction

Rapid progress has been made in digitizing the real world
in 3D with data obtained from cameras, scanners and depth
sensors. Advanced 3D reconstruction algorithms paired with
recent 3D sensor technology are able to robustly scan com-
plex environments. Naturally, the focus of the research
community shifted from capturing basic geometric proper-
ties towards extracting more abstract scene representations,
motivated by the wealth of applications that require such
high-level understanding. The fields of applications range
from robotics in unstructured environments and autonomous
driving, Augmented and Mixed Reality for gaming or edu-
cation, to generating scene layouts for interior design and
architecture. Understanding the 3D surroundings to a degree
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that allows autonomous interaction or sophisticated augmen-
tation requires to robustly extract semantic details, such as
scene parts and objects, together with their geometry and
attributes (e.g., pose), as well as with the relationships among
each other. This aspect has been often overlooked due to its
inherent complexity.

The research community recently focused on a variety
of perception tasks, including 3D object detection (Zhou and
Tuzel 2017) and recognition (Su et al. 2015; Song et al. 2015),
instance segmentation (Hou et al. 2018; Lahoud et al. 2019;
Thomas et al. 2019; Yi et al. 2019), 3D shape prediction
(Najibi et al. 2020) as well as classification and semantic seg-
mentation (Rosinol et al. 2020a; Qi et al. 2017a, b; Dai and
Nießner 2018; Rethage et al. 2018; Liu et al. 2020). While
these methods have the objective of obtaining object knowl-
edge, contextual data is mainly used to advance object-level
understanding and the semantics of the relationships them-
selves aremostly neglected.Adirectionworth noting here are
methods that either estimate scene layouts or performholistic
scene parsing (Huang et al. 2018;Nie et al. 2020). Rather than
focusing on the semantic aspects, they estimate the geometric
properties of the environment aswell as the individual pose of
the scene entities. Scene graphs are abstract representations
that store the semantics of a scene, where the graph nodes are
scene entities and their connections are meaningful relation-
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Fig. 1 Scene Graph Prediction:Given the 3D model of a scene (left),
we leverage a 3D network to learn semantics and instance embeddings
(center) that encode the points in the scene. We then infer a scene graph

G by feeding these features into a graph prediction module that predicts
class labels for instances and edges (right)

ships between them e.g. support relations (Nathan Silberman
Derek Hoiem and Fergus 2012). Such a representation is fre-
quently used in the image domain for higher-level task such
as partial (Wang et al. 2014) and full image retrieval (Johnson
et al. 2015), image generation (Johnson et al. 2018) or even
manipulation (Mittal et al. 2019; Dhamo et al. 2020). While
2D scene graph datasets such as Visual Genome (Krishna
et al. 2017) or NYUv2 (Nathan Silberman Derek Hoiem and
Fergus 2012) are widely available and feature relationships
between scene instances and often instance attributes, scene
graphs in 3D have not been explored much.

Although, 3D graphs have been used in computer graphics
for decades to store 3D mesh data, the respective edges usu-
ally do not represent semantic connections but rather relative
transformations such that when a parent node is relocated,
the change is applied in a hierarchical fashion to all child
nodes. Only recently, semantic scene graphs have started to
emerge in the 3D context (Gay et al. 2018; Armeni et al.
2019; Rosinol et al. 2020b). Armeni et al. construct graphs
for buildings, including rooms, major objects, camera views
and the relations between these entities (Armeni et al. 2019).
Rosinol et al. (2020b) incorporates dynamics to this repre-
sentation by additionally considering moving humans. Both
(Armeni et al. 2019) and (Gay et al. 2018) propose multi-
view graph prediction methods based on 2D masks (Armeni
et al. 2019) and object detection networks (Gay et al. 2018).
They estimate graphs from images while we operate on 3D
data directly.

In this work, we explore semantically rich 3D graphs
similarly to what has been successfully proposed and imple-
mented in the image domain. We introduce a novel method
based on sparse convolutions to predict 3D scene graphs from
3D data directly to ultimately gain high-level knowledge that
goes beyond object understanding. Our method learns an

instance embedding alongside semantic segmentation and
is capable of predicting the class labels of both object nodes
and edges by directly feeding the scene features into a graph
prediction module, see Fig. 1. Notably, our network does not
require any knowledge of the scene e.g. any segmentation
at test time. For training and evaluation purposes, we utilize
3DSSG, a large-scale dataset based on 3RScan that features
rich scene graphs of changing 3D scenes. 3DSSG describes
the semantics of scene entities and their attributes as nodes
and relationships as edges. For research purposes, the dataset
is publicly available for download.1 Furthermore, we open
source our scene graph prediction method.

The scene graphs in this work are semantically rich and
particularly dense. This implies that all object instances e.g.
chairs, sofas or bags as well as the structural components of
a room e.g. the floor, different walls or the ceiling are rep-
resented as independent nodes in the graph. For structures,
this specifically means, that each planar entity is represented
as a different instance in the scene. A regular room, see
Fig. 4, consists of 1 floor and 4 walls while a multi-floor
scan has at least two floor instances and several walls. The
nodes are described by attributes such as the color, shape or
affordances and the connections between them are seman-
tically meaningful relationships e.g. lying on, same as, see
Fig. 2. Notably, this scene graph representation is inspired
by the image graphs proposed by Johnson et al. (2015). In
contrast to images, the dimensionality and context of 3D
data is quite comprehensive, resulting in large-scale scene
graphs. Despite – or because of – this, we believe graphs are
particularly suited for 3D since they are a human-readable,
compact representation that includes all major scene infor-
mation. However, to learn scene graphs from 3D data turns

1 https://3DSSG.github.io
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Fig. 2 Scene Graph Representation in 3DSSG consists of hierarchical class labels and attributes of scene nodes as well as semantic relationship
between them. A scene graph tuple connects a subject with an object node with a predicate

out to be quite challenging since it requires not only handling
real world data with noise but also ambiguities in the node
and relationship descriptions. This includes various scanning
patterns and clutter as well as data labels that might not be
unique and distinctive. The surface of a blanket that covers
a tidy bed is technically also part of it and might sometimes
even be labelled as such. Actually, the fact that the blan-
ket in Fig. 2 is lying on the couch gives us a hint about its
class while it might be identified as towel if found in a bath-
room. On the other side, a set of chairs that lookalike could
drastically vary in appearance if occluded and their neigh-
borhood and connections differ depending on where they are
positioned. We believe graphs can be particularly beneficial
in changing indoor scenes e.g. when matching a single 2D
image against a pool of 3D scenes taken at a different time
possible including lighting and object changes such as rigid
and non-rigid changes and even (dis-)appearance of scene
entities. We demonstrate how they are effectively used as
an intermediate representation when computing scene sim-
ilarity. Furthermore, our experiments show how they are
fundamentally resilient to dynamic environments.

