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Abstract
In this paper we consider the motion segmentation problem on sparse and unstructured datasets involving rigid motions,
motivated bymultibody structure frommotion. In particular,we assumeonly two-frame correspondences as inputwithout prior
knowledge about trajectories. Inspired by the success of synchronization methods, we address this problem by introducing
a two-stage approach: first, motion segmentation is addressed on image pairs independently; then, two-frame results are
combined in a robust way to compute the final multi-frame segmentation. Our synthetic and real experiments demonstrate
that the proposed approach is very effective in reducing the errors among two-frame results and it can cope with a large
amount of mismatches. Moreover, our method can be profitably used to build a multibody structure from motion pipeline.

Keywords Motion segmentation · Multibody structure from motion · Synchronization

1 Introduction

Motion segmentation is a fundamental topic in Computer
Vision and Robotic communities (Mattheus et al. 2020),
which is relevant in a variety of applications ranging from 3D
reconstruction (Saputra et al. 2018) to autonomous driving
(Sabzevari and Scaramuzza 2016). The involved scenario is a
dynamic scene with multiple objects that are moving rigidly
and independently in the 3D space. Given several images of
the scene (taken from a single moving camera in the form
of a video or from different cameras at different times and
viewing positions), the task is to identify the moving objects
present in the scene.

Communicated by Stephen Lin.

B Federica Arrigoni
federica.arrigoni@unitn.it

Elisa Ricci
e.ricci@unitn.it

Tomas Pajdla
pajdla@cvut.cz

1 Department of Information Engineering and Computer
Science (DISI), University of Trento, Trento, Italy

2 Deep Visual Learning Group, Fondazione Bruno Kessler,
Povo, Italy

3 Czech Institute of Informatics, Robotics and Cybernetics
(CIIRC), Czech Technical University in Prague, Prague,
Czech Republic

Several approaches were proposed in the literature to
addressmotion segmentation: some techniques assumedense
correspondences (e.g., optical flow) over a video as input
and predict a dense (i.e., pixel-wise) segmentation (e.g. Keu-
per et al. 2015; Bideau and Learned-Miller 2016; Keuper
2017; Bideau et al. 2018; Keuper et al. 2020); other methods,
instead, work with a sparse input (e.g., sparse key-points)
and produce a sparse segmentation as output (e.g. Vidal et al.
2005; Li et al. 2013; Ji et al. 2014; Xu et al. 2018; Arrigoni
and Pajdla 2019a). The former are also referred to as “video
object segmentation” by some authors as they make use of
temporal continuity between consecutive frames within a
video, and they will be discussed in Sect. 2.5. In this paper
we focus on the latter, since we are interested in dealing with
sparse and unordered datasets without any temporal compo-
nent, motivated bymultibody structure frommotion. In other
terms, our task is to perform motion segmentation by group-
ing together all the key-points that are moving in the same
way, as shown in Figure 1.

Several approaches were proposed in the literature to
address motion segmentation with sparse key-points (see
Figure 3). Most of them assume that key-points have been
tracked through the input video/images, and the task is to
cluster those trajectories according to different motions (e.g.,
Vidal et al. 2005; Rao et al. 2010; Elhamifar and Vidal 2013;
Ji et al. 2015; Li et al. 2013; Xu et al. 2018). A more prac-
tical and difficult scenario is analyzed in Ji et al. (2014);
Wang et al. (2018), where it is assumed that a set of key-
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Fig. 1 Top: sample images from the Penguin sequence (Arrigoni and
Pajdla 2019b), representing two moving objects in an indoor environ-
ment. Bottom: key-points segmentedwith our approach,where different
colors encode the membership to different motions. Our results are
highly accurate (Color figure online)

points is given in the images with unknown correspondences.
At the middle between trajectory clustering and the case of
unknown correspondences there ismotion segmentationwith
two-frame correspondences (Arrigoni and Pajdla 2019b, a),
where it is assumed that key-points have been matched on
image pairs only. Such an assumption is reasonable as com-
putingmatches between two images is, in general, easier than
the case of multiple frames (Bernard et al. 2019).

In this paper we follow this latter research line andwe pro-
pose a novel two-stage framework for motion segmentation
with pairwise correspondences:

1. motion segmentation is solved on different image pairs in
isolation;

2. such partial/local results are combined in a suitable way
in order to produce a multi-frame segmentation.

The idea of solving motion segmentation in two steps is
inspired by the success of synchronizationmethods (Arrigoni
and Fusiello 2020), that solve several Computer Vision prob-
lems (e.g., point-cloud registration) using a similar principle,

as it will be clarified in Section 2.6. Figure 2 shows a
visual representation of the main stages of the proposed
pipeline.

Concerning Step 1, plenty of techniques are available
in the literature (see Section 2.3). One possibility – which
is followed in this paper – is to use a multi-model fit-
ting method (e.g., Robust Preference Analysis (Magri and
Fusiello 2015)). Indeed, motion segmentation in two images
can be solved by fitting multiple fundamental matrices to
correspondences, under a perspective camera model.

Concerning Step 2, we introduce a new approach based
on the following observation: if we consider a fixed image,
then it will be involved (in general) in multiple two-frame
segmentations (coming from all the pairs where the image
is involved); such results provide (up to a permutation of
the motions) possible solutions for segmenting points in the
given image. We will show that fixing the permutation ambi-
guity can be formalized as a permutation synchronization
problem (Pachauri et al. 2013). Then, we adopt the following
strategy in order to assign aunique label to eachkey-point: the
most frequent label (i.e., the mode) is chosen among all the
possible solutions coming from different two-frame segmen-
tations. This permits to exploit redundancy such that noise
and potential errors from Step 1 are handled.

We also show that the results of our method can be fur-
ther improved by employing spatial contiguity constraints. In
other words, points which are close to each other are encour-
aged to belong to the samemotion.We analyze three different
approaches to accomplish such a task,which include a greedy
solution (based on the percentage of neighbouring points
belonging to the samemotion) and twowell-established tech-
niques, namely constrained spectral clustering (Shi et al.
2010) and energy minimization (Boykov et al. 2001). It is
worth noting that such a refinement is optional as – in many

Fig. 2 Proposed pipeline for motion segmentation. Given a set of
images of a dynamic scene, key-points are extracted and two-frame
correspondences are established. Then, for each image pair, motion
segmentation is addressed in order to classify such correspondences

into a number of motions. Finally, permutation synchronization is per-
formed so that labels of motions are consistent across all the pairs, and
robust voting is applied to produce the output multi-frame segmentation
(Color figure online)
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cases – the segmentation produced by our approach is suffi-
ciently accurate.

We perform experiments on both synthetic and real sce-
narios. Results show that: our method is comparable or better
thanmost solutions on the popular Hopkins155 dataset (Tron
and Vidal 2007); it outperforms the techniques developed in
Ji et al. (2015); Xu et al. (2018) on synthetic/real datasets
with mismatches; it is very effective in reducing the errors
in the initial two-frame segmentations; it can be profitably
used to segment SIFT keypoints in a collection of images,
whereas its closest competitor (Arrigoni and Pajdla 2019a)
exhibits some failure cases; finally, our approach can be
successfully applied to the problem of reconstructing a 3D
dynamic scene, which is also known as multibody struc-
ture from motion. For the sake of a fair comparison, our
experimental validation comprises methods developed for
sparse motion segmentation (e.g., Ji et al. 2015; Xu et al.
2018; Arrigoni and Pajdla 2019a), whereas we do not con-
sider techniques addressing flow-basedmotion segmentation
(e.g. Keuper 2017; Bideau et al. 2018), as they make differ-
ent assumptions on the input/output. Moreover, we focus on
datasets involving rigidmotions only. Indeed, our approach is
designed for handling multiple rigidly moving objects, being
based on the fundamental matrix estimation.

Observe that our approach implicitly assumes the exis-
tence of trajectories but it does not construct them explicitly.
In fact, our method uses only (local) pairwise correspon-
dences. The reason why we focus on this scenario is that we
do not want to make early decisions on trajectories that may
be wrong (even mixing different motions). Indeed, the ear-
lier correspondences are joined into trajectories, the higher
chance you have to make errors. Based on our approach,
trajectories can be eventually computed after motion seg-
mentation: in this way we can focus on each moving object
separately, exploiting single-body tools (e.g. geometric veri-
fication via RANSAC), resulting inmore precise trajectories.
This scenario will be analyzed in Section 6.5.2, where we
show how to apply our framework to multibody structure
from motion.

The idea of combining results from individual image pairs
is also present in Li et al. (2013), Lai et al. (2017), Xu
et al. (2018): in particular, in Li et al. (2013) all the pairs
are used, whereas in Lai et al. (2017), Xu et al. (2018) only
pairs of consecutive frames are considered.These techniques,
however, are different from our approach since they do not
completely perform segmentation on image pairs but they
rely on intermediate results only (i.e., correlation of corre-
sponding points). Such results are used to build an affinity
matrix that encodes the similarity between different trajecto-
ries, to which spectral clustering (Von Luxburg 2007) (or its
multi-view variations (Cortes et al. 2009; Kumar et al. 2011;
Wang et al. 2014)) is applied. Observe that the size of such
an affinity matrix is equal to the number of trajectories. As a

consequence, Li et al. (2013), Lai et al. (2017), Xu et al.
(2018) perform trajectory clustering, namely they exploit
multi-frame correspondences. Our method, instead, requires
two-frame correspondences only. Differences between tra-
jectory clustering and the case of two-frame correspondences
are illustrated in Figure 3 and will be further clarified in the
next section.

The paper is organized as follows. Section 2 describes
previous research on motion segmentation and Section 3
formally introduces the problem. The proposed method is
derived in Section 4, while Section 5 describes possible ways
to refine its output. Experiments are reported in Section 6,
some considerations about the advantages/limitations of our
approach are given in Section 7, and the conclusion is drawn
in Section 8. Appendices A and B review some background
useful to understand our method. Some of the results pre-
sented in this paper previously appeared in a preliminary
work (Arrigoni and Pajdla 2019b).

2 RelatedWork

In this section we review previous works on motion segmen-
tation, focusing on methods working with sparse data. We
start with a brief overview of two broader topics, namely
subspace separation (Section 2.1) and multi-model fitting
(Section 2.2). Then, we review existing methods for solving
the segmentation problem, by considering separately the case
of two frames (Section2.3) andmultiple frames (Section2.4).
We also explain how motion segmentation can be seen as
a particular instance of subspace separation or multi-model
fitting, under suitable assumptions on the camera model.
In Section 2.5 we discuss the motion segmentation prob-
lem with dense input/output, which is sometimes referred to
as “video object segmentation”, and we clarify differences
with respect to the scenario considered in this paper. Finally,
we discuss the synchronization problem (Section 2.6), that
inspired our approach.

2.1 Subspace Separation

The goal of subspace separation (also known as subspace
clustering) is to cluster high-dimensional data drawn from
multiple low-dimensional subspaces. The most general case
considers subspaces with different dimensions and with
arbitrary intersections. Available approaches include Gen-
eralized Principal Component Analysis (GPCA) (Vidal et al.
2005), Local Subspace Affinity (LSA) (Yan and Pollefeys
2006), Power Factorization (PF) (Vidal et al. 2008), Agglom-
erative Lossy Compression (ALC) (Rao et al. 2010), Sparse
Subspace Clustering (SSC) (Elhamifar and Vidal 2013),
Structured Sparse Subspace Clustering (S3C) (Li and Vidal
2015), Stochastic Sparse Subspace Clustering (Chen et al.
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Fig. 3 The proposed taxonomy divides existing approaches into three
categories: trajectory clustering; segmentation with two-frame cor-
respondences; segmentation with unknown correspondences. When
moving from right to left the problem becomes more difficult to solve

since assumptions are weaker (but more realistic). The approach we
propose belongs to the category of two-frame correspondences meth-
ods (Color figure online)

2020), Low-Rank Representation (LRR) (Liu et al. 2013)
and Robust Shape InteractionMatrix (RSIM) (Ji et al. 2015).

2.2 Multi-model Fitting

The objective of multi-model fitting is to estimate multi-
ple models from unstructured data corrupted by outliers and
noise. One example is the task of fitting geometric primitives
(e.g., lines or circles) to points in the plane. This problem is
challenging due to the inherent “chicken-and-egg” pattern:
in order to estimate the models one needs to first cluster the
data; in order to cluster the data it is necessary to knowwhich
model points belong to.

