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Abstract
We present two newmetrics for evaluating generative models in the class-conditional image generation setting. These metrics
are obtained by generalizing the two most popular unconditional metrics: the Inception Score (IS) and the Fréchet Inception
Distance (FID). A theoretical analysis shows the motivation behind each proposed metric and links the novel metrics to their
unconditional counterparts. The link takes the form of a product in the case of IS or an upper bound in the FID case. We
provide an extensive empirical evaluation, comparing the metrics to their unconditional variants and to other metrics, and
utilize them to analyze existing generative models, thus providing additional insights about their performance, from unlearned
classes to mode collapse.

Keywords Image generation · Conditional generation · Evaluation metrics · Inception Score · Fréchet Inception Distance

1 Introduction

Unconditional image generation models have seen rapid
improvement both in terms of generation quality and diver-
sity. These generative models are successful, if the generated
images are indistinguishable from real images sampled from
the training distribution. This property can be evaluated in
manydifferentways, themost popular are the InceptionScore
(IS) Salimans et al. (2016), which considers the output of
a pretrained classifier, and the Fréchet Inception Distance
(FID) Heusel et al. (2017), in which measures the distance
between the distributions of extracted features of the real and
the generated data.

While unconditional generative models take as input a
random vector, conditional generation allows one to con-
trol the class or other properties of the synthesized image.
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In this work, we consider class-conditioned models, intro-
duced inMirza andOsindero (2014), where the user specifies
the desired class of the generated image. Employing uncon-
ditional metrics, such as IS and FID, in order to evaluate
conditional image generation fails to take into account
whether the generated images satisfy the required condition.
On the other hand, classification metrics, such as accuracy
and precision, currently used to evaluate conditional gener-
ation, have no regard for image quality and diversity.

One may opt to combine the unconditional generation
and the classification metrics to produce a valuable measure-
ment for conditional generation. However, this suffers from
a few problems. First, the two components are of different
scales and the trade-off between them is unclear. Second,
they do not capture changes in variance within the dis-
tribution of each class. To illustrate this, consider Fig. 1,
which depicts two different distributions for polar coordi-
nates (Ri + α, 0.1β) where Ri is a different radius for each
class i ∈ {1, 2}, α ∼ N (0, 0.12), β ∼ U (0, 2π). Distri-
bution ‘A’ has R1 = 1, R2 = 3, therefore it has a zero
mean, for each of the classes, and a standard deviation 1.0
for the first class and 3.0 for the second class independently
in each axis, which results in a standard deviation of 2.0 for
the entire distribution. Distribution ‘B’ corresponds to radii
R1 = 1.5, R2 = 2.5, and therefore it also has a zero mean
but a standard deviation of 1.5 for the first class and 2.5 for
the second class in each axis, which again, results in a stan-
dard deviation of 2.0 for the entire distribution. Since the
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FID score compares distributions by their mean vectors and
covariance matrices, the FID (between distributions ‘A’ and
‘B’) is zero. The classification error (the optimal classifier
is shown as a solid circle) is also zero, despite the in-class
distributions being different.

In order to provide valuable metrics to evaluate and com-
pare conditional models, we present two metrics, called
Conditional Inception Score (CIS) and Conditional Fréchet
Inception Distance (CFID). The metrics contain two compo-
nents each: (i) the within-class component (WCIS/WCFID)
measures the quality and diversity for each of the conditional
classes in the generated data. In other words, it measures the
ability to replicate the distribution of each class in the true
samples; (ii) the between-class component (BCIS/BCFID)
measures how close the representation of classes in the gen-
erated distribution is to the representation in the real data
distribution. See Fig. 2 for an illustration.

In contrast to the combined FID and classifier, ourWCFID
and BCFID components of the FID are both larger than zero
for the example in Fig. 1, successfully capturing the differ-
ences between the distributions.

Our analysis shows direct links between the novel con-
ditional metrics and their unconditional counterparts. The
(unconditional) Inception Score can be decomposed to amul-
tiplication between BCIS and WCIS. We further show that
due to the bounded region of the metrics, this translates to a
trade-off between BCIS andWCIS and that each one of them
form a tight lower bound on the IS. In the analysis of the FID
score, we show that the sum of WCFID and BCFID forms a
tight upper bound of the FID.