In summary, our contributions are three-fold: a) we pro-
pose an embedding based method to learn semantic scene
graphs froma raw3Dpoint cloud. b)We further publish scene
graphs for the localization benchmark RIO10 complemen-
tary to the large scale 3D scene graph dataset, 3DSSG (Wald
et al. 2020a)2. The datasets are an extension of RIO10 Wald
et al. 2020b and 3RScan (Wald et al. 2019) and include graph
annotations in form of relationships, instance attributes and
class label hierarchies for each instance. c) We finally show
the effectiveness of such graphs in a retrieval application.
Compared to our previous publication (Wald et al. 2020a)
we propose a new method that can predict 3D scene graphs

2 https://waldjohannau.github.io/RIOSG

from 3D scenes directly, not requiring any prior knowledge
such as segmentationmasks.While (Wald et al. 2020a) uses a
PointNet backbone to encode objects and relationships based
on the segmented point cloud we utilize a 3D backbone
architecture based on sparse convolutions. We incorporate
surface normals and color to learn semantic features and an
embedding space for node segmentation. While (Wald et al.
2020a) assumes a ground truth class-agnostic segmentation,
we initialize graph nodes with segmented clusters making
the method applicable in real-world setups.

2 RelatedWork

Semantic SceneGraphs and Images Scene graphswere origi-
nally introduced by Johnson et al. (2015) with a novel dataset
of 5, 000 images and are today, also thanks to the success of
Visual Genome (Krishna et al. 2017), a common, compact
representation for many scene understanding tasks. By def-
inition, the scene entities are grounded to different regions
of the image and, while Visual Genome is quite large, the
edges that describe the connections between nodes are rather
sparse.On top, attributes highlight the properties of the object
in more detail but are rarely used in practice. The effective-
ness of scene graphs has been demonstrated when solving
different scene understanding tasks including image retrieval
(Liu et al. 2007; Johnson et al. 2015), scene captioning
(Yang et al. 2019), visual question answering (Teney et al.
2017) or image generation from graphs alone (Johnson et al.
2018), interactively (Ashual and Wolf 2019) or for image
editing tasks (Mittal et al. 2019; Dhamo et al. 2020). Many
of these methods either rely, or build upon, image-based
scene graph prediction, a particularly well studied problem
(Lu et al. 2016a; Peyre et al. 2017; Xu et al. 2017; Newell
and Deng 2017; Li et al. 2017; Yang et al. 2018; Zellers
et al. 2018; Li et al. 2018c; Herzig et al. 2018; Qi et al.

123

https://waldjohannau.github.io/RIOSG


International Journal of Computer Vision (2022) 130:630–651 633

2019; Zareian et al. 2020). Classical approaches usually fol-
low a multi-stage process: first, nodes are initialized with
an off-the-shelf object detector, such as Faster R-CNN (Ren
et al. 2015). In the second stage, the predicates are predicted
based on object proposals. This stage is commonly designed
as a predicate/relationship classification task that takes fea-
tures of the entities as input. The features for the nodes and
edges are either low-level features e.g. the bounding box and
their relative configuration, directly extracted from a CNN
(Xu et al. 2017; Yang et al. 2018) or a combination of these
(Peyre et al. 2017). Lu et al. (2016a) and Qi et al. (2019) go
beyond visual features and incorporate linguistic knowledge
by leveraging language priors when predicting relationships.
To improve efficiency, Yang et al. (2018) prune relationships
and only keepmeaningful tuples before computing the predi-
cates. Li et al. (2018c) instead propose a bottom-up clustering
method to factorize the scene into sub-graphs while main-
taining spatial information. Relationship predictions – often
simply termed visual relationship detection (Lu et al. 2016a;
Peyre et al. 2017) – is commonly implemented as a local
process and computed independently for object pairs.

Recently, some methods build a graph to iteratively refine
the edge and/or node features e.g. using attentional graph
neural networks (Yang et al. 2018; Qi et al. 2019) or mes-
sage passingwith a recurrent neural network (Xu et al. 2017).
Similarly, in Li et al. (2017), parallel and sequential message
passing is used for information propagation among objects
and relationships, while other works demonstrate the impor-
tance of permutation invariance (Herzig et al. 2018), suggest
embedding based architectures (Newell and Deng 2017) or a
graphical contrastive loss (Zhang et al. 2019). Contrarily to
all the above, (Zareian et al. 2020) propose to learn how to
bridge scene graphs and knowledge graphs by means of an
iterative graph-based neural network.

Notably, datasets such as Visual Genome (Krishna et al.
2017) or Visual Relationship Detection (VRD) (Lu et al.
2016a) offer scene graphs for a fairly large amount of images,
enabling the implementation and evaluation of the aforemen-
tioned methods. Many leverage deep learning and therefore
require large quantities of training data. Even though impres-
sive progress has been made in the image domain in the
last few years, scene graph prediction is still considered a
challenging task, due to the complexity and interdependence
of object detection and relationship/predicate prediction.
Besides the lack of a large-scale 3D graph dataset, many
of the presented concepts are not directly transferable to 3D
due to the complexity and memory restrictions when using
higher dimensional data.
Learning 3D Semantics and Instances 3D scene under-
standing involves the extraction of knowledge from 3D
environments, including its objects and structure, their cate-
gories and spatial and semantic relationships with each other.
One of themost common 3D scene understanding tasks is 3D

semantic segmentation where a single label from a fixed set
of classes is assigned to each voxel or point of the 3D scene.
Early methods process the dense volumetric data directly in
form of occupancy grids or TSDF volumes (Dai et al. 2017).
Dai and Nießner (2018) show that incorporating multi-view
features is beneficial while Huang et al. utilize the textured
3D mesh directly (Huang et al. 2019). More recently, Kundu
et al. (2020) has proposed a virtual multi-view fusion tech-
nique that – compared to previous approaches – achieves
significantly improved segmentation accuracy.

Another popular line of research has focused on light-
weight point network architectures (Qi et al. 2017a; Li
et al. 2018b) while incorporating hierarchical context (Qi
et al. 2017b; Engelmann et al. 2017), hybrid architectures
(Rethage et al. 2018), 3D capsule networks (Zhao et al. 2019)
and efficient 3D sparse convolutions (Graham et al. 2018;
Choy et al. 2019), which enable effective processing of large
scale 3D data. Notably, these methods are among the state
of the art on challenging benchmarks (Dai et al. 2017). We
utilize the sparse convolutions proposed by (Graham et al.
2018) as backbone features of our method.

It is important to note that semantic segmentation alone
does not enable reasoning about object instances. In contrast,
3D instance segmentation focuses on foreground objects,
where, additionally to the semantic label, instance masks
are computed. Instance segmentation methods can roughly
be categorised into bottom-up and top-down approaches,
where in the latter proposals are generated from the input
data. These proposals are often filtered e.g. via NMS
(non-maximum suppression) and are leveraged to compute
bounding boxes and/or 3D masks. Hou et al. suggest a
proposal-based instance segmentation, similar to 2D Mask
R-CNN (He et al. 2017), that contrarily uses dense, volu-
metric 3D data paired with multi-view features (Hou et al.
2018). VoteNet, on the other hand, directly predicts the center
of the object bounding boxes via a novel voting scheme (Qi
et al. 2019). Alternatively, proposal-free methods were sug-
gested (Lahoud et al. 2019;Han et al. 2020; Jiang et al. 2020),
which use metric learning to generate embeddings that are
trained to be similar on points/voxels of the same instance
and different for other instances. For his purpose, multi-task
learning (Lahoud et al. 2019) or an occupancy loss (Han
et al. 2020) were proposed. Given rich instance embeddings,
instances are obtained by clustering similar features. Point-
Group (Jiang et al. 2020) proposes an improved grouping
scheme while 3D-MPA (Engelmann et al. 2020) combines
bottom-up and top-down approaches by learning object cen-
ters that are grouped via a graph neural network, avoiding
the classical NMS.