Some methods are based on the notion of consensus,
that is – focusing on the estimation part of the problem –
attempt to find models describing as many points as possi-
ble. Notable examples are the Hough transform (Xu et al.
1990), Sequential RANSAC (Vincent and Laganiere 2001),
Multi-RANSAC (Zuliani et al. 2005) and Random Sample
Coverage (Magri and Fusiello 2016). Other techniques fol-
low a preference-based approach and focus on clustering as
a basis to perform model estimation. Examples of methods
in this category include Residual HistogramAnalysis (RHA)
(Zhang and Kosecká 2006), J-Linkage (Toldo and Fusiello
2008), Kernel Optimization (Chin et al. 2010), T-linkage
(Magri and Fusiello 2014), Random Cluster Model (RCM)
(Phamet al. 2014),Robust PreferenceAnalysis (RPA) (Magri
and Fusiello 2015) andQuantized Residual Preference (Zhao
et al. 2020). The problem of fitting multiple models can be
also formulated as an energy minimization problem (Delong
et al. 2012a, b), as in PEARL (Propose Expand and Re-
estimate Labels) (Isack and Boykov 2012) and Multi-X
(Barath and Matas 2018).

2.3 Two-Frame Segmentation

The task of two-frame segmentation is to establish which fea-
ture points are moving according to the same model, given

correspondences in two images. A perspective cameramodel
is usually assumed. A geometric solution is derived in Vidal
et al. (2006), where the fundamental matrix is generalized to
multiple motions, giving rise to the so-called multibody fun-
damental matrix. Despite being appealing from a theoretical
perspective, this method is not suitable for real applications
as it is designed for noise-free correspondences.More practi-
cal approaches include (Jung et al. 2014; Poling and Lerman
2014; Schindler and Suter 2005).

Note that two-frame segmentation can be expressed in
terms of subspace separation (see Section 2.1), since cor-
responding points following the same motion belong to a
subspace of R9 of dimension at most 8 (after a proper rear-
rangement of coordinates), as explained in Li et al. (2013).
Observe also that two-frame segmentation can be cast to a
multi-model fitting problem (see Section 2.2). Specifically,
motion segmentation can be achieved by fitting multiple fun-
damental matrices to correspondences in two images. Recall
that, if a 3D point undergoes a rigid motion, its projections
in two images are related by a fundamental matrix (Hartley
and Zisserman 2004), with different motions giving rise to
different fundamental matrices.

2.4 Multi-frame Segmentation

Multi-frame segmentation refers to the motion segmentation
problem where multiple (i.e., n ≥ 3) images of a dynamic
scene are available. Compared to the case of two images,
multi-frame segmentation is more challenging due to the
increased number of unknowns. Previous works can be
categorized into threemain groups, namely trajectory cluster-
ing, segmentation with two-frame correspondences and with
unknown correspondences. As shown in Figure 3, this tax-
onomy corresponds to different assumptions made on input
data, which reflects into the applicability of methods in dif-
ferent settings. In particular, stronger assumptions make the
problem easier to deal with, but they also tend to limit the
applicability of a method in real world scenarios.
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2.4.1 Trajectory Clustering

Trajectory clustering refers to the casewhere a set of points is
tracked through a sequence of images, and the task is to group
those trajectories (i.e., multi-frame correspondences) into
different motions. See the right part of Figure 3 for a visual
representation. The typical scenario involves videos with
small motions between consecutive frames, which appear in
surveillance, scene understanding and autonomous driving
(Sabzevari and Scaramuzza 2016; Rubino et al. 2018). Tra-
jectory clustering methods – which are briefly reviewed here
– constitute the majority of works in motion segmentation
literature.

Some approaches (e.g., Vidal et al. 2005; Yan and Polle-
feys 2006; Rao et al. 2010; Elhamifar and Vidal 2013; Liu
et al. 2013; Ji et al. 2015) are based on subspace separation.
Indeed, if an affine camera model is assumed, the point tra-
jectories lie in the union of d subspaces in R2n of dimension
(at most) 4, where d denotes the number of motions and n
denotes the number of images. In a similar way, multi-model
fitting techniques (e.g., Magri and Fusiello 2014; Barath and
Matas 2018) can be exploited to address multi-frame seg-
mentation under the affine camera model, by fitting multiple
subspaces to feature trajectories.

A perspective camera, instead, is used in Li et al. (2013).
More precisely, a joint optimization problem is formulated
based on the SSC algorithm, where all image pairs are
required to share a common sparsity pattern. In Lai et al.
(2017) homographies over consecutive image pairs are sam-
pled in order to build a correlation matrix, which is then
used by spectral clustering (Von Luxburg 2007) to per-
form segmentation. This approach is later extended in Xu
et al. (2018) where multiple models (affine, fundamental and
homography) are combined to get an improved segmentation.
Different approaches are analyzed to reach such task, namely
Co-Regularization (Coreg) (Kumar et al. 2011),KernelAddi-
tion (KerAdd) (Cortes et al. 2009), and Subset Constrained
Clustering (Subset) (Wang et al. 2014). The main limitation
of these approaches is that trajectories are seldom available in
practice. For example, in the popular Hopkins dataset (Tron
and Vidal 2007) – which has been extensively used in the
literature – the input trajectories are not fully realistic since
they were filtered with manual operations.

2.4.2 Segmentation with Two-Frame Correspondences

The task of segmentation with two-frame correspondences
is to group image points (e.g., SIFT keypoints Lowe (2004))
into different motions, assuming the knowledge of matches
between pairs of images (i.e., two-frame correspondences).
See the middle of Figure 3 for a visual representation. The
typical scenario involves unstructured/unordered image col-
lections with large motions between different frames (e.g.,

the indoor scenes used in Arrigoni and Pajdla (2019a)). A
possible application is multi-body structure from motion
(Saputra et al. 2018), that is a generalization of structure from
motion to the dynamic case, where bothmotion segmentation
and 3D reconstruction have to be solved.

Motion segmentation with two-frame correspondences is
addressed in Arrigoni and Pajdla (2019a) and our paper only.
Despite poorly studied, this problem has a great practical rel-
evance since it does not assume the knowledge ofmulti-frame
correspondences, which are hard to compute when moving
objects are present. The most natural way to address this task
is in two steps: first, segmentation is solved independently on
different image pairs; then, such partial results are properly
combined in order to get a multi-frame segmentation. Con-
cerning thefirst step, awealth of approaches are available (see
Section 2.3). Concerning the second step, a Linear Algebra
formulation is proposed in Arrigoni and Pajdla (2019a) such
that the unknown multi-frame segmentation is recovered
from the spectral decomposition of a proper binary matrix.
This method can be viewed as a special case of spectral clus-
tering (VonLuxburg 2007).Our paper shares similaritieswith
Arrigoni and Pajdla (2019a), for it also adopts a two-step
formulation, as explained in Section 3. However, we use a
different approach to merge multiple two-frame segmenta-
tions (which is detailed in Section 4), resulting in significant
improvement in performance, as shown in Section 6.

2.4.3 Segmentation with Unknown Correspondences

Suppose that a set of image points (e.g., SIFT keypoints) is
given with unknown correspondences, and the task is to com-
pute multi-frame correspondences while at the same time
grouping those trajectories according to different motions.
See the left part of Figure 3 for a visual representation. Seg-
mentation with unknown correspondences is addressed in Ji
et al. (2014) and Wang et al. (2018) only. The former uses
the Alternating Direction Method of Multipliers (ADMM)
to jointly perform multi-frame segmentation and tracking,
whereas the latter solves the problem via alternating opti-
mization. Observe that the absence of correspondences is a
very weak assumption which makes motion segmentation
very difficult, due to the large number of unknowns. For this
reason, existing solutions are not practical yet: in Ji et al.
(2014), Wang et al. (2018) the maximum number of trajec-
tories is set to 200 due to algorithmic complexity.

2.5 Video Object Segmentation

The task of video object segmentation (Yao et al. 2020) is
detecting pixels corresponding to moving objects in a video,
i.e., extracting segments that respect object boundaries, as
well as associating object pixels temporally whenever they
appear in the video. Some approaches (e.g., Bideau and
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Learned-Miller 2016, 2018; Lin et al. 2018; Tokmakov et al.
2019) classify pixels as either moving or part of the back-
ground, but no distinction is made between separate moving
objects. Other approaches, instead, give a separate label to
each independently moving object (e.g., Keuper et al. 2015;
Keuper 2017; Bideau et al. 2018; Dave et al. 2019; Keu-
per et al. 2020). In general, there is no restriction to rigid
motions, but deformable or articulated objects are admissible
(as happens, e.g., in the Freiburg-Berkeley Motion Segmen-
tation (FBMS-59) dataset (Ochs et al. 2014) or the Moving
Camouflaged Animals (MoCA) benchmark (Lamdouar et al.
2020)). Another example is the popular DAVIS benchmark
(Perazzi et al. 2016), which will be discussed in Section 6.6.
We refer the reader to the recent survey (Yao et al. 2020) for
more details and references on video object segmentation.

Video object segmentation can be viewed as a motion seg-
mentation problem where the input is in the form of dense
optical flow instead of sparse data (which, in turn, can be
either key-points alone or trajectories or two-frame corre-
spondences). Accordingly, the output is in the formof a dense
segmentation (namely eachpixel is given a label).On the con-
trary, both our approach andmethods reviewed in Section 2.4
associate labels with sparse key-points. Note also that video
object segmentation has a clear sequential component, being
based on videos, hence it uses much stronger information.
Our approach, instead, is able to segment without tempo-
ral continuity as it works with unstructured and unordered
datasets.

We discuss here in more detail the methods developed in
Bideau and Learned-Miller (2016), Bideau et al. (2018) since
they exploit two-frame results, similarly to our technique. In
particular, they exploit consecutive frames and they formu-
late video object segmentation in a bayesian framework in
order to compute the likelihood of a 3D motion direction
associated with an optical flow vector, so as to maximize
the information about how objects are moving differently.
In Bideau and Learned-Miller (2016) the background region
and a set of rigid motions are estimated, which are used as an
initialization in Bideau et al. (2018). The authors of Bideau
et al. (2018) also exploit semantic segmentation in order to
assemblemultiple rigidmotions into complex (possibly flexi-
ble) objects. Observe that (Bideau and Learned-Miller 2016;
Bideau et al. 2018) are different than our method as they
work within a causal framework, in the sense that informa-
tion from the previous time step is used as prior information
for the current time step.

2.6 Synchronization

We conclude this section with a brief explanation of the syn-
chronization problem,which inspired our approach. The goal
of synchronization is to infer the unknown states of a network
of nodes,where only the ratio (or difference) between pairs of

Fig. 4 The permutation synchronization problem. The task is to recover
unknown absolute/global permutations (on the nodes) starting from
known pairwise/relative permutations (on the edges)

states can be measured (Singer 2011; Arrigoni and Fusiello
2020). States are usually represented by elements of a group,
such as the set of permutations or the set of Euclidean trans-
formations. The former can represent local labels of a set
of features, as it occurs in multi-view matching applications
(Pachauri et al. 2013; Birdal and Simsekli 2019). The latter
can represent camera reference frames (e.g., in the context
of structure from motion (Govindu 2004; Hartley et al. 2011,
2013) or pose graph optimization (Carlone et al. 2015; Rosen
et al. 2017)), or local coordinates of 3D point clouds when
dealing with 3D registration (Torsello et al. 2011; Bernard
et al. 2015; Arrigoni et al. 2016). Another application is
image mosaicking, where states are represented as homo-
graphies (Schroeder et al. 2011; Santellani et al. 2018).

The synchronization problem can be modeled as a graph
where nodes correspond to the unknown states and edges
encode the pairwise measures, as shown in Figure 4. In other
terms, each input measure involves a pair of nodes at a time.
This means that the synchronization framework addresses
a given Computer Vision application in two steps: first, the
problem is solved for each pair of nodes in isolation, thus
the original task is split into smaller subproblems which are
easier to solve; then, these local results are combined by
exploiting redundancy and seeking for error compensation.

