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Abstract

Deep learning has catalysed progress in tasks such as face recognition and analysis, leading to a quick integration of technolog-
ical solutions in multiple layers of our society. While such systems have proven to be accurate by standard evaluation metrics
and benchmarks, a surge of work has recently exposed the demographic bias that such algorithms exhibit-highlighting that
accuracy does not entail fairness. Clearly, deploying biased systems under real-world settings can have grave consequences
for affected populations. Indeed, learning methods are prone to inheriting, or even amplifying the bias present in a training set,
manifested by uneven representation across demographic groups. In facial datasets, this particularly relates to attributes such
as skin tone, gender, and age. In this work, we address the problem of mitigating bias in facial datasets by data augmentation.
We propose a multi-attribute framework that can successfully transfer complex, multi-scale facial patterns even if these belong
to underrepresented groups in the training set. This is achieved by relaxing the rigid dependence on a single attribute label, and
further introducing a tensor-based mixing structure that captures multiplicative interactions between attributes in a multilinear
fashion. We evaluate our method with an extensive set of qualitative and quantitative experiments on several datasets, with
rigorous comparisons to state-of-the-art methods. We find that the proposed framework can successfully mitigate dataset bias,
as evinced by extensive evaluations on established diversity metrics, while significantly improving fairness metrics such as
equality of opportunity.

Keywords Data augmentation - Style transfer - Dataset bias - Demographic bias - Algorithmic fairness - Diversity - Age
progression

1 Introduction

Deep learning-based models have been successfully utilized

to advance the state-of-the-art in face analysis, resulting in
accurate algorithms for the recognition of the identity Masi
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from predicting recidivism and criminal behavior, to assess-
ing candidates in interviews, and automating border control.
With the wide adoption of this technology, its developers bear
the responsibility to ensure that these systems do not discrim-
inate against any subpopulation of users, i.e., that they are
fair. However, machine learning models are prone to inherit-
ing or even amplifying the bias that is present in the training
data. In the context of face analysis, an algorithm can per-
form unfairly when applied on demographic groups that are
underrepresented in the training set (e.g., faces of a specific
gender, skin tone, or age group). This is despite the fact that
the algorithm may appear as accurate given current evalua-
tion metrics, but inherently fail to capture properties such as
fairness and diversity.

In recent years, a surge of work has exposed the demo-
graphic bias of face analysis systems. In Buolamwini and
Gebru (2018), Buolamwini and Gebru showed that commer-
cial gender classification systems performed significantly
worse on darker-skinned females. Moreover, state-of-the-art
face recognition models have been reported to demonstrate
bias with regards to the age, gender, and skin tone of the
input face (Serna et al. 2019; Wang et al. 2019; Nagpal et al.
2019). In most cases, these demographic disparities in model
performance are caused by the lack of diversity in the pub-
licly available face datasets (Kuhlman et al. 2020; Holstein
et al. 2019). For instance, widely adopted facial datasets like
LFW (Huang et al. 2008) and CelebA (Liu et al. 2015) con-
tain mainly faces of lighter skin. Similarly, only 0.5% of the
faces in MOPRH (Ricanek and Tesafaye 2006) are of people
over 60 years, while 87% of the faces in FG-NET (Lanitis
2002) are younger than 30 years old. Nevertheless, collecting
adiverse dataset large enough for modern deep learning tasks
is a herculean and tedious task. Thus, modern state-of-the-
art face analysis systems are trained and tested on datasets
that are either lacking in size or diversity. To circumvent this
issue, practitioners turn to the plethora of available data aug-
mentation techniques [see Shorten and Khoshgoftaar (2019)
for a survey].

Data augmentation methods range from simple image
transformations (e.g., mirroring, rotation, and random crop-
ping) to non-photorealistic image mixing [e.g., Inoue (2018),
Zhang et al. (2017)], and deep generative models Sandfort
et al. (2019). In the latter category, neural style transfer has
proved to be an efficient data augmentation tool, that can be
used to train robust classifiers Jackson et al. (2019), (Perez
and Wang 2017; Zheng et al. 2019). In this spirit, we propose
a novel style transfer framework that is tailored to the task
of diversity-enhancing data augmentation. Since our aim is
to enhance the demographic diversity of a facial dataset, we
propose a style transfer approach using Generative Adversar-
ial Networks (GANSs) (Goodfellow et al. 2014) that is able
to transfer multiple demographic attributes for each image
in a biased set. The resulting image set is less ridden with

demographic biases, and can hence be used to train fairer
face classifiers.

Translation of demographic attributes has been studied
extensively, albeit for individual attributes. In particular,
facial aging is a long-standing task in computer vision
(Ramanathan et al. 2009; Fu et al. 2010; Georgopoulos et al.
2018) with recent GAN-based approaches being able to pro-
duce realistically aged and rejuvenated faces (Zhang et al.
2017; Wang et al. 2018; Duong et al. 2019). On the other
hand, modifying the gender of a face is a common applica-
tion of facial attribute transfer (Choi et al. 2018; He et al.
2019). However, these methods are not capable of synthe-
sizing realistic samples at the tails of the distribution—e.g.,
for faces over 60 years old—as we show experimentally in
Sect. 4.4. At the same time, face synthesis in such models are
usually conditioned on a single attribute label. Hence, these
methods are only able to generate a single image per attribute
class, that is constrained by the bias of the training set. The
aforementioned limitations prevent these approaches from
being able to efficiently mitigate dataset bias.

In this work, instead of collapsing attribute information
into a single label, we condition the face generation on dis-
criminative representations for each attribute. For instance,
despite training with the provided binary gender labels, our
method learns a high-dimensional, continuous-valued rep-
resentation of gender, which better reflects the underlying
non-binary nature of the attribute. Motivated by the recent
success of style-based GANs (Karras et al. 2019; Huang et al.
2018; Kim et al. 2020; Park et al. 2019; Ma et al. 2018) in
transferring arbitrary styles at different scales, we propose to
transfer the joint demographic style of each subpopulation.
Consequently, our method is able to modify the attributes
of each face and enhance the diversity of the dataset. In
order to combine the different representations capturing com-
plex facial patterns related to each attribute, we propose
a novel extension to AdaIN (Huang and Belongie 2017).
The proposed method is tailored to handle the mixing of
multiple attribute representations by introducing a tensor-
based mixing structure that captures multiplicative attribute
interactions in a multilinear fashion, effectively facilitating
multi-attribute transfer given a single input image.