Notably, instance segmentation methods usually ignore
background elements such as walls and the floor. While in
panoptic segmentation (Kirillov et al. 2019; Narita et al.
2019) walls are segmented, but are still not recognized as
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instances. In contrast to aforementioned works we include
those structural entities since they are required to identify
the majority of support relationships e.g. a picture that hangs
on a particular wall plane.

3DObject Context and Scene LayoutTheworks discussed so
far are mostly object-focused and incorporate context only to
improve overall segmentation performance. On the contrary,
holistic scene understanding perceives scenes as a whole by
combining several related tasks, such as the prediction of
scene layout (Song et al. 2015; Avetisyan et al. 2020), camera
pose (Huang et al. 2018) or object pose and shape or recon-
struction (Nie et al. 2020; Najibi et al. 2020). To parse a 3D
scene, different representations have been proposed includ-
ing stochastic grammars (Zhao et al. 2011; Liu et al. 2014),
dependency graphs or tree structures where, by definition,
leave nodes are independent scene entities (or object parts)
and intermediate parent nodes represent functional entities
(Liu et al. 2014). Zhao et al. (2011) use a stochastic grammar
with three production rules: AND, OR and SET to model the
scene layout, detected objects, planes and the background.
Scene synthesis methods that aim to generate realistic scene
models and layouts incorporate knowledge about an objects’
context and the scene composition either directly or indi-
rectly (Jiang et al. 2018; Shi et al. 2019). Jiang et al. (2018)
describe a configurable 3D scene synthesis pipeline based
on stochastic grammars, so-called spatial and-or graphs.
GRAINS Li et al. (2018a) combine a recursive VAE with
object retrieval to iteratively generate a layout and objects.
Shi et al. (2019) also suggests an iterative approach based
on a novel variational recursive autoencoder. Kulkarni et al.
(2019) on the other hand, create a 3D scene given a 2D
image. They show that predicting relative transformations
between objects improves their pose predictions compared
to a neighbourhood-independent computation. Fisher et al.
(2011) use kernel functions to compare and retrieve similar
3D scenes by incorporating relationships such as support and
proximity. Similarly, Ma et al. (2018) parse natural language
into graphs and retrieve 3D scenes that fulfill requested com-
positions.

Graph structures have also been used for object under-
standing. In such a setup, different nodes represent different
object parts of e.g. a chair, such as chair leg or backrest.
Te et al. (2018) solve semantic part segmentation by using
a graph neural network. StructureNet (Mo et al. 2019) goes
even further and represent a shape as a hierarchical graph of
embeddings where each object is a latent graph of its com-
posing parts to ultimately be able to sample and interpolate
aiming to generate new, novel shapes. They however learn a
graph for each object category and their utilized relationships
are restricted to relative transformations and known physical
connections.

Only a few works have explored scene graphs in 3D. Gay
et al. (2018) propose a 2.5D graph dataset based on ScanNet
(Dai et al. 2017), Armeni et al. (2019), on the other hand,
suggest hierarchical 3D scene graphs. They split the differ-
ent components of a scene into 4 different layers: cameras,
objects, buildings and rooms. Rosinol et al. (2020b) propose
an additional dynamic layer to model humans. Armeni et al.
(2019) does not include RGB-D sequences, and more impor-
tantly, structural components such as walls or floors are not
included in their graphs and they therefore lack some inter-
instance relationships such as support. A comparison of these
– as well as related 2D datasets (Johnson et al. 2015; Krishna
et al. 2017;NathanSilbermanDerekHoiemandFergus 2012)
– is given in Table 1.

Additionally to the data, Armeni et al. (2019) and Gay
et al. (2018) propose graph prediction methods. Armeni et al.
(2019) sample images from a panoramic camera and apply
a regularization technique to 2D mask predictions aiming to
obtain improved 3D object nodes. Gay et al. (2018) on the
other hand, feed object features extracted from a continu-
ous image sequence into a recurrent neural network. They
operate in 2.5D on a static setup while 3RScan (Wald et al.
2019) has dynamically changing scenes which enables new,
challenging tasks such as the newly introduced 2D-3D scene
retrieval.

In our previous publication, Wald et al. (2020a), we pro-
posed a meth-od to predict 3D scene graphs by incorporating
the ground truth (class-agnostic) segmentation. In this work,
we remove this assumption and operate on the raw point
cloud directly. We use a 3D network on the full scene and
extract object-level features from point features instead of
parsing each ground truth object one by one. This makes our
methodmore scalable, especially on dense graphs. In contrast
toWald et al. (2020a), where only scene graphs are predicted,
ourmethod additionally estimates 3D semantic and node seg-
mentation and does not require any prior knowledge about
the scene, therefore it is directly applicable in real-world sce-
narios.

3D Scene RetrievalVisual retrieval has a long history in com-
puter vision, and is often embedded in other tasks such as
object detection, object or scene alignment or camera pose
estimation (Gálvez-López and Tardós 2011; Torii et al. 2015;
Glocker et al. 2015; Anoosheh et al. 2019; Arandjelović
et al. 2016; Deng et al. 2016; Lu et al. 2016b). Retrieving
a source given some query data becomes most challenging
when they do not share the same domain (Dahnert et al. 2019;
Abdul-Rashid et al. 2018, 2019; Avetisyan et al. 2019, 2020)
including natural scene changes (Wald et al. 2020b, 2019).
An extensive literature exists on retrieval of CAD models
given an image (Izadinia et al. 2017; Sun et al. 2018) or a
3D scene (Avetisyan et al. 2019, 2020). Reviewing the full
literature goes beyond the scope of this paper. To motive the
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usage and suitability of our 3D graphs in high-level tasks we
use them as an intermediate representation for 2D-3D scene
retrieval of changing indoor scenes.

3 3D Semantic Scene Graphs

Themethod proposed in this work is trained and evaluated on
3DSSG which is based on 3RScan (Wald et al. 2019), a col-
lection of every day 3D indoor scenes with 1482 sequences
with semantically segmented 3D models. It features approx-
imately 450 unique, diverse indoor environments, captured
over a long period of time with change annotations (Wald
et al. 2019). Unlike any other dataset, this allows reasoning
about object instances and their changes but also about their
relationships. Besides the full scene graphs, a smaller dataset
that features a subset of objects and predicates is also made
available.3 Additionally to 3DSSG that has been released in
Wald et al. (2020a)we also provide 2D semantic scene graphs
for the camera re-localization benchmark,RIO10 (Wald et al.
2020b). In summary, we offer (a) scene graphs, (b) RGB-D
sequences with camera poses and intrinsics, (c) textured 3D
models with point coordinates and surface normals {pi }Ni=1
where pi = (x, y, z, nx , ny, nz) ∈ R

6, and an instance-level
semantic segmentation defined as {li }Ni=1 where li describes
the label of pi . Finally, the data provides d) change anno-
tations such as scene and object alignments and bounding
boxes.