Our paper is related to synchronization in two respects.
First of all, we employ a two-step formulation of seg-
mentation (see Section 3), which is similar in principle
to synchronization methods. In particular, our approach –
which recovers the segmentation of one image at a time (as
explained in Section 4) – presents similarities with (Torsello
et al. 2011; Hartley et al. 2011), which estimate the trans-
formation of one camera/point-cloud at a time. Secondly, we
use a specific synchronization routine (namely permutation
synchronization) within our method, as it will be clarified
in Section 4. The topic of permutation synchronization is
explained in more detail in Appendix B.
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Table 1 Main variables used in this paper

n Number of images

d Number of motions

i, j, k Variables used to index images

r , h, l Variables used to index key-points

pi Number of key-points in image i

p Total number of key-points over all the images

si Total segmentation of image i

α, β, γ Variables used to index pairs of images

mα Number of matches in pair α

tα Partial segmentation of pair α

sαi Estimate of total segmentation of image i derived
from pair α

Pα Absolute permutation of pair α

Pαβ Relative permutation between pairs α and β

Ti Set of all the pairs involving image i

3 Problem Formulation

In this section we formulate the motion segmentation prob-
lem with two-frame correspondences, which is the focus of
our work. The proposed formulation is based on the notions
of total and partial segmentations. See Table 1 for a summary
of our notation.

Let n denote the number of images and let d denote the
number of motions. Suppose that a number pi of key-points
is found in image i using a feature extraction algorithm (e.g.,
SIFT Lowe 2004), so that the total amount of points over
all the images is given by p = ∑n

i=1 pi . In this paper we
assume that the number of motions is known and constant
over frames. Some insights about how to extend our approach
to the case of an unknown number of motions are given in
Section 6.7. We also assume that points have been matched
in image pairs. Note that the knowledge of those correspon-
dences, which involve two images at a time, is a weaker
assumption than the presence of tracks, which involve all the
images simultaneously, as already observed in Section 2.4.

The total segmentation of image i is denoted by:

si ∈ {0, 1, . . . , d}pi (1)

and it represents the labels of points in the i-th image:

– labels from 1 to d identify the membership to a specific
motion;

– the zero label identifies the unclassified points, namely
those points whose motion can not be established due to
missing or wrong correspondences.

The meaning of the zero label will be further clarified in
Remark 1. Observe that total segmentations – which consti-

Fig. 5 A set of points is detected in multiple images and the goal is to
assign them a label (blue or yellow) based on the moving object (star
or cloud) they belong to (Color figure online)

tute our desired output – are an absolute representation of
motion segmentation as they represent labels of points with
respect to a global numbering of motions. See Figure 5 for a
visual representation.

Let us consider an image pair, which is denoted by α =
(i, j). Hereafter Greek letters are used to denote pairs of
images. Suppose that mα ≤ min{pi , p j } correspondences
have been found with a matching algorithm (e.g., SIFT Lowe
2004). Hence, it is possible to run a two-frame segmenta-
tion method which groups those correspondences according
to d motions. The topic of two-frame segmentation is out
of the scope of this paper and we refer the reader to Sec-
tion 2.3 for an overview of existing approaches. Observe that
those methods require rigid motions as they exploit the fun-
damental matrix model, hence our approach inherits such an
assumption. The partial segmentation of the pair α = (i, j)
is denoted by

tα ∈ {0, 1, . . . , d}mα (2)

and it represents the labels of corresponding points in the i-th
and j-th images:

– Labels from 1 to d identify the membership to a specific
motion;

– The zero label identifies those correspondences which
are labelled as outlier1 by the chosen two-frame segmen-
tation method.

Observe that a partial segmentation is a local representation
of motion segmentation, as it reveals which points in two
images belong to the same motion, but it does not reveal
which motion it is with respect to the remaining images.
See Figure 6 for a visualization. Observe also that it is a
partial representation: if we consider image i , for instance,
then there is a label only for those points in image i which
have a correspondence in image j , whereas remaining points
(if any) are not labelled.

Thus motion segmentation with two-frame correspon-
dences can be reduced to the problem of estimating the total
segmentations of all the images, starting from a set of known
partial segmentations. Observe that such a set is redundant

1 It is expected that such outliers correspond to actual mismatches.
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(a) (b)

(c) (d)

Fig. 6 Motion segmentation is performed on image pairs (with possible
errors). The same motion (star or cloud) may be given a different label
(blue or yellow) in different pairs (Color figure online)

Fig. 7 Outline of the proposed method

in most practical scenarios, as a given image usually appears
in different pairs. Redundancy is the key to manage noise
and outliers, as will be shown in Section 6. Hence we have
to face the problem of how to assign a unique/global label to
all the points, such that the constraints coming from pairwise
segmentation are best satisfied. The next section will explain
the proposed approach.

4 ProposedMethod

In this section we present our solution to motion segmenta-
tion. Our method, which is summarized in Figure 7, takes as
input several (independently computed) two-frame segmen-
tations, which are properly exploited in order to produce the
desired multi-frame segmentation.

Recall that the task is to estimate the total segmentations
s1, . . . , sn starting from the knowledge of partial segmenta-
tions tα, tβ, . . . (associatedwith some image pairsα, β, . . . ).
Our key observation is that the partial segmentation tα ∈
{0, 1, . . . , d}mα gives rise to two vectors

sαi ∈ {0, 1, . . . , d}pi
sαj ∈ {0, 1, . . . , d}p j

(3)

which contain labels of corresponding points in images i
and j , where missing correspondences are given the zero
label. The superscript in Equation (3) refers to an image pair

Fig. 8 A possible solution for the total segmentation of image 2 is
given by each partial segmentation where image 2 is involved. The
same motion (star or cloud) may be given a different label (blue or
yellow) in different pairs (Color figure online)

α = (i, j) whereas subscripts refer to individual images in
the pair. This implies that, if we fix one image, then several
estimates are available for its total segmentation, as shown
in Figure 8. In particular, the amount of estimates is equal to
the number of pairs where the chosen image is involved.

However, using such estimates is not straightforward, as
two challenges have to be addressed:

– Ambiguity: each partial segmentation considers its own
labelling of the motions, meaning that the same motion
may have a different label in different pairs (see Figure 6);

– Robustness: each partial segmentation may contain
errors, which in turn can be caused bymismatches and/or
by failure of the method used for two-frame segmenta-
tion; moreover, some points may not have a label in a few
pairs due to missing correspondences.

In the next paragraphs we will explain how to address these
issues.

4.1 Ambiguity

In order to address the ambiguity challenge, we exploit a
graph representation of the problem. Let us construct a graph
G = (V, E) with vertex set V and edge set E as follows:

– Each vertex corresponds to one pair of images;
– An edge is present between two vertices if and only if the
associated pairs have one image in common.

Each vertex in the graph corresponds to an unknown permu-
tation, as shown in Figure 9. Let Pα denote the permutation
matrix associated with vertex α, which corresponds to pair
α. The interpretation is that – after applying Pα to the par-
tial segmentation tα – the ambiguity in the local labelling of
motions is fixed, so that the same motion has the same label
in different pairs. Observe that the involved permutations are
represented as (square) d×d matrices since we are assuming
that the number of motions is known and constant over all
the frames.

Each edge in the graph corresponds to a known permuta-
tion derived as follows. Let k be a common image between
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Fig. 9 The graph formulation of the permutation synchronization prob-
lem. The vertices represent unknown permutations associated with
image pairs. The edges represent known permutations between partial
segmentations (Color figure online)

pairs α and β (i.e., k ∈ α∩β) and let Pαβ denote the permuta-
tion matrix associated with the edge (α, β), that is computed
as follows:

Pαβ = bestMap (sαk , sβk ). (4)

Equation (4)means that Pαβ is the permutation that bestmaps
the vector sαk (i.e., labels of image k in pair α) into the vector

sβk (i.e., labels of image k in pair β). Recall that sαk and sβk are
recovered from tα and tβ respectively via Equation (3), which
in turn requires the knowledge of pairwise correspondences.
Finding Pαβ is a linear assignment problem, which can be
solved (for instance) with the Hungarian algorithm (Kuhn
1955). See Appendix A for more details.

To sum up, we have to address the problem of recovering
an unknown permutation Pα for each vertex α ∈ V starting
from a (redundant) set of permutations Pαβ with (α, β) ∈ E .
Such matrices satisfy the following consistency constraint

Pαβ = PαP
T
β (5)

which defines a permutation synchronization problem
(Pachauri et al. 2013). In other terms, the task is to con-
nect motions across multiple image pairs. Equation (5) can
be solved via spectral decomposition (Pachauri et al. 2013)
(see Appendix B for more details).

At this point, the permutation Pα is applied to the partial
segmentation tα for each pair α. This has the effect of (pos-
sibly) reshuffling the labels of motions in individual pairs so
that the permutation ambiguity is fixed, i.e., the same motion
has the same label in different pairs.

4.2 Robustness

We now explain how to deal with errors in individual par-
tial segmentations, thus addressing the robustness challenge
mentioned above.

Fig. 10 After solving a permutation synchronization problem, several
estimates for the total segmentation of image 2 are available, where
the same motion (star or cloud) has the same label (blue or yellow) in
different pairs (Color figure online)

Recall that Equation (3) means that each partial segmen-
tation provides a possible solution for the total segmentation
of the two images involved in the pair. Thus, for a given
image, several solutions are available for its total segmenta-
tion, which are given by {sαi s.t. α ∈ Ti }. Here Ti denotes the
set of all the pairs involving image i . See Figure 10 for an
example.

In order to assign a label to each point, the followingvoting
criterion is used

si [r ] = mode {sαi [r ] s.t. α ∈ Ti , sαi [r ] �= 0} (6)

with r = 1, . . . , pi and i = 1, . . . , n. The idea is that the
most frequent label (i.e. the mode) is, in general, correct in
the presence of moderate noise. Observe that both missing
correspondences and points labelled as outlier (if any) are
ignored (i.e., the mode is computed over remaining points),
as stated by the condition sαi [r ] �= 0. We set si [r ] = 0 (i.e.,
point r in image i is not labelled) in the case where sαi [r ] = 0
for all α ∈ Ti , meaning that the point is either missing or
classified as outlier in all the pairs. For the sake of robustness,
we require that the mode is equal to (at least) two measures,
otherwise the point is given the zero label.

Equation (6) is applied to all the points in all the images,
thus producing the sought total segmentations s1, s2 . . . , sn .
As long as the algorithm used for two-frame segmentation
correctly classifies all the points in most pairs, this procedure
works well, as confirmed by experiments in Section 6.

Remark 1 When performing two-frame segmentation, it is
expected that wrong correspondences are classified as outlier
by the chosen algorithm (i.e., they are given the zero label).
When dealing with total segmentations, instead, the situation
is different: in principle, outliers do not exist since each image
point actually belongs to a motion. However, in the presence
of high corruption in the input correspondences, one may not
be able to assign a valid label to all the points. Indeed, it may
happen that a point is mismatched (and hence assigned the
zero label) in all the pairs, so that there is no valid information
to classify it. Such points are expected to have zero label in
the total segmentation. However, since they are not actual
outliers, wewill refer to themas “unclassified” or “unknown”
in the experiments.
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Remark 2 We conclude this section with a few comments
about how our approach manages missing data. In general,
we expect that not all points are visible across different image
pairs. For instance, if some points from image 2 are present in
pair (2,3) but they are missing in pair (1,2), it means that the
amount of data that is being used in Equation (4) is reduced.
However, as long as we have at least one observation per
motion, it is possible to recover the sought d×d permutation
matrix via a linear assignment problem (see Appendix A).
Concerning robust voting, it is easy to see that missing mea-
sures do not have any impact, as they are ignored when
computing the mode in Equation (6) (see also Figure 10,
where we can appreciate a missing label in the middle pair).
Of course, the more observations we have, the better it is, as
redundancy promotes error compensation.

5 Spatial Refinement

In this section we explain how the output of our approach
– henceforth named Mode– can be improved by including
spatial contiguity constraints. The usage of spatial priors is
common in a wide spectrum of applications (e.g., Tombari
and Di Stefano 2011; Delong et al. 2012b).