As we show in this paper, the proposed formulation is
flexible enough to synthesize images of large intra-class
diversity, transferring complex facial patterns even for sam-
ples that belong to the tails of the training set distribution.
Summarizing, the contributions of this paper are listed in
what follows.

— We introduce a novel style transfer GAN that is able to
transfer multiple demographic attributes simultaneously.
By conditioning on different sets of target images, our
framework is able to generate diverse images for each
attribute class.
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— A multi-attribute extension to AdalN is presented in
Sect. 3.2. The proposed fusion framework is able to
model the multiplicative interactions between attribute
representations by employing a tensor-based mixing
structure, resulting into a single conditioning variable.

— With a series of qualitative and quantitative experiments
(Sect. 4), we benchmark our model’s ability to enhance
the diversity of a dataset against state-of-the-art baselines
(both multi-attribute transfer and age progression meth-
ods). To quantify the diversity enhancing capabilities of
the models, we turn to the established diversity metrics
introduced in Merler et al. (2019).

— We provide a thorough investigation of how dataset
bias affects classification performance, and show how
more diverse datasets can be used to train less biased
classifiers (Sect. 4.6). We also study the case of bias
in gender recognition—within the binary paradigm in
which it is currently commonly framed in practice—on
two datasets: MORPH and KANFace. The experimental
analysis indicates that by augmenting the training sets
using our model, we are able to mitigate the classifier
biases more effectively than other, state-of-the-art meth-
ods.

The proposed framework is based on our prior work
(Georgopoulos et al. 2020) that used standard generative
architectures that could be adapted to perform face aging,
focusing solely on age progression. This work significantly
extends our preliminary work as it is designed to transfer
multiple attributes instead of just age, by proposing a novel
multilinear extension to AdalN that is suitable for multiple
attributes. That is, the proposed method is able to handle the
mixing of multiple attribute representations in a multi-linear
fashion. The style transfer model is evaluated on additional
datasets and compared to multi-attribute GANs [i.e., Star-
GAN (Choi etal. 2018) and AttGAN (He etal. 2019)]. Lastly,
the focus of the preliminary work was dataset diversity. In
this work, we make the connection between diversity and
algorithmic fairness. In particular, we enhance the diversity
of datasets and evaluate the fairness of the classifiers that
are trained on them, offering a thorough comparison to 7
state-of-the-art bias mitigation methods on 2 datasets.

2 Related Work

In this section, we provide an overview of related work from
the area of style-based image transfer with adversarial learn-
ing (Sect. 2.1). Furthermore, we introduce related work in
terms of demographic attribute editing (Sect. 2.2), as several
methods have been proposed in literature for editing such
attributes; albeit with most works focusing on one attribute
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individually. Finally, we discuss related literature on fairness
and bias mitigation, focusing on face analysis (Sect. 2.3).

2.1 Generative Adversarial Networks and Style
Transfer

Generative Adversarial Networks (GANs) (Goodfellow et al.
2014) are the driving force behind the recent success of deep
generative models in image synthesis (Radford et al. 2015;
Karras et al. 2019; Brock et al. 2018; Karras et al. 2017; Park
etal. 2019) and image-to-image translation (Choi et al. 2018;
Huang et al. 2018; Kim et al. 2020; Isola et al. 2017; Zhu
et al. 2017; Tang et al. 2019). Multiple variations have been
proposed, including different training objectives (Salimans
et al. 2016; Arjovsky et al. 2017; Mao et al. 2017; Lim and
Ye 2017) and architectural choices (Radford et al. 2015; Kar-
ras et al. 2019). Among these variations, style-based GANs
draw inspiration from the style transfer literature (Gatys et al.
2015) and use Adaptive Instance Normalization (AdalN)
(Huang and Belongie 2017) to condition image generation.
MUNIT (Huang et al. 2018) uses AdalN in a GAN setting to
perform image-to-image translation by injecting style con-
tent into an autoencoder-like network at the bottleneck layers.
The seminal work of StyleGAN (Karras et al. 2019) pro-
posed a generator architecture using AdalN to modulate style
content at multiple resolutions. The state-of-the-art image-
to-image translation methods continue to adopt style-based
approaches (Huang et al. 2018; Kim et al. 2020; Park et al.
2019; Ma et al. 2018), and we follow in this vein—treating
demographic attributes as target styles.

2.2 Transfer of Demographic Attributes

Synthesizing faces of a specific target demographic has
been studied extensively, albeit for individual demographic
attributes. In particular, age progression refers to the task
of rendering an aged or rejuvenated image of an input face
(Fu et al. 2010; Ramanathan et al. 2009; Georgopoulos
et al. 2018). While earlier works in age progression pro-
posed simplistic prototype-based approaches that could not
produce photorealistic results, a number of recently pro-
posed GAN-based methods are capable of convincing face
aging. Zhang et al. (2017) introduced a conditional adversar-
ial autoencoder (CAAE) that models aging as the traversal of
a low-dimensional manifold. GAN-based image translation
approaches were also proposed in Wang et al. (2018), Yang
et al. (2018), where pre-trained networks were used to facil-
itate identity preservation and aging accuracy, respectively.
Besides age, generating faces with different genders is a stan-
dard benchmark of the CELEB-A dataset (Liu et al. 2015),
and is successfully performed by numerous attribute editing
approaches (Choi et al. 2018; He et al. 2019, 2017; Perarnau
et al. 2016; Li et al. 2016). Lastly, in order to mitigate racial
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Fig.1 Overview of the proposed method for multi-attribute transfer by
way of example: Aninputimage Xy, 4, of gender g| and age a is passed
through the Generator (left), to translate it to target age as and gender
go0- At each upsampling block in the generator, we perform AdaIN to
modulate the style content. The new statistics are computed using a

bias in face recognition, Yucer et al. (2020) proposed to use
CycleGAN (Zhu et al. 2017) to transfer race. In our work,
instead of focusing on a single attribute, we propose to simul-
taneously edit multiple demographic attributes. Unlike many
stand-alone age progression methods (Wang etal. 2018; Yang
et al. 2018) and style transfer-based GANs (Karras et al.
2019; Huang et al. 2018), we require no additional networks
to obtain the conditioning information.