Formally, semantic scene graphs G are defined by a set
of nodes N with attributes A and edge triplets G = (N , E).
The nodesN = {ni }Li=1, are consistent across re-scans of the
same environment and correspond to the instance IDs in {li }.
Specifically, each node ni is described by a set of properties
A, as well as by a hierarchy of classes c = (c1, ..., cd),
where c ∈ C and C is a set of all valid class labels. Given
the 3D instance segmentation, 3D geometry and depth can be
obtained for each node. Some of the nodes are connected by
means of edges based a set of predicates P such as standing
on, hanging on or more comfortable than. We define E ⊆
N × P × N where a relationship tuple, subject-predicate-
object (ns, p, no) ∈ E (see Fig. 2), directionally connects a
subject node ns ∈ N to an object node no ∈ N such that

E ⊆ {(ns, p, no)|ns, no ∈ N , o �= s and p ∈ P}. (1)

In the following we provide a detailed overview about the
nodes and their attributes (Sect. 3.1) as well as the graph
edges (Sect. 3.2). More details about the annotation proce-
dure of 3RScan and 3DSSG can be found inWald et al. (2019)
and Wald et al. (2020a) respectively.

3 https://3DSSG.github.io
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3.1 Nodes and Attributes

The most important graph entities are the nodes described
by coarse-to-fine class labels e.g. armchair → chair → seat
→ furniture → artefact. The human annotation represents
the lowest and finest level of our class hierarchy which is
recursively parsed based on a lexical dictionary extracted
from WordNet (Fellbaum 1998).

Object properties give more details about the visual and
physical appearance of an instance. Overall, 3DSSG consists
of 93 different attributes and are split into 3 different groups:
static properties that stay the same over time, dynamic
attributes that possibly change and affordances that describe
the functionality of an object. While some properties require
manual annotation, others are obtained automatically from
the object’s geometry. In the following paragraphs, more
details are given about the different types of attributes.
Static and Dynamic Properties The first category describe
the visual appearance of an entity. This includes geomet-
ric properties such as shape, size and rigidity, as well as
color and texture. The size of the object class relative to
all other objects of the same category is computed auto-
matically by comparing instance masks while other more
complex attributes are manually annotated, including the
texture, material, color or shape using a custom annotation
interface.While Static properties, e.g. an object’s appearance
usually do not change, dynamic attributes can change over
time. They describe the state of an entity such as open/closed
or on/off. Some state categories are class specific e.g., appli-
ances such as televisions, refrigerators or ovens can be turned
on and off while a bed cannot. Interestingly, dynamic prop-
erties provide insights about potential human activity, see
Fig. 3.

Affordances The interaction possibilities of a scene entity
can been described by using affordances (Gibson 1979; Xia
et al. 2018;Armeni et al. 2019). In 3DSSG they are associated
to object classes, e.g. a seat is for sitting. Notably, some
affordances are only viable if the object is in a specific state
e.g. only a closed door can be opened, which is a direct link
to the dynamic attributes and is of relevance in presence of
scene dynamics.

3.2 Relationships

2D scene graph datasets often describe a human action
occurring in an image e.g. girl-throwing-frisbee or boy-
reading-book. Since our scenes do not include humans
directly the attention shifts away from those actions to the
following three main relationship categories: a) support b)
proximity and c) comparative relationships; all described in
the following.

Support Relationships are important connections between
objects (Nathan SilbermanDerekHoiemandFergus 2012) as

Fig. 3 Two example scenes at two different observations where object
states changed due to some human action. Top: someone might have
slept in the bed (bed is tidy/messy), Bottom: someone might have used
the toilet (toilet seat is down/up)

they give hints about physical stability and object dependen-
cies and are therefore of relevance in robotics applications,
where robot-scene interaction is carried out. By definition,
all entities are supported by at least one other node, excluding
the floor, which is the root node in our representation and, as
such, does not require any support. The support relationships
in 3DSSG are assigned by automatically computing a list
of support candidates, followed by a manual correction and
semantic annotation to produce desired relationship tuples –
so-called semantic support relations – such as chair-standing
on-floor or cabinet-hanging on-wall.

Proximity Relationships describe the spatial arrangement
of objects on the same support level. Proximity relationships
such as left or right require a reference view,whichwe choose
to be a top-down bird view with +x as right and +y as front.
Spatial relationships are automatically computed and only
valid in 3D and therefore require re-computation in 2D.

Comparative Relationships are connections related to
object properties, see Sect. 3.1. They are computed fromnode
annotations and include, but are not limited to comparisons
of size (e.g. bigger/ higher than), shape ormaterial (e.g. same
shape/material) color (e.g. darker than, same color) or state
(e.g. cleaner than).

3.3 2D Scene Graphs

Since ground truth instance segmentation as well as RGB-
D image sequences with corresponding camera poses Pi are
provided, 2D graphs G2D are directly obtainable from the 3D
counterpart G3D using a simple rendering procedure, see Fig.
4. Given the 2D instance image Is,i , rendering the 3D graph
implies filtering out nodes and edges that do not include a
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Fig. 4 2D scene graph generation using a rendered 3D scene from
3RScan.

visible entity. Support and comparative relationships can be
directly transferred while proximity relationships need to be
recomputed, since they are viewpoint-dependent.

The rendering pipeline and 2D graphs for the camera
re-localization benchmark, RIO10 (Wald et al. 2020b) will
be made publicly available4. Compared to some other 2D
scene graph datasets (Krishna et al. 2017) our data provides
depth images and semantic instance masks – additionally
to bounding boxes – similarly to the much smaller NYUv2
(Nathan Silberman Derek Hoiem and Fergus 2012).

4 Methodology

In the following section we first introduce the problem state-
ment (see Sect. 4.1) giving a high-level overview of the
different tasks and challenges involved when predicting 3D
semantic scene graphs, before diving into details of our pro-
posed method (see Sect. 4.2).

4.1 Problem Statement

Scene graph prediction from 3D data is a complex problem
that requires solving several interdependent tasks. While our
3D reconstructions do not capture on-camera motion, a few
other factors make this task challenging: The 3D graphs are
– compared to the 2D counterpart – quite large and densely
connected while the underlying data usually covers a rel-
atively large space. Simply applying techniques developed
for images to the 3D domain is therefore often unfeasible.

3D scene graph prediction, first and foremost, requires the
3D space to be encoded with meaningful features that incor-
porate long-range semantic information (P1). This feature
space is the foundation of the scene graph prediction which
relies on the identification of scene entities including objects
and scene structure. Our scene graphs are dense, therefore,
every single 3Dpoint has to be assigned to a node in the graph

4 https://waldjohannau.github.io/RIOSG

while the number of nodes is unknown (P2). Finally, seman-
tics is obtained by classifying the detected nodes and their
connecting edges given a list of object class and predicate
labels (P3). Notably, 3DSSG features a long list of different
object classeswith an unbalanced long-tail distribution: a few
labels occur regularly, while the majority is relatively rare
(P4). Specifically, the top-12 most common object classes
appear approximately as often as all the remaining classes
together.