Recall that our method takes as input multiple two-frame
segmentations, which are exploited in a suitable way in order
to return a multi-frame segmentation (see Fig. 5). It is worth
noting that in this way the actual coordinates of image points
are not used anymore after two-frame segmentation, since
only labels matter for the final segmentation.

Our method provides good results on a variety of motion
segmentation datasets, as it will be shown in Section 6. How-
ever, a few points may be assigned the wrong label in some
cases. The key observation is as follows: incorrectly classi-
fied points are not concentrated around a few locations, but
they are sparse over the image plane, as shown in Figure 11
(see also Figures 20 and 21 for further examples). As a con-
sequence, this issue can be easily mitigated by introducing
spatial coherence, whichmakes use of point coordinates. The
idea is that neighbouring points are often known to belong
to the same motion, and should be encouraged to have the
same label.

Accordingly, we propose here to refine the output seg-
mentation obtained by Mode in order to get cleaner results
exhibiting spatial consistency. In order to cover a wide spec-
trum of methodologies, we analyse three different ways to
accomplish such a task:

– greedy approach;
– Constrained spectral clustering;
– Energy minimization.

Fig. 11 Segmentation results are reported for our approach before (left)
and after (right) the spatial refinement, on a sample image from car-
shadow (Perazzi et al. 2016). Different colors correspond to different
motions. In order to better appreciate the differences, points belonging
to the moving car are drawn with a cross (Color figure online)

Such methods are explained in detail in the next para-
graphs and they will be compared experimentally in Sec-
tion 6.5.1. Observe that – with reference to our solution – a
spatial refinement can be regarded as a post-processingwhich
is applied at the end. In order to simplify the explanation, the
aforementioned methods are described for a single image
(with the provision that, in practice, the chosen refinement is
applied to all the images).

5.1 Greedy Approach

Let us consider an image where motion segmentation has
been already solved. A greedy approach to refine such result
is based on the assumption that wrong labels are a minor-
ity and they are sparse over the image, hence we can easily
establish whether a point is correct by checking if its label
agrees with the majority of neighboring points.

More precisely, let us consider a point in an image and let
us consider a ball with radius ε centered at the interest point.
Let us count the percentage of points in the ball which have
the same label as the interest point:

– If that percentage is greater than a threshold τ , then the
interest point is considered correct, and hence its label
remains unchanged;

– Otherwise, the interest point is considered wrong and it
is given the zero label (i.e., it becomes an unclassified
point).

Observe that this approach is local, as the above procedure is
applied to each point individually. Note also that this method
can be regarded as a sort of outlier removal: the amount
of classified points is reduced, in general, but the label of
remaining points (which is likely to be correct) does not
change. The following approaches, instead, optimize over
the labels (i.e., some labels may be modified with respect to
the initial segmentation) while maintaining fixed the amount
of classified points.
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5.2 Constrained Spectral Clustering

We first recall the idea behind constrained spectral cluster-
ing (Shi et al. 2010; Yuan et al. 2019), and then explain
how it can be profitably used to improve the output of our
method.

Spectral clustering is one of the most popular tools to par-
tition a set of points into a (known) number of clusters (Von
Luxburg 2007). Usually, data are represented in terms of an
affinity matrix A, that encodes the similarity between pairs of
points, and the partition is found from the eigenvalue decom-
position of such amatrix.Constrained spectral clustering is a
generalization of spectral clustering where additional infor-
mation provided by the user is exploited (Yuan et al. 2019).
For example, assume that some points are believed to belong
to the same cluster, one thus expects the final result to be con-
sistent with this prior knowledge. This is typically modelled
with a constraint matrix C defined as follows:

– [C]hl = 1 if point h and point l are to be in the same
cluster;

– [C]hl = 0 otherwise.

A possible way to incorporate the above constraints into the
spectral clustering algorithm is to replace the affinity matrix
Awith theweighted sumbetween A and the constraintmatrix
C (Shi et al. 2010), namely

(1 − δ)A + δC . (7)

Here δ ∈ [0, 1] denotes a parameter that balances the trade-
off betweenmaximizing cluster homogeneity and preserving
the constraints of the data.When δ approaches zero, the solu-
tion ismore biased towardsmaximizing the feature similarity
whereas when δ approaches one, it is more biased towards
preserving the constraints.

Wenowexplain howconstrained spectral clustering canbe
applied to our specific problem. Let us focus on a given image
and let us consider the segmentation produced by Mode on
that image, which clusters key-points according to differ-
ent motions: such segmentation can be interpreted as a prior
knowledge, which is encoded in the constraint matrixC . The
affinity matrix A, instead, models spatial coherence:

– [A]hl ≈ 1 if point h and point l are spatially adjacent;
– [A]hl ≈ 0 otherwise.

One example is the exponential kernel:

[A]hl = exp
(

− ||xh − xl ||2
2σ 2

)
(8)

where xh and xl denote the coordinates (in the image plane)
of points h and l, respectively. By considering the weighted
sum in Equation (7) we are taking into account both the
spatial relationships and the segmentation produced by our
method. Standard spectral clustering is then applied, which
is expected to produce improved results. This procedure
is applied to each image individually, where points with a
valid label are considered only (i.e., unclassified points are
ignored).

5.3 EnergyMinimization

We now turn our attention to the last approach we consider to
perform a spatial refinement, namely energy minimization.
We start with a brief overview of this topic and then explain
how it can be applied to our problem.

In a labeling problem we are given a set of observations
(e.g., data points) and a finite set of labels (e.g., categories or
geometric models), and the goal is to assign each observation
a label such that some objective function (which is called
energy) is minimized. Let f denote the sought labelling,
where f[h] denotes the label of point h. Typically, the energy
has the following form:

E(f) =
q∑

h=1

D(f[h]) +
∑

(h,l)∈N
V (f[h], f[l]). (9)

The first term in the above equation represents a data cost,
which sums the contributions of all the points, where q
denotes the number of points. The second term is a regu-
larizer encouraging spatial coherence, which is called the
smooth cost: each addend penalizes f[h] �= f[l] in some
manner, whereN denotes the set of neighbors. Equation (9)
can be optimized effectively with the α-expansion algorithm
(Boykov et al. 2001). In some applications an additional term
(named the label cost) is included in Equation (9), which
penalizes overly-complex models, thus preferring to explain
the data with fewer labels (Delong et al. 2012b). However,
we do not consider such term here as we assume that the
number of motions is known a priori.

We now explain how to employ energy minimization in
order to improve the segmentation results obtained with
Mode. Let f init denote the segmentation produced by our
approach for an image,where unclassified points are ignored.
We consider the following data cost:

D(f[h]) =
{

γ if f[h] = f init[h]
0 otherwise

(10)

where labels different from the initial values are penalized
via the parameter γ . In order to define the set of neighbors
N , we use the “k-nearest neighbor” strategy, namely each
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point is connected to its k nearest points with respect to the
Euclidean distance. Concerning the smooth cost, we employ
Potts model (Kohli et al. 2007), which penalizes neighboring
points with different labels, namely

V (f[h], f[l]) =
{
1 if f[h] = f[l]
0 otherwise.

(11)

Recall that the smooth cost in Equation (9) counts contribu-
tions over neighboring points only. We use the α-expansion
algorithm (Boykov et al. 2001) to minimize the combined
energy, thus producing an improved segmentation for the
chosen image, and this procedure is repeated for all the
images.

6 Experiments

In order to evaluate the performance of the proposed
approach, we report experiments on both synthetic data and
real images, considering both indoor and outdoor scenes.
Our main focus is on motion segmentation with sparse and
unstructured datasets, motivated bymultibody structure from
motion. However, we also consider datasets coming from
video sequences in order to see what can be done with a
method that does not use temporal information. We con-
centrate on datasets involving rigid (or approximately rigid)
motions only, since our technique manages multiple rigidly
moving objects via the fundamental matrix model, but it is
not designed for highly non-rigid or deformable objects. The
Matlab implementation of our method – named Mode– is
available on the web.2

6.1 Setup

Since our approach addressesmotion segmentationwith two-
frame correspondences,we focus onmethods considering the
same assumptions in order to provide a fair comparison (see
Section 2.4.2). In addition to Synch (Arrigoni and Pajdla
2019a), we also consider a trivial solution (named theBase-
line), which permits to make interesting observations about
how our approach exploits redundancy. To summarize, we
consider the following competitors:

– Synch (Arrigoni and Pajdla 2019a) starts from multi-
ple two-frame segmentations, similarly to our approach;
then, it derives the unknown segmentation from the spec-
tral decomposition of a big binary matrix, which is
properly constructed from the input two-frame segmen-
tations; this method can be viewed as a special case of

2 https://github.com/federica-arrigoni/ICCV_19.

spectral clustering or as a “synchronization” (Arrigoni
and Fusiello 2020) of binary matrices;

– the Baseline is a trivial solution constructed as follows:
first, a maximum-weight spanning tree is built, where the
underlying graph has a node for each image and edges are
weighted with the number of (inlier) correspondences;
secondly, the results from two-frame segmentation are
exploited to segment each image along the tree, where
the global numbering of motions is fixed at the root and
sequentially propagated to the leaves.

Mode, Synch, and the Baseline require a set of two-frame
segmentations as input, which are computed as follows. For
each image pair, Robust Preference Analysis (RPA) (Magri
and Fusiello 2015) is used in order to fit multiple fundamen-
tal matrices to correspondences. RPA combines principles
of robust principal component analysis (Lin et al. 2010) and
non-negative matrix factorization (Kuang et al. 2014), in
order to extract multiple models from data corruputed by
outliers. The RPA code is available online.3 In our experi-
mentswe use default values specified in the original paper for
each algorithmic parameter. See Section 2.3 for more details
about the connection between two-frame segmentation and
multi-model fitting.

In order to enrich the evaluation, we also consider two
techniques performing trajectory clustering:

– RSIM (Ji et al. 2015) provides a robust solution to sub-
space separation (see Section 2.1) and it comes with a
public implementation;4

– Subset (Xu et al. 2018) can be regarded as the current
state of the art in trajectory clustering, with mean error
of 0.31% on the Hopkins155 benchmark (Tron and Vidal
2007) (see Tab. 2); the code is available online.5

Recall that trajectory clustering is a different task than the
one addressed in this paper (see Figure 3), hence a compar-
ison with RSIM and Subset is not entirely fair. However,
by considering trajectory clustering methods and datasets,
it is possible to give interesting insights about how meth-
ods designed for a specific problem behave when applied to
another (related) task.

Techniques addressing video object segmentation (e.g.,
Keuper 2017; Bideau et al. 2018) are not included in the
comparison, since they require a much different input (dense
optical flow), as explained in Section 2.5.

Similarly to most works in segmentation literature, we
assume that the number of motions is known in advance and

3 http://www.diegm.uniud.it/fusiello/demo/rpa/.
4 https://github.com/panji1990/Robust-shape-interaction-matrix.
5 https://alex-xun-xu.github.io/ProjectPage/CVPR_18/.
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we give this value as input to all the analysed techniques.
We discuss how to extend our approach to the case of an
unknown number of motions in Section 6.7.

6.2 Hopkins Datasets

The Hopkins155 benchmark (Tron and Vidal 2007) com-
prises 155 sequences of indoor and outdoor scenes with two
or three motions, which are categorized into checkerboard,
traffic and articulated/nonrigid sequences. The Hopkins12
dataset (Vidal et al. 2008) provides 12 additional sequences
with missing data. We emphasize that these datasets are
designed for trajectory clustering, as they provide (cleaned)
tracks over multiple images. Hence, they are not suitable for
the task addressed in this paper, which is segmentation with
two-frame correspondences. However, we report results on
these sequences since they are widely used in the literature.

Accordingly, particular care needs to be taken into account
for properly running our approach, theBaseline and Synch,
as they make different assumptions than trajectory clustering
methods. In order to produce the input, (noise-free) two-
frame correspondences can be straightforwardly computed
from the available trajectories. Concerning the output, recall
that Mode, Synch and the Baseline classify image points,
thus a scheme that assigns a unique label to each track is
required. To accomplish such a task, we use the same crite-
rion as the one developed in Section 4.2 to label each image
point given multiple measures derived from two-frame seg-
mentations: we assign to each track the mode of the labels of
points belonging to the track.