2.3 Fairness-aware Learning and Face Analysis

In light of the growing concerns regarding algorithmic dis-
crimination, the field of fairness-aware machine learning has
attracted interest from the research community. Most of the
work focuses on tabular data [e.g. the UCI Adult income
dataset Dua and Graff (2017)] and tackles the problem of
fair classification with regards to a protected attribute [e.g.,
Edwards and Storkey (2015), Madras et al. (2018)]. In such
cases, both the output variable and the protected attribute are
binary. For instance, a common scenario in the UCI Adult
dataset is the classification of the subjects into two categories
based on their wage, while being fair with regards to gender.
These works have given rise to different definitions of fair-
ness (Mehrabi et al. 2019; Verma and Rubin 2018), the most
common of which are: (i) demographic parity, (ii) equalized
odds, and (iii) equality of opportunity. Demographic parity
ensures that the predicted label Y is independent of the pro-
tected attribute S, i.e, P(Y = 1|S=1) = P(¥Y = 1|S = 0).
Unlike demographic parity, a predictor Y that satisfies equal-

multiplicative fusion module that captures the interactions between the
discriminators’ activations’ moments when evaluated on target images
of the desired classes. The logits output from the discriminators are used
to train our adversarial loss £,4,, and the target and synthetic images
are used to train the generator’s Ly, feature-matching loss

ized odds can depend on S, but only through the target
variable Y (Hardt et al. 2016), that is: P(l? =1S=1,Y =
y) = P(Y = 1|S = 0,Y = y),y € {0,1}. This defini-
tion implies that both the true and false positive rates will
be the same for each population. Equality of opportunity is
a relaxed notion of equalized odds, that only requires the
true positive rates to be equal (Hardt et al. 2016), formally:
PY=1S=1,Y=1)=PF¥ =1S=0Y=1).In
this work, we use equality of opportunity to quantitatively
evaluate the fairness of our face analysis models as it one of
the most commonly employed approaches.

It is only very recently that fairness-aware algorithms for
face analysis have attracted similar attention. The experi-
mental results in Buolamwini and Gebru (2018) indicate that
commercial gender recognition systems demonstrate a sig-
nificant difference in performance between lighter male and
darker female faces. This study resulted in replies from the
vendors that focused on the importance of diversity in the
training datasets (Raji and Buolamwini 2019). Thereafter,
a series of in-processing and pre-processing methods have
been proposed for fair face analysis—the former targeting
unfairness at the algorithm-level and the latter at the data-
level. In the former category, Alvi et al. (2018) proposed a
joint learning and un-learning framework, while Kim et al.
(2019) learn a fair classifier by minimizing the mutual infor-
mation between the intermediate representation and the bias.
These methods employ techniques from domain adaptation
to learn a representation that minimizes classification loss
while being invariant to the sensitive attribute. In the lat-
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ter category, Sattigeri et al. (2018) extend AC-GAN (Odena
etal. 2017) to generate a fair dataset, while Quadrianto et al.
(2018) use an autoencoder to remove sensitive information
from images. In this work, we introduce an image-to-image
translation model to augment the training set, and thus, our
framework is most closely related to Quadrianto et al. (2018).
However, contrary to Quadrianto et al. (2018), our neural
style transfer approach is able to generate naturalistic faces
by translating demographic attributes instead of removing
them (e.g., gender-less faces).

3 Methodology

In this section, we introduce the proposed multi-attribute
style transfer framework that enhances the diversity of a face
dataset suffering from demographic bias. Our aim is to utilize
the proposed generative model to augment a biased training
set. Thus, by training a face analysis model on the augmented
set, we can mitigate the demographic bias and achieve fairer
classification performance.

Drawing inspiration from style transfer GAN literature,
the proposed model is able to transfer the joint demographic
attribute style from a set of images. In particular, we utilize
discriminative features for each attribute at different scales to
guide the image translation using AdalN. To obtain the joint
demographic attribute style, we present a novel extension to
the AdaIN framework suitable for mixing the statistics of
multiple attribute representations. The proposed approach
models multiplicative interactions between the attributes,
leading to a single fused variable for conditioning at each
generator layer.

The remainder of this section is structured as follows. In
Sect. 3.1 we introduce the notation as well as the basic matrix
and tensor operations used in the paper. The multi-attribute
style transfer framework is presented in Sect. 3.2. The dif-
ferent components of the training objective are analyzed in
Sect. 3.3. Finally, an overview of the proposed method is
visualized in Fig. 1.

3.1 Notation

In this section, we introduce the notation and definitions of
the operations used throughout this paper. Concretely, we
denote tensors by calligraphic letters, e.g., X, matrices by
uppercase boldface letters, e.g., X and vectors by lowercase
boldface letters, e.g., x. We refer to each element of a K th
order tensor X by K indices, i.e., (X)ii..ix = Xijig..ig-
Similarly, we refer the elements of matrix X as x;;, while x;
denotes the j-th column of the matrix. The D-dimensional
vector of ones is denoted as 1p.

@ Springer

Hadamard product The Hadamard product of A € RN
and B € R’*¥ is denoted by A % B and is the element-wise
multiplication of the two matrices.