Ultimately, the goal is to end up with scene graphs that are
rich and meaningful enough for high-level tasks e.g. visual
question answering or scene retrieval (P5).

4.2 3D Scene Graph Embedding Network

An overview of our method is given in Fig. 5. It operates
end-to-end and consists of two main parts; a 3D network and
a graph network. Given the 3D model of a scene, we iden-
tify scene graph nodes N by learning a semantic instance
segmentation (see Sect. 4.2.1). The network assigns the 3D
points of the scene to an entity by processing its coordinates,
surface normals and texture colors. Our segmentation aims to
produce similar features for points on the same instance and
different features for points on different instances, Fig. 5b.
In the second stage (see Sect. 4.2.2), a graph is build from
the extracted scene nodes in a fully connected fashion E =
N ×N , Fig. 5d.When constructing the graph, the output fea-
tures from the first stage are aggregated for the corresponding
nodes and edges respectively. The object classes are refined
and predicates (if any) are predicted for the object pairs, see
Fig. 5c. The output of our method is a 3D semantic instance
segmentation as well as a 3D scene graph, Fig. 5e.

4.2.1 3D Instance and Semantic Network

Instead of computing features for each object node and rela-
tionship separately, as in Wald et al. (2020a), we process the
entire scene at once and obtain object-level features from the
points by grouping them afterwards using instance masks.
This makes our features more descriptive than Wald et al.
(2020a). Furthermore, such a procedure is more scalable
since the points are only processed once and not redun-
dantly for all its edgeswhich is particularly favorable in dense
graphs.

We augment each element of the point cloud with its sur-
face normal. Additionally, the color value of our textured
3D models is extracted by querying the image texture at the
associated pixel coordinates. Our input is therefore a (N×9)-
dimensional feature, where N is the cardinality of the point
cloud. 3RScan consists of high-poly meshes of real-world
reconstructions which contain faces and vertices of the scene
surface. While the RGB extraction operates on meshes, our
network is also able to process colored point clouds directly.
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(a)

(b) (c)

(d) (e)

Fig. 5 Scene Graph Prediction Network: Given the 3D model of a
scene (left), we infer a scene graph G (right). Visual point features
(a) are extracted with a 3D network (b). The features are grouped and

arranged in a graph structure (d) for further processing within our scene
graph network (c). The predicted graph (e), consisting of labeled object
nodes and directed labeled edges

The meshes are reconstructions of real-world environments
and therefore consist of several thousands of polygons and
vertices. During training, the data loader randomly samples
3D points from the data. We feed this input into a sparse con-
volutional encoder-decoder network with a backbone size of
256, similarly to the one proposed byNajibi et al. (2020). The
output feature dimensionality of the 3× 3× 3 convolutional
layers is 64, 96, 128, 160, 192 and 224 respectively. After
each layer of the encoder a max pool operation is applied.
In the decoder, features are upsampled and corresponding
encoder features are concatenated via skip connections à la
U-Net (Ronneberger et al. 2015; Çiçek et al. 2016). Con-
versely to other instance segmentation works, we do not
consider any points as background (e.g. walls and floors),
instead we purposely include them as unique instances since
we want to represent structural components as independent
nodes in the graph.We predict semantic logits fi and instance
embeddings ei , {( fi , ei )}Ni=1 for all given points without any
masking. They are obtained by applying two sparse convo-
lutional layers on the output of the decoder with a ReLu and
batch norm.

Inspired by the success of bottom-up instance segmen-
tation, we similarly learn an embedding space and obtain
instances by clustering its features. During training, we uni-
formly sample point indices |V | on all object instances to
counteract data unbalance caused by objects of varying sizes
before an N-pair metric learning loss (Sohn 2016) is com-
puted

Le = − 1

|V |
∑

i, j∈V
le(i, j). (2)

The loss uses a pairwise similarity metric s(i, j) between
i and j such as

le(i, j) =
{
log(s(i, j)), if li = l j
log(1 − s(i, j)) otherwise

(3)

s(i, j) = 2

1 + exp(||ei − e j ||) . (4)

where i and j are sampled point indices in the input and
ei and e j represent their respective embedding vectors. Fig-
ure 5b, Fig. 6b visualize the learned point features on example
scenes. We map the embedding vectors to RGB color space
by applying PCA for visualization purposes. It can be seen
that our features are able to distinguish points on different
object instances.

Additionally to learning the embedding space, we use a
cross-entropy loss Ls to learn semantic classes per point.
We jointly learn the semantic and instance embeddings and
weight their losses equally such that

L = Ls + Le. (5)

The final semantic segmentation (Sect. 5.1) is obtained
by applying a regularization technique that averages the
semantic outputs of regions with similar embeddings. Dur-
ing training we randomly sample points on the point clouds
and process them in a voxelized fashion with a resolution of
(0.02m × 0.02m × 0.02m) within our sparse convolutional
network. While our network processes data in a discretized
fashion, voxels are mapped back to the input points during
test time. Translation augmentation is applied with a maxi-
mum offset of 0.1m, scenes are scaled with a factor between
0.9 and 1.1, and rotational augmentation around the z axis
ranges from −180◦ and 180◦. We implement our network
with tensorflow (Abadi et al. 2015) based on the open source
implementation of tf3d (Google Research 2021).
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(a) (b) (c) (d)

Fig. 6 Qualitative results on example scenes of the validation set of 3RScan. (b) Extracted embeddings, (c) semantic segmentation (see legend)
and the corresponding ground truth segmentation (d). The input data of our method is the 3D model, shown on the left (a)

4.2.2 Scene Graph Network

During training the scene graph is constructed with ground
truth instance segmentation l = {li }Ni=1. Contrarily, at test
time, a clustering function ρ is used to cluster points into
instance estimates

l̂ = {l̂i }Ni=1 = ρ({( fi , ei )}Ni=1). (6)

In our implementation we use kmeans++ (Arthur and
Vassilvitskii 2007), though any clustering function could be
applied to our embedding space. Similar to other graph pre-
diction works (Lu et al. 2016a; Xu et al. 2017; Yang et al.

2018) visual features are extracted for each node φk and edge
φr respectively. We experiment with different node encod-
ings obtained from aggregated and concatenated features of
the 3D network. In our experiments we set φk = [ēk, f̄k]
where the 3D features are averaged for all the points of an
instance k such that

ēk = 1

|{pi }ik |
∑

i∈ik
ei where ik = {i = l : k}, (7)

with f̄k is computed in a similar fashion. We arrange the
nodes in a graph structure, building relationship triples (sub-
ject, predicate, object) to form a fully connected graph
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with subject φs , object φo and predicate units φr . φr is
derived from the subject φs and object φo node features,
their relative position – computed from the centroids p̄s
and p̄o – as well as their relative bounding boxes such that
φr = [φs, p̄s − p̄o, bs − bo, φo]. Class labels are learned
with a cross-entropy loss that instead of predicting only
a single semantic class per node has two semantic output
heads that use different semantic class sets learned jointly
in a coarse-to-fine fashion. This means our network learns a
very coarse semantic class e.g. other furniture (from NYUv2
(Nathan Silberman Derek Hoiem and Fergus 2012)) as well
as uncommon but more descriptive classes such as baby bed
or storage unit.