Since ground-truth segmentation is available, we can pro-
vide a quantitative evaluation. In particular, we measure
performance in terms of misclassification error, that is the
percentage of misclassified tracks, as it is customary in
motion segmentation literature. Tracks labelled as zero (if
any) are counted as errors, since there are no outliers in these
datasets.

Results are reported in Tab. 2 and Tab. 3 where Mode is
compared to several motion segmentation algorithms. Our
approach clearly outperforms Synch and the Baseline,
which address motion segmentation with two-frame corre-
spondences. Observe also that Mode performs comparably
or better than most trajectory clustering techniques, with a
mean error of 1.37% over all the sequences in Hopkins155
and a median error of 0.38% over all the sequences in Hop-
kins12. In particular, it is noticeable that ourmethod achieves
(nearly) zero error in 139out of 155 sequences inHopkins155
and in 10 out of 12 sequences in Hopkins12, as shown in
Figure 12. By manual inspection, it was found that in the
remaining sequences the algorithm used for two-frame seg-
mentation (RPA) performed bad in most image pairs.

The fact that Mode is not the best is not surprising since
we are making much weaker assumptions (matches between
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image pairs instead of tracks over multiple images), i.e., we
are addressing a more difficult task, as already observed in
Section 2.4.2. Observe also that our approach is robust, hence
it is naturally sub-optimal in scenarios where outliers are
absent (as happens in the Hopkins benchmark). Neverthe-
less, our method achieves good performances. In general,
there is no reason to use our method when trajectories are
available and one out of the best traditional methods (e.g.
Ji et al. 2015; Lai et al. 2017; Xu et al. 2018) can be used.
Our method, instead, is designed for the scenario where two-
frame correspondences are available only.

We now focus on the spatial refinement and analyse three
different solutions, namely a greedy approach, constrained
spectral clustering and energy minimization. As explained
in Section 5, such techniques can be viewed as a “post-
processing” to be applied to the output of Mode, thus we
get three different versions of our method:

– Mode-G (our method + greedy approach)
– Mode-S (our method + constrained spectral clustering)
– Mode-E (our method + energy minimization).

In our experiments we use τ = 0.7, ε = 30 pixels, δ = 0.6,
γ = 10 and k = 10 (see Section 5 for more details).

Results are given in Table 4, which reports the misclassifi-
cation error for the aforementioned methods. As a reference,
results for Mode are also included, which are copied from
Tables 2 and 3 . From Table 4 we can appreciate that the spa-
tial refinement does not cause a significant improvement on
the Hopkins benchmark. This phenomenon agrees with the
intuition that such a refinement works well when there are
sparse errors over the image plane, but it is not able to correct
gross errors in the segmentation. Recall that, as shown in the
histograms in Figure 12, our method is either very accurate
or it performs poorly due to wrong two-frame segmentations.
We will see in Sections 6.5.1 and 6.6 some scenarios where
the spatial refinement can be profitably applied.

6.3 MTPV62 Benchmark

TheMTPV62 dataset Li et al. (2013) comprises 62 sequences
with two or three motions with strong perspective effects.
Similarly to the Hopkins benchmark, this dataset has been
developed for trajectory clustering, hence it is considered
here as a reference only, for it does not represent the target
application of our method.

Results are given in Table 5, which reports the misclassifi-
cation error achieved by several segmentation algorithms.We
can observe that Mode is significantly better than its closest
competitors (namely Synch and the Baseline) and that the
spatial refinement does not bring a significant improvement
on this dataset. Concerning trajectory clustering methods,
our approach outperforms GPCA (Vidal et al. 2005), ALC
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Fig. 12 Histograms of misclassification errors achieved by Synch
(Arrigoni and Pajdla 2019a), Mode, and the Baseline on the Hop-
kins155 (Tron and Vidal 2007) and Hopkins12 (Vidal et al. 2008)
datasets. The horizontal axis corresponds to a possible misclassifica-

tion error in an individual sequence, and the vertical axis corresponds
to the number of sequences where a given error is reached (Color figure
online)

Table 4 Misclassification error
[%] and classified points [%] for
different variants of our
approach on the Hopkins155
(Tron and Vidal 2007) and
Hopkins12 (Vidal et al. 2008)
datasets

Dataset Mode Mode-G Mode-S Mode-E

Hopkins155 2 Motions 1.00 0.88 1.00 0.96

3 Motions 2.67 2.34 2.44 2.63

All 1.37 1.21 1.32 1.34

Hopkins12 Mean 4.33 4.16 4.33 4.35

Median 0.38 0.34 0.38 0.38

The lowest errors are highlighted in bold face

(Rao et al. 2010) and SSC (Elhamifar and Vidal 2013), while
the best performance is achieved by MSSC (Lai et al. 2017)
and Subset (Xu et al. 2018).

The considerations made for the Hopkins datasets apply
equally well to the MTPV62 benchmark: it is worth noting
that our approach works under weaker assumptions than the
best performingmethods, beingdesigned formotion segmen-
tation with two-frame correspondences. The next sections
will demonstrate the advantages of our approach for this spe-
cific task.

6.4 Simulated Data

In order to study the robustness to mismatches of our
approach, we consider four sequences from the Hopkins155
dataset, namely 1R2RCR_g12, 2RT3RTCRT, cars2_06 and
cars1, whose properties are summarized in Tab. 6. Noise-free
pairwise matches are obtained from the available trajectories
and synthetic errors are added to these correspondences in
order to produce mismatches. More precisely, in each image
pair we perform the following operations: first, we randomly
select a fraction (which ranges from 0 to 0.8 in our exper-
iments) of the correspondences out of the total amount of
matches; secondly, such correspondences are switched via
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a random permutation. This scenario resembles unordered
image collections (e.g. in multibody structure from motion)
where errors are ubiquitous among two-frame correspon-
dences. For each configuration, we repeat the test 10 times
and report averaged results.

As detailed in Section 6.1, the most relevant competitors
are Synch (Arrigoni and Pajdla 2019a) and the Baseline,
which – as our method – address motion segmentation with
two-frame correspondences. In particular, they take the same
input asMode, that is a set of two-frame segmentations com-
puted with RPA (Magri and Fusiello 2015). We also include
in the comparison two methods performing trajectory clus-
tering, namely RSIM (Ji et al. 2015) and Subset (Xu et al.
2018), although not directly comparable to Mode. Observe
that, in order to run such methods on our synthetic data,
we need to compute trajectories from two-frame correspon-
dences. We consider two different techniques to accomplish
such a task, namely StableSfM6 (Olsson and Enqvist 2011)
and QuickMatch7 (Tron et al. 2017).

We measure performance in terms of misclassification
error, which is defined here as the percentage of misclassi-
fied points over the total amount of classified points. In other
words, in contrast to Section 6.2, we evaluate segmentation
results considering only points with a nonzero label (i.e.,
points with zero label do not contribute to the error). Indeed,
due to the presence ofmismatches, onemaynot expect to give
a valid label to all the image points, as observed in Remark 1.
We also compute the percentage of points classified by each
method.

Results are reported in Figure 13, which clearly shows the
robustness tomismatches gained by our approach. In particu-
lar, it is remarkable that the error remains about 0%until 60%
ofmismatches in the cars1 sequence.Mode is comparable to
Synch and significantly better than theBaseline in terms of
misclassification error, and it classifies more points than its
closest competitors. The low amount of data labelled by the
Baseline can be explained by observing that it uses results
from a tree only, whereas both Mode and Synch exploit all
the available image pairs (which are redundant) in order to
produce the final segmentation.

Concerning trajectory clusteringmethods, it was found by
inspecting the solution that Subset and RSIM actually clas-
sify all the tracks, and unclassified data correspond to image
points that were not included in any track by the algorithm
used for computing trajectories. Such approaches achieve a
low misclassification error only when mismatches are below
10% and performances degrade with increasing ratio of mis-
matches. Indeed, wrong correspondences propagate into the
tracks making trajectory clustering hard to solve. Notice that

6 http://www.maths.lth.se/matematiklth/personal/calle/sys_paper/
sys_paper.html.
7 https://bitbucket.org/tronroberto/quickshiftmatching.
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Fig. 13 Misclassification error [%] and classified points [%] versus fraction of mismatches for several methods on four sequences from the
Hopkins155 dataset (Tron and Vidal 2007). In this experiment, synthetic errors are introduced among two-frame correspondences (Color figure
online)

Table 6 The category of the scene, the number ofmotionsd, the number
of images n, and the total number of image points p are reported for
four sequences from Hopkins155 (Tron and Vidal 2007)

Dataset Category d n p

1R2RCR_g12 checkerboard 2 24 3672

2RT3RTCRT checkerboard 3 23 8211

cars1 traffic 2 20 6140

cars2_06 traffic 3 15 1845

a track can even contain points of different motions, in which
case errors in the output segmentation appear by assigning
a unique label to the entire track. This clearly motivates the
need of specific methods – such as the one proposed in this
paper – for motion segmentation from raw pairwise matches.

In order to give further insights on segmentation with
two-frame correspondences, we provide some analysis that
illustrates the behaviour of RPA (Magri and Fusiello 2015) –
that produces the input toMode, Synch and the Baseline–
as a function of the ratio of mismatches. More precisely,
we evaluate the ability of RPA to detect errors in the orig-
inal correspondences. We consider the false positive rate,
that is the fraction of good matches erroneously classified
as outliers, and the true positive rate, that is the fraction of
wrongmatches correctly classified as outliers, where outliers
are correspondences with zero labels and inliers are corre-
spondences with a nonzero label (regardless of the class).
We also consider the precision, that is the fraction of good
matches among the ones classified as inliers, which gives an
idea about the effective amount of mismatches that survive
after performing two-frame segmentation. These statistics
are reported in Figure 14, which shows that RPA is robust
to errors among correspondences, without presenting sig-
nificative differences between the analysed sequences. In

particular, it is worth noting that the true positive rate and
the precision remain above 80%, while the true positive rate
remains below 10% with up to 50% of mismatches.

Despite performances of RPA are generally good, some
mismatches still remain, which may influence our approach.
Indeed, correspondences are taken into account in Equation
(4). Also false positivesmay influence ourmethod, since they
reduce the amount of nonzero labels that are used in Equation
(6). In addition to this, RPAmay not correctly segment some
points since it lacks theoretical guarantees, thus producing
errors in individual two-frame segmentations. This aspect is
illustrated in Figure 15, which reports the histograms of mis-
classification error achieved by RPA over all the image pairs.
As expected, the histograms shift to the right as the percent-
age of input mismatches increases. Note that RPA produces
errors even in the absence of wrong correspondences (see the
left histogram in Figure 15b). To sum up, Figure 14 together
with Figure 15 give an idea about how hard it is to solve
motion segmentation given results of two-frame segmenta-
tion.Let us consider, for instance, the second to last histogram
in Figure 15a, which corresponds to 60% of mismatches in
cars1. It is worth noting that, despite individual two-frame
segmentations are noisy, our method achieves zero error, as
shown in Figure 13. In other words,Mode is able to success-
fully solve motion segmentation while reducing errors in the
two-frame segmentations, thanks to the fact that it exploits
redundant measures in a principled manner.

Finally, we provide further analysis illustrating what hap-
pens to individual pointswhen running ourmethod. Figure 16
reports coloured bars representing the amount of errors (red),
correct labels (green) and unknown labels (blue) for each
point in a sample image from the cars1 sequence. As the
percentage of wrong correspondences increases, motion seg-
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Fig. 14 False Positive Rate, True Positive Rate and Precision achieved by RPA (Magri and Fusiello 2015) versus fraction of mismatches on four
sequences from Hopkins155 (Tron and Vidal 2007). In this experiment, synthetic errors are introduced among two-frame correspondences (Color
figure online)

Fig. 15 Histograms of misclassification error achieved by RPA (Magri
and Fusiello 2015) on two sequences fromHopkins155 (Tron and Vidal
2007). In this experiment, synthetic errors are introduced among two-
frame correspondences and a single trial is considered. The horizontal

axis corresponds to the misclassification error in an individual image
pair, and the vertical axis corresponds to the number of pairs where a
given error is obtained

mentation becomes more difficult to solve, since the green
area reduces whereas the blue and red ones enlarge. Note
that RPA (Magri and Fusiello 2015) produces errors even
in the absence of mismatches, as shown in Figure 16a. Our
approach classifies all the data except for a few cases where
the blue bars are equal to 1, meaning that the point is labelled
as outlier byRPA in all the pairs. Among the classified points,
Mode provides a correct segmentation as long as the green
bars are sufficiently high.