Kronecker product The Kronecker product of two matri-
ces A € R’/ and B € RX*L is denoted by A ® B €
RUKI*L) and is defined as:

ay B apB ... a B

ari1B a»B ... ax;B
A®B=| . o - (D

antBapB ...a;;/B

Khatri-Rao product The Khatri-Rao product of two matri-
ces A € R/*N and B € R/*V is denoted by A © B. The
resulting matrix is of dimensions (/J) x N, and is defined
as:

AOB=[a;®biay®bs---ay @ by]. (2)

Tensor unfolding The mode-k unfolding of a tensor X’ €
RIrxDx-xIk reorders the elements of X into a matrix X ) €
Rl with I, = [T5, 1,.

1#k
Mode-k vector product The mode-k vector product of a

tensor X' € RN *12%xIk and a vector v € R’* is denoted by
X X v e RID<xT1xlip1 % xIx - defined elementwise as:

Ik
(X Xk V)i]‘..ikflikJrl.‘.iK = in]iz.‘.iK Uiy, - (3)

ir=1

CP decomposition The CANDECOMP/PARAFAC (CP)
tensor decomposition (Carroll and Chang 1970; Harshman
1970) factorizes a tensor into a sum of rank-one tensors. Let
X be a tensor of rank R. Its CP decomposition is:

R
X = [[U[]], U[z], ey U[K]]] = Zugl) o u£2) O---0 u£K)(,4)
r=1

where o denotes the vector outer product. The matrices
(U = [ugk), uék), e u%‘)] € RIkxR }le consist of the
rank-one components. The CP decomposition of a third order
tensor X is written in matrix form as Kolda and Bader (2009):

T
X =Upy (UB] ©) U[2]) . %)

3.2 Proposed Framework

Style-conditioned Generator For simplicity of presentation,
we consider the case of two attributes, namely gender and
age. The generator of our framework is an autoencoder G
that learns a mapping from a face X, , of gender g and age
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a to a synthesized face /'?g/)a/ of gender g’ and age a’. To
achieve this, G uses the gender features of a target image Xé,
and the age features of target image X, which are extracted
using the corresponding discriminators D8¢" and D“8¢. We
consider these features to capture the demographic styles s,
and s,. The styles are obtained from the target images as the
activations at different layers of the discriminator networks.
The age and gender styles are then fused and injected into the
decoder of the generator using the proposed multi-attribute
AdalN, which is described in detail below.

Multi-attribute AdaIN The standard approach to style
transfer is conditioning the generation on a single style rep-
resentation. This is achieved by using AdaIN at different
layers of the generator. The AdalN operator scales and shifts
the normalized activations at each layer of the decoder, in
order to match a target style. We denote Z¢ € R *duw>d:
the activation of the i-th layer of the generator and its corre-
sponding target style s’ which is represented by a set of two
vectors, i.e., s' = {[l,i, ai}. In this work, the vectors ui and
o' are obtained from a target image as the channel-wise first
and second order moments of the activations at each layer
of the discriminators. We cast vectors s’ and ¢’ to have the
same dimensions as Z:

Mizld;-loldl,-voui, (6)
S = 1,01y o al, (7

where Mi, S € R % iy x| Then, the AdalN operator is
defined as:

zZi— M(ZZ) i

AdaIN(Z',s") = M' + ) S’ ®)

where 1 (Z%) and o (Z') denote the tensorized channel-wise
mean and variance of the activations Z. In this work, we
aim to transfer a collection of styles (i.e., attributes) that are
captured by different activations. To this end, we introduce
a multi-linear style mixing model that models the multi-
plicative interactions (Jayakumar et al. 2020) between the
activations for each attribute, by assuming a tensorial mix-
ing structure. Concretely, given target styles for age s; =
{;LZ, ail} and gender s[’;, = {[,Li,, a’[;,} at layer i of the discrim-
inators, we propose the following factorization:

p=w o Wil + Wil + W s pl <3, ©9)

which can be written (as shown in Kolda (2006), Kolda and
Bader (2009)) as:

p=w o+ Wil + Wil + Wil o pl), (10)

where Wél) is the mode-1 unfolding of tensor YW. The fused

second order statistics are calculated from o, and ¢, in a
similar fashion:

o' =h' + Hio!, + Hio'!, + H}; (o, © o). (11

The multiplicative interactions between the features are
captured by tensors (W', H!} € R%*dexd: Dye to the
dimensionality of the higher order tensors (df.3 parame-
ters) the number of parameters of the fusion model scales
exponentially. Indicatively, a convolutional layer of the dis-
criminator with 256 filters would require a tensor of 16 M
parameters to fuse the activations (statistics) of two attributes.
To avoid this, tensors W and H! assume a CP decomposi-
tion, and Egs. (10) and (11) become:

p=w+ WL/LZ+W;;L;,+
Ui (Ui 0 U (m, © ), (12)

o' =h' + Hyo,+H,0,+
Vi(Viz 0 V' (e, ©0)),  (13)

where matrices Uf Nt VE il for j € {1...3} consist of the

rank-1 tensor of the CP decompositions of tensors /' and
H'. The resulting u’ and ¢ are then used in Eqgs. (6) and (8)
to modulate the style in the layers of the generator.

Discriminators In the proposed framework we utilize mul-
tiple discriminator networks—one for each attribute. Similarly
to Liu et al. (2019), each of the discriminators are trained to
distinguish between real and fake images of each class. Since
each discriminator is responsible for one attribute, the result-
ing representations are also discriminative with respect to
that attribute. These representations are used to condition the
style transfer in the decoder of the generator at each layer.
Hence, we design D&" and D“8¢ as mirrored decoders of
the generator.

3.3 Training Objective

Our full objective function comprises of two terms, namely
the adversarial and the reconstruction loss. The losses are
described as follows.