In a real-world setup, certain object pairs might have mul-
tiple valid relationships that describe their interactions. In
Fig. 2, e.g. one chair can be behind the other and simul-
taneously have the same visual appearance, represented as
a same as relationship. We therefore formulate Lpred as a
per-class binary cross entropy. This way, it is judged inde-
pendently whether an edge should be assigned a certain label
(e.g. standing on) or no label (none). In summary, we train
our graph model end-to-end and optimize the objectLobj and
predicate classification loss Lpred jointly

Ltotal = λ · Lobj + Lpred (8)

where λ is a weighting factor between object and relationship
prediction and set to 0.5 in our experiments. We ensure con-
sistency of proximity relationships, like left or right, across
re-scans by avoiding rotation augmentation during training.
Instead, re-scans are aligned with the respective references
using the provided scan-to-scene transformations. Notably,
our method does not require any filtering of the ground truth
graph data and is able to process all nodes and edges of a
scene at once.

The object and relationship predictors have four and six
fully-connected layers followed by batch norm and ReLu.
For training we use an SGD optimizer with a learning rate
of 10−2. Please note that, while in practice both networks
can be trained jointly, we train them separately for the sake
of easier convergence. Specifically, we first train the 3D net-
work and then freeze its layers when training the scene graph
prediction.

5 Evaluation

In this section we present different experiments to analyse
the main aspects of our proposal. First, we evaluate our
3D semantic segmentation network on 3RScan (Wald et al.
2019), see Sect. 5.1 to validate the quality of our underlying
features (see Sect. 4.1.P1) and then ablate the node segmenta-
tion quality (see Sect. 4.1.P2) and the effect of the embedding

Table 2 3D semantic segmentation on the validation split of 3RScan
based on 27 class categories

Method mIoU27

P4Contrast (3D context) Liu et al. (2020) 40.8

P4Contrast (2D-3D context) Liu et al. (2020) 44.2

Ours (3D semantics) 44.8

Bold indicates the best performing model/method

dimension and input features on segmentation performance
(Sect. 5.2). Further, we show the performance of our graph
predictionmethod (seeSect. 4.1.P3) on3DSSGby comparing
it against a baseline approach as well as the method proposed
in (Wald et al. 2020a) and report per-class evaluation and and
analysis of rare and often occurring class labels, see Sect. 5.3.
Finally, we show the application of scene graph prediction
(see Sect. 4.1.P5) for the task of scene retrieval in Sect. 5.4.

5.1 3D Semantic Segmentation

Following the evaluation scheme of Liu et al. (2020), Tables 2
and 4 lists the average IoU of the 3D semantic segmentation
on 3RScan (Wald et al. 2019) using 27 object categories. We
compare our method against Liu et al. (2020), as it was also
evaluated on this dataset and outperform them by a small
margin. Table 3 reports the per-class performance using the
NYU40 (Nathan Silberman Derek Hoiem and Fergus 2012)
class set. Notably, ourmethod is able to successfully segment
challenging classes such as doors and windows. Qualita-
tive results of our 3D semantic segmentation on 3RScan are
shown in Fig. 6. (a) is the input of our method, (b) visualizes
the learned point embeddings mapped to color space and (c)
and d) are the predicted and ground truth semantic segmenta-
tion respectively. This experiment shows that our 3D network
produces meaningful features to be further processed within
the graph prediction network.

5.2 3D Node Segmentation

In the following we evaluate how well scene nodes are
detected in 3D scenes using different embedding dimensions,
see Table 4. It can be observed that the dimensionality of the
embedding vector has only a small impact on the segmenta-
tion quality. The embedding dimension of 256 gives the best
performance, although the margin is relatively small.

In the experiment, we adapt the commonly used Mean
Average Precision metric where the Average Precision (AP)
determines the area under the precision-recall curve. First,
the IoU is computed between each ground truth and pre-
dicted segment of the same class. Each prediction mask is
compared with the ground truth to obtain an IoU and is
considered true positive or false positive based on a thresh-
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.7 Table 4 3D node segmentation on the validation split of 3RScan with

different embedding dimensions

AP mAP25 mAP50

embedding dimension 64 8.0 18.6 41.6

embedding dimension 128 9.3 19.8 41.6

embedding dimension 256 9.4 21.7 44.0

Bold indicates the best performing model/method

old (25% for mAP25 and 50% for mAP50). The evaluation
scheme was adapted from ScanNet (Dai et al. 2017) and
CityScape (Cordts et al. 2016) which is inspired by the eval-
uation scheme of COCO (Lin et al. 2014). The corresponding
precision and recall per class is given in Table 5.

As expected, the method achieves best scores for common
and distinctive classes chairs, tables and toilets and worst for
the categories counter, desk and bookshelf which are either
ambiguous (desk vs. table, counter vs. cabinet) or cluttered
(shelf, counter).

We further evaluate the effect of different features on seg-
mentation quality. In Tables 6 and 8 we cluster instances
based on point embeddings alone (1), embeddings and the
semantic features (2), embeddings and the point cloud coor-
dinates (3) as well as all features combined (4) while keeping
the embedding dimension 256 fixed.

The clustering seems to be most accurate when only
embedding features are used which might sound counter-
intuitive at first. Our intuition is that spatial information
potentially cause over-segmentation of bigger objects e.g.
couches or walls and adding semantic information might
result in unwanted merging of close-by instances of the same
classes e.g. chairs, see Fig. 7. Please note that the embedding
networkwas specifically trained to produces a distinctive fea-
ture space by parsing (a) color, and (b) geometry and jointly
learns (c) semantics, and (d) instance embeddings.

Even for challenging scenes with many semantically and
visually similar objects, the feature space is quite distinctive,
see also Fig. 8.

An additional qualitative evaluation of the node features
can be found in Fig. 9 where we use t-SNE (van der Maaten
and Hinton 2008) to qualitatively visualize the features of
our scene nodes. Each element in the plot represents a scene
entity in the validation set and its color corresponds to the
respective NYU40 class. We can observe how objects of
the same category are nicely clustered together and away
from categories including different shapes, e.g. (a) toilets or
(b) curtains and similar classes (desks and tables) are closer
together.

5.3 Semantic Scene Graph Prediction

In the followingwecompare the performanceof our proposed
scene graph embedding network➂with two variants of our➁
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different input features when clustering

AP mAP25 mAP50

(1) embedding 9.4 21.7 44.0

(2) embedding, semantic 3.8 9.8 27.7

(3) embedding, spatial 6.9 16.4 41.3

(4) embedding, semantic, spatial 4.9 11.7 28.0

Bold indicates the best performing model/method

Fig. 7 a Colored 3D model and b embedding, c spatial and d semantic
input features used for 3D node segmentation of an example scene, see
Table 6

scene graph point network (Wald et al. 2020a) and a baseline
➀ inspired by the visual relationship prediction proposed by
Lu et al. (2016a). We re-implemented (Lu et al. 2016a) and
adapted the method to operate on 3D using an underlying
PointNet backbone. Similar to Wald et al. (2020a), node and
edge features are extracted from the point cloud for each
node and edge respectively. We follow the same train and
validation split proposed by Wald et al. (2019).