6.5 Indoor Scenes

In order to evaluate the performance of our approach on real
data, we consider the benchmark proposed in (Arrigoni and
Pajdla (2019b, a)), which provides image pointswith ground-
truth labels and noisy two-frame correspondences (obtained
with SIFT Lowe 2004). Alternative matches (Bian et al.
2017) have been tested with similar results. The dataset pro-
vides 12 indoor scenes with two or three motions counting
from 6 to 10 images. Observe that this benchmark is specific

for motion segmentation with two-frame correspondences,
which is the focus of our paper.

As in Section 6.4, we compare Mode with Synch
(Arrigoni and Pajdla 2019a) and the Baseline, which take
the same input as our approach, namely the results from two-
frame segmentation (obtained with RPA (Magri and Fusiello
2015)). We also consider two trajectory clustering methods,
namely RSIM (Ji et al. 2015) and Subset (Xu et al. 2018),
where StableSfM (Olsson and Enqvist 2011) and Quick-
Match (Tron et al. 2017) are used to compute tracks from
two-frame correspondences.

Results are given in Table 7, which reports both the
misclassification error – defined as the percentage of mis-
classified points over the total amount of classified points
– and the percentage of points labelled by each method.
See also Figures 1 and 18 for qualitative evaluations. There
are no significant differences betweenMode and the Base-
line in terms of misclassification error, however, the former
is superior in terms of the percentage of classified points
since it exploits redundant two-frame segmentations. Both
our method and the Baseline– with a misclassification error
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Fig. 16 The horizontal axis indexes points in a sample image from
cars1 (Tron and Vidal 2007) and a three-color bar is shown for each
point. Bars are divided into three parts which sum to one. The green,
red, and blue parts represent fractions of image pairs where the point is
correctly classified, misclassified, and labeled as outlier, respectively,

by RPA (Magri and Fusiello 2015). For better visualization, points are
sorted increasingly by the height of green bars. A dot is plotted over
each bar to show whether the point is classified by our method correctly
(green), misclassified (red) or labelled as unknown (blue) (Color figure
online)

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 17 Histograms of misclassification error achieved by RPA (Magri
and Fusiello 2015) on indoor scenes (Arrigoni and Pajdla 2019b, a).
Each point in the horizontal axis corresponds to a possible misclassifi-

cation error in an individual image pair, and each point in the vertical
axis corresponds to the number of pairs where a given error is reached

123



International Journal of Computer Vision (2022) 130:696–728 715

Ta
bl
e
7

M
is
cl
as
si
fic
at
io
n
er
ro
r
[%

]
an
d
cl
as
si
fie
d
po
in
ts
[%

]
fo
r
se
ve
ra
lm

et
ho
ds

on
in
do
or

sc
en
es

(A
rr
ig
on
ia
nd

Pa
jd
la
20
19
b,
a)
.T

he
nu
m
be
r
of

m
ot
io
ns

d
,t
he

nu
m
be
r
of

im
ag
es

n,
an
d
th
e
to
ta
l

nu
m
be
r
of

im
ag
e
po
in
ts

p
ar
e
al
so

re
po
rt
ed

fo
r
ea
ch

se
qu
en
ce

D
at
as
et

d
n

p
M
o
d
e

B
a
se
li
n
e

Sy
n
ch

A
rr
ig
on
i

an
d
Pa
jd
la

(2
01
9a
)

St
ab
le
Sf
M

+
Su

bs
et

X
u

et
al
.

(2
01
8)

Q
ui
ck
M
at
ch

+
Su

bs
et

X
u

et
al
.

(2
01
8)

St
ab
le
Sf
M

+
R
SI
M

Ji
et

al
.

(2
01
5)

Q
ui
ck
M
at
ch

+
R
SI
M

Ji
et

al
.

(2
01
5)

E
rr
or

C
la
ss
ifi
ed

E
rr
or

C
la
ss
ifi
ed

E
rr
or

C
la
ss
ifi
ed

E
rr
or

C
la
ss
ifi
ed

E
rr
or

C
la
ss
ifi
ed

E
rr
or

C
la
ss
ifi
ed

E
rr
or

C
la
ss
ifi
ed

Pe
n

2
6

45
50

0.
58

80
.0
7

0.
58

50
.3
7

0.
82

83
.2
3

17
.1
2

99
.3
6

14
.5
7

82
.0
7

13
.9
4

99
.3
6

12
.1
3

82
.0
7

Po
uc
h

2
6

49
71

3.
79

65
.3
4

2.
62

31
.5
2

4.
15

69
.8
9

26
.1
4

99
.6
0

24
.0
9

66
.1
2

32
.6
0

99
.6
0

37
.3
0

66
.1
2

N
ee
dl
ec
ra
ft

2
6

66
17

0.
83

72
.8
1

0.
63

38
.1
9

1.
04

76
.7
6

19
.1
3

99
.6
1

17
.9
7

72
.5
1

23
.5
8

99
.6
1

26
.8
4

72
.5
1

B
is
cu
it
s

2
6

13
15
8

0.
47

84
.4
7

0.
26

51
.8
5

0.
51

87
.2
8

9.
22

99
.4
7

8.
91

82
.4
9

4.
58

99
.4
7

34
.8
7

82
.4
9

C
up
s

2
10

14
66
4

0.
56

65
.4
2

0.
30

39
.1
7

1.
01

69
.8
2

12
.5
3

99
.2
9

12
.9
7

74
.7
5

22
.7
8

99
.2
9

33
.0
9

74
.7
5

Te
a

2
10

32
61
2

0.
29

81
.7
0

0.
47

47
.2
4

28
.1
2

52
.2
1

7.
11

99
.3
7

5.
46

82
.6
7

46
.9
8

99
.3
7

41
.9
9

82
.6
7

Fo
od

2
10

36
72
3

0.
36

76
.1
9

0.
61

39
.4
8

0.
56

80
.6
6

12
.8
6

99
.3
2

13
.8
3

72
.8
5

19
.1
8

99
.3
2

20
.3
8

72
.8
5

Pe
ng
ui
n

2
6

58
65

0.
76

69
.1
7

0.
95

33
.9
5

44
.2
1

46
.9
7

32
.2
7

99
.5
9

41
.0
5

70
.1
1

41
.5
0

99
.5
9

41
.5
4

70
.1
1

F
lo
w
er
s

2
6

77
43

1.
23

73
.6
5

2.
84

32
.7
0

1.
62

77
.2
8

8.
55

99
.5
0

8.
59

72
.5
9

16
.6
5

99
,5
0

14
.2
0

72
.5
9

Pe
nc
il
s

2
6

29
82

3.
80

65
.3
3

2.
30

30
.6
5

27
.5
3

40
.4
4

41
.4
6

99
.5
6

40
.8
8

66
.3
6

23
.0
7

99
.5
6

23
.4
5

66
.3
6

B
ag

2
7

61
14

1.
52

57
.9
5

1.
54

26
.5
6

25
.9
2

54
.2
7

14
.2
2

99
.6
9

15
.6
7

65
.8
5

34
.5
5

99
.6
9

39
.9
2

65
.8
5

B
ea
rs

3
10

15
88
8

4.
82

73
.6
5

2.
72

29
.8
0

38
.9
5

74
.5
9

38
.1
3

99
.5
8

35
.2
1

63
.1
2

49
.4
8

99
.5
8

53
.8
0

63
.1
2

T
he

lo
w
es
te
rr
or
s
ar
e
hi
gh

lig
ht
ed

in
bo

ld
fa
ce

123



716 International Journal of Computer Vision (2022) 130:696–728

(a) (b) (c)

Fig. 18 Segmentation results are reported for several methods on sam-
ple images from indoor scenes (Arrigoni and Pajdla 2019b, a). Different
colours encode the membership to different motions, whereas unclassi-
fied points are not drawn (for better visualization). Concerning Subset

(Xu et al. 2018) and RSIM (Ji et al. 2015), trajectories are computed
with StableSfM. Raw images and ground-truth (GT) segmentation are
also reported (Color figure online)

lower than 5% in all the sequences – are significantly better
than Synch, Subset and RSIM. Trajectory clustering meth-
ods exhibit poor performances on this scenario since they
do not deal with mismatches, confirming the outcome of the
experiments on synthetic data.Observe that Synch, although
being accurate on most cases, fails on 5 out of 12 sequences.
According to the analysis in Arrigoni and Pajdla (2019a), the
cause may be a small spectral gap.

We also test themethod developed in Ji et al. (2014),which
does not require pairwise matches but feature locations and
descriptors only. In other words, it addressesmotion segmen-
tationwith unknowncorrespondences (seeSection2.4.3).We
ran the availableMatlab implementation of Ji et al. (2014) on
the Pencils sequence, but it did not return any solution after
several hours of computation due to “out of memory” error.
We conclude that it does not represent a practical approach
to motion segmentation on the scenarios considered in our
paper.

In order to give further insights on the behavior of our
technique, we report in Figure 17 the histograms of misclas-
sification error achieved by RPA (Magri and Fusiello 2015)
over image pairs, similarly to the synthetic experiments in
Section 6.4. The histograms show the effective amount of
corruption in the data after performing two-frame segmenta-
tionwithRPA,which is the first step of our pipeline.Note that
the misclassification error exceeds 30% in some image pairs
from the Bears sequence. It is noticeable that our approach

achieves a low error on this scene (about 4.8%), as reported in
Tab. 7. In other words,Mode can effectively reduce errors in
the pairwise segmentations thanks to the fact that it exploits
redundant measures.

6.5.1 Spatial Refinement

Table 7 and Figure 18 show that our method produces a
segmentation of high quality in all the sequences. Such
results can be further improved by employing a spatial refine-
ment, which encourages neighbouring points to have the
same label. We evaluate three different solutions for such
a task, which are detailed in Section 5, namely a greedy
approach, constrained spectral clustering and energy mini-
mization. Recall that such techniques can be regarded as a
post-processing to be applied to the output of Mode, thus
we get three different variants of our method:

– Mode-G (our method + greedy approach)
– Mode-S (our method + constrained spectral clustering)
– Mode-E (our method + energy minimization).

In our experiments we use τ = 0.7, ε = 200 pixels, δ = 0.3,
γ = 5 and k = 10. We refer the reader to Section 5 for more
information on the meaning of such parameters.

Results are given in Table 8, which reports both the mis-
classification error and the percentage of classified points
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Table 8 Misclassification error
[%] and classified points [%] for
different variants of our
approach on indoor scenes
(Arrigoni and Pajdla 2019b, a)

Dataset Mode Mode-G Mode-S Mode-E

Error Classified Error Classified Error Classified Error Classified

Pen 0.58 80.07 0.38 79.87 0.60 80.07 0.58 80.07

Pouch 3.79 65.34 0.93 62.48 1.45 65.34 1.14 65.34

Needlecraft 0.83 72.81 0.64 72.64 0.68 72.81 0.60 72.81

Biscuits 0.47 84.47 0.09 84.12 0.13 84.47 0.13 84.47

Cups 0.56 65.42 0.13 65.04 0.34 65.42 0.39 65.42

Tea 0.29 81.70 0.12 81.52 0.17 81.70 0.17 81.70

Food 0.36 76.19 0.04 75.88 0.13 76.19 0.07 76.19

Penguin 0.76 69.17 0.40 68.63 0.69 69.17 0.94 69.17

Flowers 1.23 73.65 0.19 72.79 0.39 73.65 0.18 73.65

Pencils 3.80 65.33 1.11 63.21 2.31 65.33 1.03 65.33

Bag 1.52 57.95 0.74 56.85 1.66 57.95 1.52 57.95

Bears 4.82 73.65 1.93 70.75 3.48 73.65 2.79 73.65

The lowest errors are highlighted in bold face

for the aforementioned methods. As a reference, we also
include results for Mode which are copied from Tab. 7.
All the analyzed techniques are more accurate than Mode.
However, such an improvement is marginal in most cases.
Mode-G achieves the lowest errors in most sequences, but
it also reduces the amount of classified points compared to
Mode. Indeed, it can be regarded as an outlier removal which
discards those points whose label is likely to be wrong, as
already observed in Section 5.1. On the contrary, the amount
of points classified byMode-S orMode-E does not change,
with the latter being slightly better than the former in terms
of accuracy. In conclusion,Mode-E can be viewed as a good
trade-off between accuracy and amount of classified data,
hence we elect Mode-E as our choice and we dropMode-G
and Mode-S in subsequent comparisons.