After analyzing the metrics, we performed various exper-
iments to ground the theoretical claims and to highlight the
role of the new metrics in evaluating conditional generation
models. First, a set of simulations was conducted, in which
we performed label noising, image noising, image manipu-
lation, and simulated mode collapse. Under all conditions,
our methods came out as the most sensitive to the applied
augmentations. We then evaluated several pretrained mod-
els of popular architectures on various datasets and training
schemes using the proposed scores and identified significant
insights that were detected by our metrics. Our metrics were
found to be a decisive factor to determine the generation per-
formance in each dataset.

1.1 RelatedWork

1.1.1 Generative Models

Generative models, and in particular Generative Adversarial
Networks (Goodfellow et al. 2014) aim to generate realistic
looking images from a target distribution, while capturing
the diversity of images. Advances in the loss and architec-
ture allowed for improved quality and diversity of generation.

Fig. 1 A case against measuring success by relying on FID combined
with a classification score. Shown are two distributions, each with two
classes, in a two-dimensional feature space. The circle acts as the clas-
sifier. For both distributions, the overall mean and variance are equal,
therefore, the FID is zero. The classification error is also zero, and the
two distributions are, therefore, indistinguishable by this score as well.
However, within the classes we see a shift in variance in the second
distribution compared to the first. Our proposed WCFID and BCFID
metrics both showvalues above zero and, therefore, detect the difference
between the distributions

Fig. 2 The differences between unconditional, within-class and
between-class evaluations for two given distributionswith labelled sam-
ples. a Sample distributions. b The unconditional evaluation disregards
the labels and compares the distance between the distributions. c The
within-class evaluation compares each class in the first distribution with
the corresponding class in the second (shown for one class). d The
between-class evaluation compares the distribution of class averages

For instance, (Arjovsky et al. 2017; Gulrajani et al. 2017)
attempt to minimize the Wasserstein distance between the
generated and real distributions. This allowed for improved
variability in generation, in particular by reducing mode col-
lapse. On the architectural side, Progressive GANs (Karras
et al. 2018), StyleGAN (Karras et al. 2019) and StyleGANv2
(Karras et al. 2019), introduced advanced architectures and
training methods, allowing for further improvements.

1.1.2 Conditional Generation

In conditional generation, control over the generation is pro-
vided, e.g., by class-conditioning (Mirza and Osindero 2014;
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Chen et al. 2016; Singh et al. 2019), a given text (Zhang
et al. 2017; Xu et al. 2018), requiring specific semantic fea-
tures (Johnson et al. 2018), or finding analogs to images from
another distribution (Isola et al. 2017; Zhu et al. 2017). The
recent state of the art in class-conditional generation, which
is the BigGAN method (Brock et al. 2019), can learn condi-
tional representation on ImageNet (Russakovsky et al. 2015)
with high quality and diversity.

To train thesemodels, several changes have been proposed
to the unconditional method. CGAN (Mirza and Osindero
2014) injects the conditional component to the discrimi-
nator along with the image, ACGAN (Odena et al. 2017)
added an auxiliary classifier tasked to accurately predict the
conditioned label, SGAN (Odena 2016) modified the dis-
criminator output to detect real classes while treating fake
images as an additional class. A special unsupervised set-
ting was proposed by InfoGAN (Chen et al. 2016), where
the condition is unlabelled in the real data and the model
constructs a disentangled representation by maximizing the
mutual information between the conditioned variable and the
observation.