Evaluating semantic scene graphs is non-trivial as it
involves several interdependent tasks: detection and segmen-
tation of object instances, prediction of the semantic class
labels as well as visual relationship detection. When eval-
uating large 3D scene graphs we indeed evaluate object,
predicate and relation (triples) independently as commonly
done in 2D scene graph literature. Even though, our method
does not require any ground truth segmentation, we utilize it
in this experiment to fairly compare against the methods in
Wald et al. (2020a).

Previous graph prediction works propose complex evalu-
ation schemes (Lu et al. 2016a; Xu et al. 2017; Yang et al.
2018; Wald et al. 2020a) that consider a match correct if
it ranks within the top-n predictions. Such an evaluation
scheme helps in challenging scenarios or when dealing with
ambiguous class categories and large label sets. In this work,
we only adopt the strictest top-1 metric where a sample is
considered correct iff it exactly matches the ground truth,
see Table 7 where the top-1 score for objects and predicates
as well as relations is reported – where the latter one evalu-
ates (subject, predicate, object) triplets. In this experiment,
our network outperforms all other methods when predicting
object and predicate labels as well as relations but still leaves
some room for improvements due to the challenging setup
and high variability of the graphs.
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Fig. 8 Embedding space of an example scene with many similar and
spatially close repetitive objects

To further analyse the networks’ predictions we report
a broken down performance score of the predicates, see
Table 8. Rare predicates e.g. cover, hanging in, lying in are
most challenging which is likely related to the unbalanced
data distribution and complexity of the graph data.

We furthermore report the node classification score of the
20most and least occurring object classes, see Table 9 to bet-
ter understand the networks behaviour when working with
diverse and imbalance data. It is no surprise that great scores
are accomplished for common classeswhile the network fails

when confronted with rare entities. Interestingly, misclassi-
fications of small objects e.g. pan, scale, bread, napkins or
papers are often confused with categories where they most
commonly appear, accidental taking too much context into
consideration e.g. kitchen counter, table or shelf.

A similar experimentwhere common and uncommon rela-
tions are analysed shows the same results, seeTable 10.While
the network achieves remarkable performance in predict-
ing common relationships such as chair-stand-ing on-floor
it struggles to predict any of the less common relations
correctly. Interestingly, the network has learned strong and
meaningful priors from the data and is therefore able to pro-
duce meaningful relations such as pillow-lying on-sofa or
clothes-hanging on-wall for the relations box-supported by-
sofa and flowers-hanging on-wall (rare occurrence, noisy
reconstruction or an inconsistency in the ground truth).

To complement this set of experiment we analysed the
most common mispedictions of relation triplets, see Table
11. Similarly, specific labels such as side table or shower

Fig. 9 Learned embedding space of the scene graph nodes. Colors correspond to the semantic NYU colors used in Fig. 6 a toilets, b curtains, c
doors, d chairs, e tables/desks

Table 7 Evaluation of scene
graph prediction on 3DSSG
using ground truth
class-agnostic segmentation

Method Object Predicate Relation

➀ Relation Pred. Baseline 35.1 15.0 5.4

➁ Multi Pred., GCN Feat Wald et al. (2020a) 39.9 58.5 20.3

➁ Multi Pred., PN Feat Wald et al. (2020a) 33.4 64.2 31.5

➂ Ours 52.0 71.2 42.5

Bold indicates the best performing model/method
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wall are confused with their more general counterparts table
andwall. In terms of predicates, themethod seems to confuse
smaller than and lower than and bigger than and higher than.

Finally, Fig. 10 shows example scene graph predictions
generated by our method. Since dense graphs on large scenes
are hard to parse and visualise, we only show support edges.
For incorrect predictions, the ground truth is appended in
round brackets after the predicted label. In the following
section we finally show that our graphs are accurate and rep-
resentative to be used within a retrieval application, see sect.
5.4.

5.4 Scene Retrieval

In the following we utilize graphs for image-based 3D scene
retrieval in changing indoor environments as proposed in
Wald et al. (2020a). The aim of the task is to identify the
corresponding scene from a pool of 3D scans given a single
2D image acquired at a different point in time. The query and
target data are not only from different domains but addition-
ally undergo scene changes, e.g. moving objects, different
illumination. To bridge the domain gap between images and
3D data, this task is carried out using scene graphs. We use
different similarity metrics to match the graphs to the correct
3D scenes using object semantics as well as scene context.
Computing the minimum edit-distance between two graphs
is a complex problem, we therefore map our graphs to node
and edgemulti-sets – containing potential repetitive elements
that occur more than once in the scene. Based on two graphs
G and G′, a similarity function τ is computed. In our tests we
explore the Jaccard τJ and Szymkiewicz-Simpson τS coeffi-
cient such that

f (Ĝ, Ĝ′) = 1

|Ĝ|
|Ĝ|∑

i=1

τ(s(Ĝ(i)), s(Ĝ′(i))) (9)

where Ĝ is an augmented graph Ĝ = (N , E,R) with binary
edges E . Table 12 reports the matching accuracy using sin-
gle 2D images or a 3D re-scan of an indoor scene. To do so,
we compute the scene graph similarity between each re-scan
(2D or 3D) and the target reference scans. We then order the
matches by their similarity and report the top-n metric, i.e.
the percentage of the true positive assignments, placed in the
top-n matches from our algorithm. The size of image and 3D
scene graphs are significantly different, the Szymkiewicz-
Simp-son coefficient is therefore used in 2D-3D matching
while fS is chosen in the 3D-3D scenario. It can be observed
that our scene graphs➂ significantly improvematching accu-
racy in 2D, as well as 3D, compared to our previous work ➁

and the baseline model ➀ (see Sect. 5.3).
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Table 9 Scene graph node
classification on 3DSSG:
Head-Tail-Effect, 20 most
(head, top) and least (tail,
bottom) occurring categories
and the corresponding (*) most
likely prediction per label

Ground truth node Occurrences (%) Accuracy (%) Prediction(∗)

wall 15.76 94.1 wall

chair 6.56 94.2 chair

pillow 4.41 84.2 pillow

box 4.28 29.9 box

shelf 3.92 73.4 shelf

floor 3.72 99.3 floor

ceiling 3.46 93.9 ceiling

plant 2.66 54.2 plant

door 2.44 62.0 door

table 2.42 83.7 table

window 2.41 61.5 window

item 2.23 15.2 plant

lamp 2.17 46.7 lamp

curtain 2.14 73.9 curtain

object 1.74 8.2 shelf

cabinet 1.68 45.7 cabinet

picture 1.59 33.3 picture

doorframe 1.05 60.7 doorframe

sink 1.00 76.7 sink

cushion 0.77 1.7 pillow

nightstand 0.46 0.0 pillow

stuffed animal 0.11 0.0 pillow

objects 0.06 0.0 cabinet

napkins 0.06 0.0 table

scale 0.06 0.0 kitchen counter

ladder 0.05 0.0 shelf

recycle bin 0.05 0.0 windowsill

pan 0.04 0.0 kitchen counter

shower floor 0.03 0.0 windowsill

footstool 0.02 0.0 box

bread 0.02 0.0 table

cup 0.02 0.0 item

papers 0.02 0.0 shelf

socket 0.02 0.0 windowsill

washing powder 0.02 0.0 item

grass 0.01 0.0 floor

jacket 0.01 0.0 clothes

magazine rack 0.01 0.0 item

rocking chair 0.01 0.0 chair

soap dish 0.01 0.0 box

Note that for the purpose of this experiment, predicted 2D
graphs are obtained by rendering the predicted 3D graphs as
described in Sect. 3.