6.5.2 Multibody Structure fromMotion

Wenowshowcase the application of ourmethod tomultibody
structure frommotion (MBSfM) (Saputra et al. 2018), where
the task is to recover both camera motion (i.e., angular atti-
tudes and positions of the cameras) and scene structure (i.e.,
3D coordinates of the points) from multiple images, for each
independently moving object present in the scene. Observe
that the MBSfM problem requires to solve both motion seg-
mentation and traditional (i.e., static) structure from motion
(SfM), either simultaneously or in a sequence. We follow
the latter approach and sequentially combine our segmenta-
tion solutionwith COLMAP (Schonberger and Frahm2016),
which is a traditional SfM system with public code.8 More
precisely, we proceed as follows:

8 https://colmap.github.io/index.html.

1. given a set of key-points over multiple images with two-
frame correspondences, Mode-E is applied in order to
group image points according to different motions;

2. for each motion, the following operations are
performed:

– only key-points belonging to the considered motion
are used, together with two-frame correspondences
between points within the same motion;

– the data from the previous step are given as input
to COLMAP (Schonberger and Frahm 2016), which
returns both camera motion and a sparse 3D recon-
struction of the moving object.

Observe that COLMAP (as any SfM pipeline) builds tra-
jectories in order to connect the input two-frame cor-
respondences across all the images. In other words, we
are creating multi-frame correspondences after solving
motion segmentation.Trajectory clusteringmethods, instead,
require trajectories before motion segmentation (see Sec-
tion 2.4.1). In general, it is harder to compute trajectories
for a dynamic scene compared to the static case (as done by
COLMAP, where geometric verification can be employed).
This represents an advantage of the scenario considered
in our paper, namely motion segmentation from pairwise
matches.

Results are shown in Table 9, which reports the mean
reprojection error of the proposed MBSfM pipeline, in addi-
tion to the number of reconstructed cameras and the number
of trajectories (or, equivalently, the number of 3D points).
See also Fig 19 for qualitative results. The Pencils sequence
represents a failure case, as COLMAP is not able to produce
a reconstruction for one out of the twomotions, probably due
to the fact that such motion contains very few points. In all
the remaining sequences our pipeline successfully solves the
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Fig. 19 Our method combined with COLMAP (Schonberger and
Frahm 2016) gives rise to a multibody structure from motion pipeline.
The reconstructed cameras and a sparse 3D reconstruction are reported
for two indoor scenes (Arrigoni and Pajdla 2019b, a), where only one
motion is considered. At the bottom, some sample images are reported
together with the segmentation results produced by Mode-E, where
different colors correspond to different motions (Color figure online)

MBSfM problem with high accuracy, as all the cameras get
reconstructed and the mean reprojection error is lower than
1 pixel in most cases.

6.6 Outdoor Scenes

We conclude our experiments by analyzing some outdoor
scenes with two motions, namely helicopter (Dragon et al.
2013), boat (Li et al. 2013), van (Li et al. 2013), cars7 (Tron
and Vidal 2007) and cars8 (Tron and Vidal 2007). Such
datasets are typically used for trajectory clustering. How-
ever, in order to study motion segmentation with two-frame
correspondences, we consider the images only (discard-
ing trajectories when available), and we compute the input
matches by ourselves.

We also consider some sequences from the DAVIS
dataset (Perazzi et al. 2016; Pont-Tuset et al. 2017; Caelles
et al. 2019), although being specific for video object seg-
mentation (we refer the reader to Section 2.5 for more
information on video object segmentation.). Observe that
most DAVIS sequences involve highly articulated/non-rigid
motions which violate our assumptions, hence are not con-
sidered.However, such a dataset also contains a few instances
of rigid scenes which are useful for our analysis, namely:

– bus, scooter-gray, scooter-black, car-turn, car-shadow,
car-roundabout, train,bmx-bumps, andblackswan (taken
from DAVIS 2016 (Perazzi et al. 2016));

– classic-car (taken from DAVIS 2017 (Pont-Tuset et al.
2017));

– landing and tram (taken fromDAVIS 2019 (Caelles et al.
2019));
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For each sequence, we choose a subset of the images in
order to ensure enough motion between consecutive frames.
We extract SIFT keypoints (Lowe 2004) in all the images
and establish correspondences between image pairs using
the nearest neighbor and ratio test as in Lowe (2004) via the
VLFeat library.9 For each pair (i, j), we keep only those
correspondences that are found both when matching image
i with j and when matching image j with i , and isolated
key-points (i.e. points that are not matched in any image) are
discarded. No further filtering is applied.

The properties of each dataset are presented in Tab. 10,
which also reports the percentage of points classified by
Mode,Mode-E, the Baseline, Synch (Arrigoni and Pajdla
2019a) and Subset (Xu et al. 2018) combined with Sta-
bleSfM (Olsson and Enqvist 2011). The latter provides the
best results among all possible combinations of trajectory
clustering methods and tracking algorithms. In the case of
the helicopter sequence, ground-truth pixel-wise annotation
is available for a subset of the images, which can be used
to compute the misclassification error (see Table 10). Also
sequences taken from DAVIS 2016 (Perazzi et al. 2016) and
DAVIS 2017 Pont-Tuset et al. (2017) come with pixel-wise
annotations. For the remaining sequences there is no ground-
truth, so only qualitative evaluation can be provided, which
is given in Figure 20.

Visual results in Figure 20 show that our solution is of
good quality in all the images, with the spatial refinement
being particularly effective in the boat and van sequences
(see Figure 20d and 20e ). Both Mode and Mode-E out-
perform the Baseline in terms of amount of classified data.
This is particularly evident in the right column of Figure 20a
where the Baseline is not able to classify any point in the
moving object. The poor performance of the Baseline gives
an idea about how noisy the individual two-frame segmen-
tations are. Our method is able to reduce such errors since it
exploits redundant measures. Observe that Synch produces
results of poor quality in most cases, thus it does not rep-
resent a practical solution to motion segmentation on the
outdoor scenes considered in this section. There are no sig-
nificant differences between Subset and Mode in the boat
and van sequences, which, however, are simple scenes for
matching due to slow motion. In the helicopter, cars7 and
cars8 sequences, Subset produces useless results.

As concerns the DAVIS sequences, Table 10 shows that
Mode-E is the most accurate solution in 9 out of 10 cases,
outperforming the competiting methods. Observe that the
spatial refinement always improves the Mode results, and it
is particularly effective in the car-roundabout scene with a
gain of about 7% of misclassification error. Figure 21 reports
an example in order to visually appreciate this aspect. Further
qualitative results are given in Figure 20f and 20g where it

9 http://www.vlfeat.org/.

can be observed that our solution is visually appealing and
generally better than the competitors (to different extents).

6.7 Dealing with an Unknown Number of Motions

In this paper we focus on the scenario where the number of
motions is known and constant over frames. In this section,
we give some insights about how to handle the case of an
unknown number of motions. More analysis on this aspect
can be found in a preliminary study (Arrigoni et al. 2020a).

First, let us recall the main steps of Mode:

– motion segmentation is independently solved on different
image pairs (two-frame segmentation);

– the partial/local results produced by two-frame segmen-
tation are combined in order to return a multi-frame
segmentation: this is done by permutation synchroniza-
tion (which fixes the permutation ambiguity) and robust
voting (which handles noise).

It is easy to see that the stages influencedby anunknownnum-
ber of motions are two-frame segmentation and permutation
synchronization only. Indeed, robust voting works under any
assumptions. This suggests that, in order to extend Mode to
the scenario of an unknown number of motions, it is enough
to substitute the methods used for two-frame segmentation
and permutation synchronization:

– two-frame segmentation can be addressed by fitting
an unknown number of fundamental matrices to cor-
respondences; several possibilities are available (see
Section 2.3), such as T-Linkage (Magri and Fusiello
2014), which handles an unknown number of motions
thanks to a hierarchical clustering framework;

– permutation synchronization with an unknown number
of motions can be addressed by combining MatchEIG
(Maset et al. 2017) with QuickMatch (Tron et al. 2017)
(see Appendix B); observe that the involved permuta-
tionmatrices may be partial: indeed, different two-frame
segmentations can have a different number of motions
(which in turn happens when the number of objects is
not constant over frames or when T-Linkage estimates a
wrong number of motions in some image pairs).

The resulting method has been named Mode-U in Arrigoni
et al. (2020a), where “U” stands for “unknown” number of
motions: it follows the same structure as Mode (detailed in
Figure 7), except for the methods used for two-frame seg-
mentation and permutation synchronization (see Table 11).

According to the experiments reported in Arrigoni et al.
(2020a) (that are copied in Table 12 as a reference), Mode-
U (which automatically estimates the number of motions) is
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(a) helicopter (Dragon et al. 2013) (b) cars7 (Tron and Vidal, 2007) (c) cars8 (Tron and Vidal, 2007)
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(f) tram (Caelles et al. 2019) (g) landing (Caelles et al. 2019)

Fig. 20 Segmentation results are reported for several methods on sample images from outdoor scenes. Different colours encode the membership
to different motions. For better visualization, unclassified points are not drawn (Color figure online)
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Fig. 21 Segmentation results are reported for our approach before
(left) and after (right) the spatial refinement, on a sample image from
car-roundabout (Perazzi et al. 2016). Different colors correspond to
different motions. In order to better appreciate the differences, points
belonging to the car are drawn with a cross (Color figure online)

Table 11 Mode and Mode-U (Arrigoni et al. 2020a) follow the seg-
mentation pipeline in Figure 7: the former requires as input the correct
number of motions, whereas the latter deals with an unknown number
of motions. Accordingly, Mode and Mode-U use different solutions
for two-frame segmentation and permutation synchronization

Two-frame
segmentation

Permutation syn-
chronization

Mode RPA Magri and
Fusiello (2015)

Spectral Pachauri
et al. (2013)

Mode-U
Arrigoni et al.
(2020a)

T-Linkage Magri
and Fusiello
(2014)

MatchEIG Maset
et al. (2017) +
QuickMatch
Tron et al.
(2017)

comparable in accuracy to Mode (which assumes the cor-
rect number of motions as input) on indoor data (Arrigoni
and Pajdla 2019b, a). This shows that it is possible to gen-
eralize our approach to work under more difficult/practical
assumptions. We refer the reader to Arrigoni et al. (2020a)
for more details on this aspect.

7 Discussion

In this section we recall the assumptions made by our
approach and we report some considerations about its main
advantages and limitations.

7.1 Assumptions

In this paper we addressed the motion segmentation prob-
lem, where the task is to detect moving objects in multiple
images by clustering together all the key-points that are
undergoing the same motion. We assumed that a set of two-
frame correspondences was available as input. In addition,
we assumed that the moving objects present in the scene
were rigid. Although the proposed method works reasonably
well on a few examples of deforming objects (namely the
articulated/non-rigid scenes in Hopkins155 Tron and Vidal
(2007)), in general, it is not supposed towork on this scenario

as the fundamental matrix – which is used for two-frame
segmentation – assumes a rigid scene (Hartley and Zisser-
man 2004). Extending our approach to the non-rigid case is
an interesting aspect to investigate. Accordingly, we plan to
adapt our method to solve video object segmentation.

Wedesigned our approach for the scenariowhere the num-
ber of motions is known and constant over frames and we
performed our experiments under such an assumption, which
– although restrictive – is common in motion segmentation
literature (e.g., Ji et al. 2015; Xu et al. 2018). Notwithstand-
ing this, we also explained that – with minor modifications
– our approach can be extended to the case of an unknown
number of motions (see Section 6.7), which is more realistic
and hence more relevant for practical applications.