1.1.3 Evaluation Metrics

To evaluate different models in terms of high quality gener-
ation and diversity, evaluation metrics were proposed for the
unconditional generation setting. The Inception Score (IS)
Salimans et al. (2016) uses the predictions of a pretrained
classifier, InceptionV3 (Szegedy et al. 2015), to assess: 1.
Quality: whether the conditional probability of a generated
sample G(z) over the labels y, is highly predictable (low
entropy) and 2. Diversity: whether the marginal probability
of labels over all generated samples is highly diverse (high
entropy). The Fréchet Inception Distance (FID) Heusel et al.
(2017), was proposed as an alternative to the IS, by consid-
ering the distribution of features of real data and generated
data. FIDmodels these distributions asmultivariateGaussian
distributions and measures the distance between them. FID
was shown to be sensitive to mode collapse and more robust
to noise than IS. Additional metrics, such as Perceptual Path
Length (PPL) Karras et al. (2019) and Kernel Inception Dis-
tance (KID) Bińkowski et al. (2018) were also introduced.
Still, the IS and FID are the most widely accepted metrics
for image generation.

Nevertheless, these measures are designed for the uncon-
ditional setting, and for class-conditional, they do not assess

the level at which the categorical conditionmanifests itself in
the generated data. In this work, we extend the IS and FID to
the class-conditional setting, showing their relation to their
unconditional counterparts and demonstrate the usefulness
of these metrics in the conditional setting.

Accuracy-based evaluation methods have been proposed
to evaluate the conditional generation capabilities of amodel.
For example, by measuring the accuracy of predicting the
conditioned label with a pretrained classifier. However, accu-
racy is not a reliable benchmark for image generation, since
only a slight higher probability for the correct class is nec-
essary for correct prediction, and the image can be far
from looking realistic or truly depicting the required condi-
tion. Another approach, calledClassificationAccuracy Score
(CAS) Ravuri andVinyals (2019) has been proposed. Instead
of measuring the accuracy of the generated images on a
pretrained classifier, the generated images are used to train
a classifier that is then used to predict the labels of the
real images. This reversed approach has been shown to be
more promising, since the images need to contain the nec-
essary features to define the represented class, in order for
the classifier to work on real images as well. However, it
requires training a different classifier for each generative
model, which can result in a biased evaluation, since different
models can benefit from different classifier hyperparameters.
The need to retrain classifiers for each evaluation is labori-
ous and can prevent the method from being used, e.g., for
selecting the best epoch during training.

Some recent attempts have beenmade to asses conditional
generation with modified versions of the IS and FID. A Con-
ditional Inception Score for the Image-to-Image translation
task was proposed by Huang et al. (2018). This method mea-
sures the difference in the probability distribution of images
before and after a translation to another category. While this
method relies on the IS equation as a tool for measure-
ment, it does not follow the principles behind the IS, i.e.
low entropy for a single image and high entropy on average.
Instead, it only measures how much the prediction of each
image has changed. In addition, this method is only appli-
cable to image-to-image translation and not for conditional
image generation. Miyato and Koyama (2018) were the first
to our knowledge to measure the intra-FID, which is equal
to our WCFID component. Their presentation of this met-
ric lacks thorough experiments and is presented without any
theoretical analysis. Nevertheless, these previous attempts to
establish conditionalmetrics confirm the need for conditional
evaluations scores and point to the possible ingredients of
such solutions. Our work contributes to both approaches by
providing justification and explanation, and also by building
unified metrics.
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2 Problem Setup

The following setup addresses Generative Adversarial Net-
works, since they are currently, along with Variational
Autoencoders, the most popular methods for image gener-
ation. However, the evaluation metrics are not limited to any
model and can be applied to any class-conditionally gener-
ated images. The only requirement is that each image (either
real or fake), corresponds to one class from a finite set of
classes.

We consider a distribution of real samples:

c ∼ DC , x ∼ Dc
R, (1)

where DC is a distribution over a set of K > 1 classes and
Dc

R is the conditional distribution of a sample x ∈ R
n taken

from the class c. The algorithm is provided with a dataset
of i.i.d labelled examples S = {(xi , ci )}mi=1 that were sam-
pled from the generative process in Eq. 1. In addition, the
distribution DC of classes and its corresponding probability
density function p(c) are known or assumed to be uniform.
The distribution of real samples x marginalized over c ∼ DC

is denoted by DR and the corresponding probability density
function by pR(x).