6 FutureWork

3D semantic scene graphs are a rich and compact represen-
tation for holistic 3D scene understanding and we believe

they are an excellent representation for persistent 3D map-
ping of long-term/dynamic 3D environments. The prediction
of entities is an essential requirement of persistent map-
ping where the representation of a space is updated based
on new observations and detected changes. Dynamics could
be captured by learning persistent features for association
across time and augmenting the graphs with poses. A local-
ization algorithm would then need to jointly detect changes
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Table 10 Scene graph relation
classification on 3DSSG:
Analysis of most (head, top) and
least (tail, bottom) tuples and
the corresponding (*) most
likely prediction per relation

Ground truth relation Accuracy (%) Prediction(∗)

wall-attached to-floor 91.1 wall-attached to-floor

chair-standing on-floor 94.1 chair-standing on-floor

chair-same as-chair 90.8 chair-same as-chair

ceiling-attached to-wall 94.7 ceiling-attached to-wall

cabinet-standing on-floor 43.0 cabinet-standing on-floor

table-standing on-floor 87.2 table-standing on-floor

shelf-attached to-wall 79.4 shelf-attached to-wall

pillow-lower than-pillow 63.5 pillow-lower than-pillow

pillow-higher than-pillow 57.1 pillow-higher than-pillow

plant-standing on-floor 78.4 plant-standing on-floor

decoration-standing on-couch table 0.0 plant-standing on-table

desk-supported by-wall 0.0 table-attached to-wall

flowers-hanging on-wall 0.0 clothes-hanging on-wall

item-leaning against-wall 0.0 clothes-hanging on-wall

item-lying on-counter 0.0 plant-standing on-shelf

kettle-standing on-kitchen counter 0.0 item-standing on-kitchen counter

lamp-standing on-cabinet 0.0 object-lying on-cabinet

organizer-standing on-table 0.0 item-standing on-desk

oven-attached to-kitchen counter 0.0 commode-build in-commode

oven-supported by-cabinet 0.0 cabinet-build in-commode

picture-attached to-wall 0.0 tv-hanging on-wall

box-supported by-sofa 0.0 pillow-lying on-sofa

bucket-standing on commode 0.0 box-standing on commode

cabinet-belonging to-wall 0.0 cabinet-attached to-wall

cleanser-supported by-wall 0.0 picture-attached to-wall

Table 11 Scene graph relation
classification on 3DSSG:
Analysis of most common
misclassifications

Ground truth relation Accuracy (%) Prediction(∗)

pillow-smaller than-pillow 13.9 pillow-lower than-pillow

couch-standing on-floor 0.0 sofa-standing on-floor

pillow-bigger than-pillow 0.0 pillow-higher than-pillow

pillow-lying on-couch 0.0 pillow-lying on-sofa

shower wall-supported by-floor 0.0 wall-attached to-floor

commode-standing on-floor 22.6 cabinet-standing on-floor

kitchen cabinet-standing on-floor 0.0 cabinet-standing on-floor

desk-standing on-floor 17.7 table-standing on-floor

couch table-standing on-floor 0.0 table-standing on-floor

box-lower than-box 0.0 box-lower than-shelf

picture-standing on-wall 3.5 picture-hanging on-wall

ottoman-standing on-floor 0.0 chair-standing on-floor

side table-standing on-floor 0.0 table-standing on-floor

coffee table-standing on-floor 5.0 table-standing on-floor

box-higher than-box 0.0 shelf-higher than-box

radiator-connected to-wall 0.0 heater-connected to-wall

tv stand-standing on-floor 0.0 cabinet-standing on-floor

stool-standing on-floor 0.0 chair-standing on-floor

cushion-lying on-sofa 0.0 pillow-lying on-sofa

dining chair-standing on-floor 0.0 chair-standing on-floor
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Fig. 10 Qualitative results of our scene graph prediction model (best viewed in the digital file)

in the graph and estimate the poses in this dynamic setup.
This long-term knowledge could then be stored as additional
connections in the graph structure. Another interesting direc-
tion is represented by augmenting the resulting 3D temporal
scene graphs with comprehensive semantics beyond simple
class labels and 6DoF object poses. This could provide the
representation needed for robust and efficient persistentmap-

ping. In this context, it might be worth exploring hierarchical
scene graphs where the labels of parent nodes are carried on
to the children enforcing it to be more specific e.g. using
a novel loss. Notably, building scene graphs requires long-
range attention; it is therefore important to rely on efficient
networks and techniques e.g. sparse convolutions, especially
when handling large-scale outdoor scenes.
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Table 12 Evaluation: scene retrieval of changing re-scans (2D and 3D)
to reference 3D scans

Graph Top-1 Top-3 Top-5

f J Ĝ3D → Ĝ3D ➀ 0.29 0.50 0.59

f J Ĝ3D → Ĝ3D ➁ 0.34 0.51 0.56

f J Ĝ3D → Ĝ3D ➂ 0.64 0.79 0.80

fS Ĝ2D → Ĝ3D ➀ 0.10 0.25 0.32

fS Ĝ2D → Ĝ3D ➁ 0.13 0.38 0.42

fS Ĝ2D → Ĝ3D ➂ 0.43 0.71 0.74

Bold indicates the best performing model/method

Ultimately, finding a scalable, weakly/self- or even unsu-
pervised and generic solution for persistent mapping could
solve many of the challenges of long-term and dynamic 3D
scene understanding and eventually help bring some of the
theoretical models into practice.

7 Conclusion

This work goes beyond classical object-level scene under-
standing and explores regression of 3D scene graph with a
neural network. A novel graph predictionmethod is proposed
based on the semantically rich scene graph dataset 3DSSG
which is build upon 3RScan (Wald et al. 2019). Our method
predicts nodes and edges representing the objects’ seman-
tic classes and their relationships, by directly operating on
3D scans of scenes. Notably, our work explores regressing
these graphs from real-world 3D data without any priors. Our
experiments show that the features learned with our 3D net-
work enable the detection and segmentation of graph nodes
while the underlying features are very descriptive and there-
fore useful for semantic scene graph prediction.We show that
the unbalanced distribution and large number of different
categories in real-world scenes introduces additional chal-
lenges, which require learning an even richer, fine-grained
feature space given only a few training samples.
Webelieve scene graphs could ultimately serve as a persistent
representation for long term 3D scene understanding and are
useful to bridge domain gaps, as shown in the cross-domain
task, image-based 3D scene retrieval in changing indoor
environments. They could potentially even enable new use-
ful applications of scene understanding, such as text-based
search or VQA (Visual Question & Answer).
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