7.2 Advantages

First of all, our method has the advantage of working under
weaker assumptions than the majority of works in motion
segmentation literature, as it requires a set of two-frame cor-
respondences instead of multi-frame trajectories, as detailed
in Figure 3. In this specific setting, our approach achieves
superior results than the state of the art, especially in situa-
tions where matches are noisy and contaminated by outliers.

Recall that the first stage of ourmethod is solving segmen-
tation on different image pairs independently. This approach
has two main advantages: first, the problem is splitted into
subproblems that are easier to solve; secondly, by leveraging
on multiple pairs, redundant estimates are obtained, which
are the key to achieve robustness.

The power of our two-frame approach is particularly evi-
dent in multibody structure from motion, which is our target
application. The fact that we are solving motion segmenta-
tion at the earliest stage implies that single-body techniques
can be exploited for the subsequent reconstruction stages:
in particular, geometric verification (e.g. RANSAC) can be
used to refine and join correspondences into trajectories for
each motion. Relying on single-body techniques (which is
equivalent to consider a static scene) makes the reconstruc-
tion easier to solve compared to the case of multiple bodies.

Finally, our framework is modular, so it can be easily
extended to more general situations. For instance, it can be
generalized to the case of an unknown number of motions, as
explained in Section 6.7. Moreover, our method can handle
triplets instead of image pairs, as shown in a preliminary
work (Arrigoni et al. 2020b), where the underlying model is
the trifocal tensor in place of the fundamental matrix. Future
research will investigate this direction.

7.3 Limitations

Being designed for motion segmentation with two-frame
correspondences, our method returns sub-optimal results on
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Table 12 Misclassification error
[%] and classified points [%] for
our approach (Mode) and
Mode-U (Arrigoni et al. 2020a)
on indoor scenes (Arrigoni and
Pajdla 2019b, a). The former
requires as input the correct
number of motions (denoted by
d), whereas the latter returns an
estimate of the number of
motions (denoted by d̂)

Dataset d Mode Mode-U Arrigoni et al. (2020a)

Error Classified Error Classified d̂

Pen 2 0.58 80.07 1.55 89.08 2

Pouch 2 3.79 65.34 1.39 60.79 2

Needlecraft 2 0.83 72.81 1.80 67.07 2

Biscuits 2 0.47 84.47 1.12 90.42 2

Cups 2 0.56 65.42 2.05 71.31 2

Tea 2 0.29 81.70 0.69 85.21 2

Food 2 0.36 76.19 0.78 82.34 2

Penguin 2 0.76 69.17 1.36 66.60 2

Flowers 2 1.23 73.65 1.51 75.50 2

Pencils 2 3.80 65.33 3.09 51.01 2

Bag 2 1.52 57.95 2.78 52.91 2

Bears 3 4.82 73.65 3.48 68.21 3

The lowest errors are highlighted in bold face

trajectory clustering tasks, as it does not exploit all the avail-
able information (see Sections 6.2 and 6.3 ).Observe also that
a keyproperty of our approach is robustness,which originates
from the usage of a robust method for two-frame segmen-
tation (RPA Magri and Fusiello 2015). Hence, it obtains
suboptimal results when data are cleaned and outliers are
not present (as happens, e.g., in the Hopkins dataset).

Furthermore, recall that our method heavily relies on an
initial two-frame segmentation: although it can handle a con-
siderable amount of errors among two-frame results (see
Figure 17I for instance), it produces poor results when most
two-frame segmentations are wrong. One example of a fail-
ure case can be appreciated in Figure 12a, where our method
achieves a misclassification error higher than 30% in one
sequence from Hopkins12. By manual inspection, it was
found that RPA performed poorly in the majority of image
pairs.

Finally, being based on the fundamental matrix, we expect
our approach to fail in situations where the fundamental
matrix is degenerate (e.g., pure rotation) or when it does not
represent the most appropriate model (e.g., in the presence of
planar structures). For example, if we run our method on the
KT3DMoSeg benchmark (Xu et al. 2018), that is a motion
segmentation dataset built upon KITTI (Geiger et al. 2012),
then we get an average misclassification error of 17.87%.
Observe that such a dataset is meant for trajectory clustering
in autonomous driving, so it comprises degenerate motions
(see (Xu et al. 2018) for more information). Future research
will study the usage of alternativemodels for these scenarios.

8 Conclusion

We presented a new solution to rigid motion segmentation,
where the task is to group sparse key-points in multiple

images according to a number of motions. The proposed
approach splits the problem in two steps. First, motion
segmentation is independently solved on pairs of images.
Then, such partial/local results are combined by permutation
synchronization (which fixes the inherent permutation ambi-
guity) and robust voting (which handles potential errors).
This general framework – combined with a robust solution to
two-frame segmentation (e.g. RPAMagri and Fusiello 2015)
– handles realistic situations such as the presence of mis-
matches that have been overlooked in previous work. Our
segmentation results can be further improved by employ-
ing spatial constraints, thus encouraging neighbouring points
to belong to the same motion. Our approach does not
assume any temporal component (i.e., it works with unstruc-
tured/unordered datasets) and it does not require tracks as
input but only two-frame correspondences. Thus it can be
exploited to build tracks that are aware of segmentation,
which constitute the foundation of amultibody structure from
motion pipeline. Future research will explore this direction.
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A Finding the permutation between two sets
of labels

Let s ∈ {0, 1, 2, . . . , d}m be a vector of length m containing
a set of labels ranging from 1 to d, where 0 defines a missing
value. Let t ∈ {0, 1, 2, . . . , d}m be a vector representing the
same labels but arranged in a different order (e.g., label 1 in
vector s is called label 2 in vector t). The task is to find a
d × d permutation matrix P that maps the vector s into the
vector t, namely

P = bestMap (s, t). (12)

In order to cast Equation (12) to a known problem,
we exploit a matrix representation of the labels. Let S ∈
{0, 1}m×d be a binary matrix constructed as follows:

– [S]hk = 1 if s[h] = k;
– [S]hk = 0 otherwise.

In other words, each row indexes one element in s and each
column corresponds to one label: observe that zero labels (if
any) translate into zero rows, hence they do not have any
impact in subsequent computations; for the remaining rows,
there is exactly one entry equal to one (which corresponds
to the actual label), whereas all other entries are zero. In a
similar way, we can define a binary matrix T ∈ {0, 1}m×d

associated to vector t. The following equation shows an
example:

s =

⎡

⎢
⎢
⎢
⎢
⎣

1
1
2
2
2

⎤

⎥
⎥
⎥
⎥
⎦

, S =

⎡

⎢
⎢
⎢
⎢
⎣

1 0
1 0
0 1
0 1
0 1

⎤

⎥
⎥
⎥
⎥
⎦

, t =

⎡

⎢
⎢
⎢
⎢
⎣

2
2
1
1
1

⎤

⎥
⎥
⎥
⎥
⎦

, T =

⎡

⎢
⎢
⎢
⎢
⎣

0 1
0 1
1 0
1 0
1 0

⎤

⎥
⎥
⎥
⎥
⎦

. (13)

Using this notation, we can rewrite Problem (12) as a
matrix multiplication:

SP = T . (14)

With reference to the example in Equation (13), the sought
permutation is given by

P =
[
0 1
1 0

]

. (15)

In the presence of noise, Equation (14) is usually solved in
the least-squares sense:

min
P

||SP − T ||2F (16)

where the optimization variable is constrained to be a per-
mutation matrix. By computation, it can be easily checked
that Problem (16) is equivalent to:

min
P

||P − STT ||2F . (17)

Solving the above problem is tantamount to finding the clos-
est permutation to the d × d matrix STT . Such a task is also
called permutation Procrustes problem (Gower andDijkster-
huis 2004) and it reduces to a linear assignment problem,
which can be solved (e.g.) with the Hungarian algorithm
(Kuhn 1955).

B Permutation synchronization

The task of synchronization (Singer 2011) is to recover
elements of a group starting from ratios between pairs of
group elements. The problem can be represented as a graph
G = (V, E) where the vertex set V corresponds to the
unknowns and the edge set E corresponds to the measures,
and it is well posed only if the graph is connected. This topic
has been recently surveyed in Arrigoni and Fusiello (2020).

In the case of permutation synchronization (Pachauri et al.
2013) the underlying group is the set of permutationmatrices,
which is also known as the Symmetric Group:

Sym(d) = {Q ∈ {0, 1}d×d s.t. Q1 = 1, 1TQ = 1T}. (18)

Here 1 denotes a d ×1 vector of ones. Observe that a permu-
tation matrix has exactly one entry equal to 1 in each row and
column, and all other entries are equal to zero. Let Pi denote
the unknown permutation associated with vertex i ∈ V , and
let Pi j denote the known permutation associated with edge
(i, j) ∈ E representing the ratio between Pi and Pj , namely

Pi j = Pi P
T
j (19)

where the inverse is given by matrix transposition. The task
of permutation synchronization is to compute Pi for all i ∈ V
such that the consistency constraint in Equation (19) is best
satisfied, as shown in Figure 4.

An effective and simple solution can be derived via spec-
tral decomposition (Pachauri et al. 2013), thanks to a matrix
representation of the problem. For simplicity of exposition,
we first review the spectral solution in the case where the
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graph is complete. Let us collect all the unknowns and mea-
sures in two block-matrices X and Z constructed as follows

X =

⎡

⎢
⎢
⎣

P1
P2
. . .

Pn

⎤

⎥
⎥
⎦ , Z =

⎡

⎢
⎢
⎣

I P12 . . . P1n
P21 I . . . P2n
. . . . . .

Pn1 Pn2 . . . I

⎤

⎥
⎥
⎦ (20)

where n denotes the number of vertices and I denotes the
d × d identity matrix. Using this notation, Eq. (19) becomes
Z = XXT, which implies that Z is symmetric positive
semidefinite and it satisfies the following equality:

Z X = nX . (21)

Equation (21) means that the columns of X are d eigenvec-
tors of Z . Since Z has rank d, all other eigenvalues are zero,
so n is the largest eigenvalue. This suggests the following
procedure (Pachauri et al. 2013) to address permutation syn-
chronization:

1. compute the d leading eigenvectors of Z , which are col-
lected in a matrix U ;

2. project each d × d block in U to a proper permutation
matrix.

The second step is indeed required since the eigenvectors are
an approximate solution that does not enforce the specific
constraints of permutation matrices. Finding the closest per-
mutation to a given matrix is a linear assignment problem
(Kuhn 1955).

The spectral solution can be easily extended to the case
where the graph is not complete. In this situation, missing
measures are represented as zero blocks in Z and Equation
(21) generalizes to

Z X = (D ⊗ I )X (22)

where D denotes the degree matrix of the graph and ⊗
denotes the Kronecker product. In other words, the columns
of X are d eigenvectors of (D ⊗ I )−1Z , hence the spectral
solution applies equally well to the case of missing edges.
See (Shen et al. 2016; Arrigoni and Fusiello 2020) for more
details.

The synchronization problem also makes sense when
nodes/edges in the graph are associated with partial permu-
tation matrices, which form the so-called Symmetric Inverse
Semigroup:

I Sym(d) = {Q ∈ {0, 1}d×d s.t. Q1 ≤ 1, 1TQ ≤ 1T}. (23)

Observe that a partial permutation has at most one nonzero
entry in each row and column, and these nonzero entries are
all equal to 1.

It is shown in Maset et al. (2017) that the spectral method
also works in the case of partial permutations. If the size
of permutations (i.e., d) is not known in advance, then the
authors of Maset et al. (2017) suggest to over-estimate it,
and hence compute more eigenvectors than what is actu-
ally required. This choice is motivated by the fact that Z
has rank d (in the absence of noise), hence it is expected
that the eigenvectors in position d + 1, d + 2, . . . will have
nearly zero eigenvalue (in the presence of noise), so that their
impact in the spectral decomposition is very small. In prac-
tice, the method proposed in Maset et al. (2017) – named
MatchEIG – does not estimate the right value of d, but it can
be viewed as a denoising procedure that refines the measure-
ment matrix Z . In Tron et al. (2017) it is observed that the
measurement matrix Z can be interpreted as the adjacency
matrix of a graph, hence permutation synchronization is cast
to a “graph clustering” problem. Suchmethod (called Quick-
Match) automatically estimates the value of d in a bottom-up
way.
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