Adversarial loss To train the generator to synthesize pho-
torealistic images with characteristics of the desired class,
we use an adversarial loss. Given an input image X, , and
its translation G (X, 4, S¢/, S./) to age a” and gender class g’,
conditioned on demographic styles s,/ and s, (obtained for
each layer from Dge"(Xg’,,) and D¢¢(X,) respectively), we
compute an adversarial loss term for each attribute y as:

L)y, =Ex,,[log DY (X, .q) ]+
Ex, ,.x,.x,[10g(1 = DY (G(Xya ¢ 50))], (14)
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where DY is the discriminator for attribute y. The combined
adversarial loss for both age and gender is:

en age
Ladv = Lidu + Eaiv (15)
Rather than having the generator minimize £,4,, we instead
adopt a feature-matching loss (Salimans et al. 2016) in order
to train the generator to match the attribute patterns of par-

ticular target images. The feature-matching loss is defined
as:

Lfm =
Ex, .22, [ | DF"(Xg) = D (G (Xg.a, 8¢, 801)) 13
+ ” Dclg(f(‘){é) _ Dage(G(Xg’a’ Sg’v Sa/)) ||% ] (16)

Reconstruction loss Our framework is trained to edit
the selected demographic attributes, while preserving the
remaining input information. To this end, we use a cycle con-
straint (Zhu et al. 2017) to ensure that the synthetic images
can be translated back to the original input:

»Crec =
E)f:@a»Xg”Xa’[ | X0 — G(G(Xg,aa S¢’>Sa’), Sg Sa) Il ]a

7)

where a, g are the input labels for A”’s age and gender respec-
tively.

Full objective The full objective functions for D and G
are:

Lp = _Ladv (18)
EG Efm + )Wec['reu (19)

where A, is the hyper-parameters for the reconstruction loss
terms.

4 Experiments

In this section, we present a series of experiments designed
to evaluate the efficacy of the proposed style-based model
and method for mitigating dataset bias via data augmen-
tation. Firstly, we outline in Sect. 4.1 the implementation
details for all the experiments that follow. We then pro-
vide information in Sect. 4.2 about the datasets on which
we evaluate the method, along with our choice of baselines
in Sect. 4.3. Subsequently, in Sect. 4.4, we demonstrate the
ability of our method to synthesize realistic facial images
covering all demographic groups, particularly the ones at the
tails of the training set distribution, e.g., over 60 years old.
The diversity enhancing capabilities of the model are then
evaluated in Sect. 4.5. In particular, we use the proposed
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method to augment an existing facial image dataset, while
subsequently quantifying the diversity of the augmented set
using established metrics such as the Shannon and Simpson
indices introduced in Merler et al. (2019). Finally, we inves-
tigate the impact of diversity on the performance of face
analysis models in Sect. 4.6. Focusing on gender recogni-
tion, we showcase that the classifiers demonstrate various
demographic biases that can be successfully mitigated using
the proposed neural augmentation method.

In this work, we benchmark our model on widely adopted
datasets [e.g., Zhang et al. (2017), Ricanek and Tesafaye
(2006)] that are annotated with binary gender labels. In par-
ticular, the datasets are annotated with the sex labels ‘Male’
and ‘Female’, and therefore it is common practice in both
the face analysis (Ng et al. 2012; Dantcheva et al. 2015) and
fairness literature (Buolamwini and Gebru 2018; Quadrianto
et al. 2019; Zhao et al. 2017; Hendricks et al. 2018) to use
these available labels under this categorization. As such, we
can only address gender bias within this imposed binary clas-
sification paradigm. We note however that gender is widely
considered to be non-binary,! and as such, inappropriate cat-
egorization of this attribute runs the risk of resulting in unfair
face analysis systems. Furthermore, similar to Buolamwini
and Gebru (2018) we investigate bias with regards to “skin
tone”. Thatis, using the “race” labels of MORPH, we classify
the faces into “light-skinned” or “dark-skinned”.

4.1 Implementation Details

We adopt the same generator architecture as StarGAN (Choi
etal. 2018), with 6 layers in the encoder-decoder and 6 resid-
ual blocks (He et al. 2016) in the bottleneck. We depart from
their choice of architecture for our discriminators however,
and use a simple 3 layered CNN to match the dimensionality
of the decoder (more details on the model architectures can
be found in the supplementary material). Following recent
progress in stabilising the training of GANs (Mescheder et al.
2018), we use the R; gradient penalty loss term in the dis-
criminator’s objective:

Lep = hepEa [I VD) 1] 20)

where X denotes the real images sampled from the true data
distribution.

To further encourage the translated images to contain
class-relevant attribute patterns, we find it beneficial to use
the style parameters extracted from the synthetic images as
the target styles in the reconstruction term in Eq. (19). Con-
cretely, rather than translating the synthetic images back to
the input images using the style parameters s, s, from the

1 https://www.ons.gov.uk/economy/environmentalaccounts/articles/
whatisthedifferencebetweensexandgender/2019-02-21.
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inputimages, we instead use §, from D" (X, ¢,a) and 5, from
D48 (z’\?g,a). By requiring the synthetic images to retain suf-
ficient style information to reconstruct the original images,
the reconstruction term thus also aids in the attribute transfer.

We train our networks with the hyperparameters outlined
inLiuetal. (2019): Aroc = 0.01, Ag, = 10.0, and opt to train
our networks end-to-end with Kingma and Ba (2014), with
a learning rate of 1074, and B1 = 0.5, B> = 0.99. For the
multiplicative fusion layers, we set the rank of the tensors
in the CP decomposition to be equal to half the number of
filters at each layer.

4.2 Datasets

We conduct experiments on a number of popular databases
with demographic attribute annotations. Concretely, we
adopt the MORPH (Ricanek and Tesafaye 2006), CACD
(Chenetal.2014), KANFace (Georgopoulos et al. 2020), and
UTKFace (Zhang et al. 2017) datasets. MORPH’s second
album features 55,134 near-frontal facial images of 13,618
identities—captured in a controlled setting and demonstrate
little variation in expressions, illumination, or background.
For our experiments on bias mitigation, we consider all
three of the given annotated attributes: ‘age’, ‘gender’, and
‘race’. We use images with the attribute skin tone labelled
as either dark-skinned or light-skinned, which amounts to
53,140 facial images, covering more than 96% of the dataset.
In contrast, the CACD dataset features images captured in-
the-wild, collected from Google Images. It contains over
160,000 images from 2000 celebrities. The dataset is anno-
tated with regards to age. We manually annotate gender,
using the provided identities. Given these two annotated
attributes, we model both age and gender for our experi-
ments on CACD. In Sect. 4.6, we train classifiers in the
augmented MORPH and KANFace datasets. KANFace is
the largest manually annotated video dataset of faces cap-
tured in-the-wild. We utilize the static version of KANFace
that consists of 40 K images that are annotated with regards
to ‘identity’, ‘age’, ‘gender’, and ‘kinship’. Similarly to
CACD, we utilize only the age and gender labels. Finally,
the UTKFace dataset consists of over 20,000 images of indi-
viduals aged between 0 and 116 years old. The dataset is
labelled with ‘age’, ‘gender’, and ‘ethnicity’ labels. Similar
to MORPH, we utilize ‘skin tone’ labels instead of ‘ethnic-
ity’. For all datasets, we use 80% of the images for training
and keep 20% for testing. The faces are grouped into 5 dis-
tinct classes: 0-18, 19-30, 31-45, 46-60, 61+. This age
split is more fine-grained than the one commonly used in
face aging literature (Yang et al. 2018; Wang et al. 2016;
Yang et al. 2016) (i.e., 0-30, 3140, 41-50, 51+), utilized to
uncover the biases against faces under 18 and over 60 years
old.

4.3 Baselines

We benchmark our model against two strong baselines for
multi-attribute image translation, namely StarGAN (Choi
et al. 2018) and AttGAN (He et al. 2019). Additionally,
since face aging has been in itself investigated in the litera-
ture, we compare against two standalone face aging GANS,
namely IPCGAN (Wang et al. 2018) and CAAE (Zhang
et al. 2017). Both StarGAN and AttGAN translate an input
image to multiple target domains by conditioning on a one-
hot encoded label vector. StarGAN differs from AttGAN
in that it employs a cycle-constraint reconstruction loss,
while AttGAN utilizes a so-called attribute classification
constraint to encourage correct attribute classification in syn-
thesized images. On the other hand, IPCGAN uses a separate
pre-trained age classifier to enforce the aging features of
a particular target age class on the translated faces, while
CAAE learns face aging by traversing a manifold. We bench-
mark our model against these 4 baselines both qualitatively
and quantitatively in the sections that follow. The baselines
were implemented using the authors’ publicly released code
where available.”

4.4 Qualitative Results
4.4.1 Attribute Transfer

Our approach to dataset bias mitigation involves augmenting
the biased datasets in such way that the joint distribution of
the attributes’ labels is uniform. For this reason, the ability to
synthesize sharp and realistic images that are well-classified
as the target class is paramount. In Fig. 2a to 2c¢ we trans-
late a given facial image to all attribute combinations for
the available class labels and compare the results of our
method to the baselines. We find that both [IPCGAN and
CAAE fail to produce sharp images representative of the tar-
get class, especially for faces under 18 and over 60, due to
the underrepresentation of these classes in the training set.
At the same time AttGAN fails to modify the input image in
a noticeable manner, especially in the case of CACD, where
the generated faces are very similar to the input (e.g. row 4
of Fig. 2b). Furthermore, whilst StarGAN produces promi-
nent class-discriminative features in the synthetic images, it
fails to retain photo-realism in the generated facial images.
As a result, the StarGAN’s image translation results often
contain artifacts. This is particularly pronounced in Star-
GAN’s transfers to underrepresented demographic groups

2 CAAE: https://github.com/ZZUTK/Face- Aging-CAAE and, IPC-
GAN: https://github.com/dawei6875797/Face- Aging-with-Identity-
Preserved-Conditional-Generative- Adversarial-Networks, StarGAN:
https://github.com/yunjey/stargan, and AttGAN: https://github.com/
elvisyjlin/AttGAN-PyTorch.
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(a) Comparison on the MORPH dataset.
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(b) Comparison on the CACD dataset.
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(c) Comparison on the UTKFace dataset.
Fig. 2 Multiple attribute transfer on the test sets of MORPH, CACD, images with strong class-discriminative features, many artifacts are

and UTKFace. For the two age progression methods (CAAE and IPC- present and the sharpness is far inferior to our method’s samples.
GAN), we present the age transfers only. Whilst StarGAN produces AttGAN fails to produce prominent changes in the input images
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(a) Attribute transfer on the MORPH test set

0-18 19-30 31-45 46-60 61+ Female Male
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(b) Attribute transfer on the CACD test set

Fig.3 Multiple demographic attribute transfer on the test sets of MORPH and CACD using our method. Our method is particularly good at aging
inputs to the tail ends of the distribution. The red boxes show the input image, in the position of its attribute labels

such as people over 60 years old (see Fig. 2b). Indica-
tively, only 0.6% of the MORPH and 0.9% of the CACD
training sets are over 60 years old. On the other hand,
our method is able to synthesize sharp facial images with
prominent attribute patterns without sacrificing the photore-
alism.

Additional results for the task of image translation are pre-
sented in Figs. 3a and 3b. The proposed framework is able
to transfer distinct patterns for age, gender, and skin tone.
In particular, we highlight the transfer of global aging pat-
terns such as wrinkles and hair, as well as features associated
with gender, such as jawlines and facial hair. In Fig. 4, we
present generated facial images for all attribute combinations
on CACD.

The ability of the proposed model to generate images of
all demographic subpopulations that exist in the training set—
regardless of their representational support—is leveraged in
Sect. 4.6 to mitigate the classification bias using data aug-
mentation.

4.4.2 Intra-class Diversity

A useful property of the proposed method lies in its ability to
synthesize multiple image variants per class by conditioning
on different within-class attribute styles. That is, the network
is trained to transfer specific attribute styles present in the
target image, rather than collapsing to a class-specific pat-
tern. This implies that the synthesized images adapt a given
attribute style to the attribute style of the image we con-
dition on, in effect being able to modulate (both attenuate
and accentuate) the effect of each target attribute style—thus
providing a much more fine-grained control over the syn-
thesis process. For instance in Fig. 5 we demonstrate how
an input image can have its attribute content accentuated
to different degrees according to the choice of target face.
To further demonstrate this point, in Fig. 6 we show that
even faces belonging to the oldest age group (over 60 years
old) can be translated to look even older by using a target
image with more pronounced aging patterns. This prop-
erty is particularly useful in the case of celebrity datasets
(e.g., CACD, KANFace, CELEB-A, LFW) where the appar-
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Targets
46-60 60+ Male

18- 19-30  31-45

Transfers

31-45 46-60 60+

Male Female Male Female Male Female

Female

Fig.4 Translatingimages from the test set of CACD to all combinations
of the dataset’s gender and age labels using our method. The red square
indicates the input image, and is positioned according to its label
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ent age of a face can be significantly lower than its actual
age.

4.5 Diversity Enhancement

In this section, we propose to benchmark the diversity-
enhancing capabilities of our model with regards to the
available demographic attributes. In particular, we translate a
test-set of 1000 faces to all attribute classes and calculate the
diversity metrics of the augmented set, as proposed in Merler
etal. (2019). We measure the Shannon H (ShH) and Simpson
D (SiD) diversity indices and the Shannon E (ShE) and Simp-
son E (SiE) evenness indices. The metrics are calculated as
follows:

Shannon : H = —Zf pi In(py), E = 2

1 &)
i
1

Simpson: D = E = %,

where § denotes the number of classes and p; is the proba-
bility of each class. Higher diversity indices indicate a more
diverse dataset, while evenness indices closer to 1 indicate
a label distribution that is closer to uniform. The age and
gender labels for each image are obtained using the Face++
public API,3 while the skin tone labels are obtained using the
Clarifai* APIL.

In the case of the age attribute, we adopt the standard
protocol as described in the age progression literature (Yang
et al. 2018; Wang et al. 2016; Yang et al. 2016), and trans-
late only faces from the youngest age group (under 18 years
old) to the rest of the age groups; that is, we perform face
aging.

We compare the diversity metrics of the augmented sets
to those of the original test images (GT) and present the
results in Tables 1, 2 and 3. Along with our method, both
StarGAN and AttGAN are capable of synthesizing a dataset
with a distribution of labels close to uniform in the case
of the binary attributes skin tone and gender. For the more
challenging age attribute however, the superiority of our
method and modelling choice is evident, with our aug-
mented datasets’ age labels being much more evenly spread
than those of the baselines, especially the age progression
ones.

This is particularly pronounced in the case of the biased
MORPH test-set (Table 1), where the difference between
the ground truth images and the synthetic ones is signifi-
cant. Our model consistently outperforms the baselines for
all attributes in both datasets.

3 https://www.faceplusplus.com/attributes/.
4 https:/clarifai.com/.
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Predicted age: 62 Predicted age: 81

Fig.6 Intra-class attribute enhancing: the proposed method can accen-
tuate the input class of an attribute label to generate synthetic datasets
with distributions with more support on the tails or for the underrepre-
sented classes. The age of the images are evaluated with Face++

4.6 Mitigating Classifier Bias

In this section, we investigate the effect that a lack of
diversity entails with respect to model performance. To
this end, we fine-tune and test a state-of-the-art gender
recognition model (Rothe et al. 2018) on the MORPH and
KANFace datasets. By measuring the True Positive Rate
(TPR) for each demographic subpopulation, we are able
to uncover the bias of the model with regards to age and
skin tone. In particular, Figs. 7 and 8 show that the model
trained on MOPRH is biased against dark-skinned females
(TPR of 40% for dark-skinned females over 60 years old),
while the model trained on KANFace is biased against
male faces under 18 (TPR of 64%). Age and skin tone
bias has been studied for the task of face recognition in
Nagpal et al. (2019), as well as in human perception in
psychology literature (Schaich et al. 2016; Bothwell et al.
1989).

Transfers

Targets

(b)

We propose to mitigate the bias in both models by
augmenting the training set using the proposed image
translation method. In particular, we train the models
on the diverse augmented sets and evaluate the fairness
of the trained classifiers. The MORPH dataset is aug-
mented using the models trained on MORPH in Sect. 4.4.1.
For the KANFace dataset we use the models trained on
CACD.

Of the various fairness metrics discussed in Sect. 2.3,
we opt to quantify fairness using Equality of Opportu-
nity (EO) (Hardt et al. 2016), which is defined as the
difference in TPRs between the subpopulations.In partic-
ular, we report the EO score between each (age, gen-
der) class for KANFace and (age, gender, skin tone) for
MORPH.

We present the TPRs (1) and EO ({) on the ground-truth
and synthetic test-sets in Figs. 8 and 7 for MORPH and KAN-
Face respectively. Despite StarGAN’s images having strong
class-discriminative features as established in Sect. 4.4, we
demonstrate here that training on their artifact-ridden images
leads to even more biased classifiers. Similarly, whilst train-
ing on AttGAN-generated training sets can improve the
TPR for dark-skinned women over 60 years old by 20% for
MORPH, the dataset bias is exacerbated in KANFace when
training on augmentations from this model (compared to our
augmentations that lead to almost half the EO for males under
18).

Overall, the results indicate that the proposed framework
is the only method able to mitigate all of the demonstrated
dataset biases in generating more diverse data that can be
used to train fairer classifiers.
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Table 2 Diversity metrics on the augmented subset of CACD’s test set

Age ShH Age ShE Age SiD Age SiE gender ShH gender ShE gender SiD gender SiE
GT - - - - 0.6928 0.9995 1.9986 0.9993
IPCGAN 1.16 0.72 2.87 0.57 - - - -
CAAE 0.90 0.56 2.16 0.43 - - - -
StarGAN 1.39 0.86 3.80 0.76 0.6906 0.9963 1.9899 0.9950
AttGAN 1.12 0.69 2.68 0.54 0.6922 0.9987 1.9963 0.9982
Ours 1.39 0.86 3.89 0.78 0.6931 0.9999 1.9997 0.9999

We calculate the indices for the age attribute by age progressing all under 18 s in the test set following the standard practice in the age progression
literature (Liu et al. 2019; Wang et al. 2018). For this reason, we dont report the age diversity of the ground-truth images

4.7 Limitations of the Framework

Due to the generative nature of the proposed framework,
our method suffers from its dependence to external data. We
investigate this inherent shortcoming of our method by con-
ducting two experiments, which are presented as follows.
Training on limited data Firstly, we investigate the impact
of the size of the training set of the GAN on the bias of
the trained classifier. Concretely, we show in Fig. 10 the
results of training a classifier with our synthetic data, when
our GAN is trained on training subsets of different sizes.
For each model, we report the equality of opportunity for
the most underrepresented class, i.e., male faces under 18
on KANFace. We notice that when our model is trained on
less than 25% of the training images, the bias of the trained
classifier is even magnified. It should be noted that this prob-
lem is not specific to our method, but one that will plague
all generative model-based bias mitigation methods via aug-
mentation.

Augmentation with real data Since the use of the proposed
framework assumes the existence of an external training
set, we explore the option of augmenting the training set
of the biased classifier using real images from the external
set. In particular, we use the CACD dataset as the exter-
nal set, and try to flatten the distribution of the training set
of the classifier (i.e., KANFace). However, the support for
each class in the external set is not sufficient to do so in
the extreme cases of people under 18 and over 60 years
old. The resulting training distributions along with equal-
ity of opportunity scores are presented in Fig. 11. The results
highlight the advantage of using the proposed data augmen-
tation method, instead of directly training on the external
data.

Learning the real distribution of face images is a task of
high data and computational complexity (Arora and Zhang
2017). Therefore, generative models have to rely on their
inductive bias in order to generalize on unobserved modes of
variation. However, any finite dataset is inherently biased,
and training a generative model on a biased dataset can
even exacerbate this bias. Indicatively, GANs and VAEs
are not able to generate images of unobserved attribute
combinations (Zhao et al. 2018). Different approaches for
debiased generation have been proposed in the literature
and include importance reweighting (Grover et al. 2019a,b)
and modeling the multiplicative interactions (Georgopou-
los et al. 2020). Therefore, the proposed and any generative
model-based approach to data augmentation should be uti-
lized with caution regarding the distribution of the training
set.

5 Conclusions

In this paper, we proposed a style-based neural data aug-
mentation framework, that can be used to enhance the
demographic diversity of a given dataset. To this end, we
introduced a novel style transfer method, that is able to simul-
taneously transfer multiple facial demographic attributes.
Contrary to recent work in multi-attribute face translation,
the proposed framework leverages attribute-specific demo-
graphic style to facilitate image translation, rather than
class-labels. In order to mix the style information of mul-
tiple attributes, we further introduce a multilinear extension
to AdalN, that fuses the different styles by modeling their
multiplicative interactions.
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(a) EO (for the age attribute) for the two subpopulations for gender recognition on KANFace’s test set. The red rectangle highlights our method’s
results.
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(b) EO (for the skin tone attribute) for the two subpopulations for gender recognition on MORPH’s test set.

Fig. 9 Equal Opportunity (EO) (] ) for the subpopulations for gender recognition on MORPH and KANFace’s test set. Our method produces
classifiers that compete with all 7 state-of-the-art bias mitigation methods
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Fig. 10 Equality of Opportunity of classifiers trained on the ground-
truth biased training data and the augmented KAN-Face training sets

Our style transfer framework is evaluated against base-
line attribute transfer models (StarGAN and AttGAN), as
well as GAN-based age progression methods (CAAE and
IPCGAN) in a series of qualitative and quantitative experi-
ments. In particular, we demonstrate that the proposed model
is able to realistically transfer age, gender, and skin tone on
the CACD and MORPH datasets, even for undrerepresented
classes (such as images of people over 60 or under 18 years
old). We further evaluate the diversity-enhancing capabili-
ties of the models by measuring the diversity [as proposed
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in Merler et al. (2019)] of the augmented test sets. By aug-
menting the test set using our method, we are able to achieve
the most evenly spread distribution of age, gender, and skin
tone predictions.

Lastly, we quantify the effect of biased datasets in the
fairness of face analysis models. Focusing on gender recog-
nition, we showcase how our framework can be used to
mitigate existing age and skin tone bias in a state-of-the-art
model (Rothe et al. 2018) on the MORPH and KANFace
datasets. By measuring equality of opportunity, we show
that the model is more fair when trained on the augmen-
tations produced by our model. At the same time, the results
in Figs. 7 and 8 indicate that training on non-diverse or
non-photorealistic synthetic images can even deteriorate the
fairness of a pretrained classifier.

In our future work, we aim to extend our style-transfer
framework to be able to handle heavily biased datasets
(e.g., missing classes). Furthermore, we plan to investigate
different models that are not so dependent on large anno-
tated training sets, e.g., non adversarial frameworks. Another
direction is to extend the method to handle an arbitrary num-
ber of attributes, without the restrictions imposed by the size
of the tensors. This can be achieved by using coupled ten-
sor decompositions that utilize parameter sharing. Lastly, we
plan to extend our method to better account for attributes for
which a discrete categorization is not so applicable. In par-
ticular, we plan to address bias beyond the traditional binary
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Fig. 11 Equality of Opportunity scores (two left-most columns) of the classifiers trained using the ground-truth data (first row), the data augmented
with real images from a different dataset (middle row), and with our synthetic images (bottom row). The right-most column shows the support of

the datasets used to train the classifiers for each row
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gender paradigm to better reflect the full spectrum of gender
identity.
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