In conditional generation, the algorithm learns a genera-
tive model G that tries to generate samples that are similar to
the real samples inDR . The generative model takes a random
seed z ∼ DZ ⊂ R

d and a class c ∼ DC as inputs and returns
a generated sample G(z, c). Here,DZ is a pre-defined distri-
bution over a latent spaceRd of dimension d < n, where n is
the dimensionality of the samples. Typically DZ is the stan-
dard normal distribution. We denote by DG the distribution
of generated samples.

In conditional generation, we are interested in two aspects
of the generation. Images from the same conditioned variable
should be of the same class in DR , and different latent vari-
ables z should cover the range of each class.

The category discovery setting is a special case of the
conditional generation, proposed inChen et al. (2016), where
the algorithm is provided with a set of unlabelled samples
S = {xi }mi=1. The algorithm is still aware of the existence
of the partition of the data into classes that are distributed
according to DC . The goal of the algorithm is to generate
samples that are similar to the real samples and also have
them clustered in a proper manner into K clusters.

2.1 Inception Score

The Inception Score (IS) is a method for measuring the
realism of a generative model’s outputs. For a given gen-
erative model G, a latent vector z ∼ DZ and a random
class c ∼ DC , we apply a pretrained classifier on the gen-
erated image x = G(z, c) to obtain a distribution over

the labels, which is denoted by pG(y|x). We denote the
corresponding random variables by Z , C , X = G(Z ,C)

and Y ∼ pG(y|X), the distribution of X by DG and the
probability density function of x by pG(x). Images that
contain meaningful objects should have a condition distri-
bution pG(y|x) of low entropy. Furthermore, we expect the
model to generate varied images, so the marginal distribu-
tion pG(y) := Ez,c[pG(y|x = G(z, c))] should have a high
entropy. The Inception Score is computed as:

I S(X; Y ) := exp{Ex∼DG [DKL(pG(y|x)‖pG(y)]}, (2)

where DKL(p‖q) is the KL-divergence between two proba-
bility density functions. A high score indicates both a high
variety in data and that the images are meaningful.

The Inception Score can also be formulated using the
mutual information between the generated samples and the
class labels:

I S(X; Y ) = exp{I (X; Y )}, (3)

where I (X; Y ) is the mutual information between X and Y .
As can be seen, by maximizing the IS, one maximizes the
mutual information between X andY . However, this equation
indicates that the IS is not sufficient in order to evaluate gen-
erative models in the conditional generation settings, since
the score does not take the conditioned class into account.

Due to the properties of the mutual information, it can be
seen that for a domain with K classes, the score is within the
range [1, K ].

2.2 Fréchet Inception Distance

The Fréchet distance d2(D1,D2) between two distributions
D1,D2 is defined by:

d2(D1,D2) := min
X ,Y

EX ,Y [‖X − Y‖2], (4)

where the minimization is taken over all random variables
X and Y having marginal distributions D1 and D2, respec-
tively. In general, the Fréchet distance is intractable, due to
its minimization over the set of arbitrary random variables.
Fortunately, as shown by Dowson et al. (1982), for the spe-
cial case of multivariate normal distributionsD1 andD2, the
distance takes the form:

d2(D1,D2) = ‖μ1 − μ2‖2 + Tr(�1 + �2 − 2(�1�2)
1
2 )

(5)

where μi and �i are the mean and covariance matrix of Di .
The first term measures the distance between the centers of
the two distributions. The second term:
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d0(D1,D2) := Tr(�1 + �2 − 2(�1�2)
1
2 ), (6)

defines a metric on the space of all covariance matrices of
order n.

For two given distributionsDR of real samples andDG of
the generated data, the FID score (Heusel et al. 2017) com-
putes the Fréchet distance between the real data distribution
and generated data distribution using a given feature extrac-
tor f under the assumption that the extracted features are of
multivariate normal distribution:

F I D(DR,DG) := d2( f ◦ DR, f ◦ DG)

= ‖μR − μG‖2
+ Tr(�R + �G − 2(�R�G)

1
2 ),

(7)

where μR, �R and μG , �G are the centers and covariance
matrices of the distributions f ◦DR and f ◦DG , respectively.
For evaluation, the mean vectors and covariance matrices are
approximated through sampling from the distribution.

3 Method

In this section, we introduce the class-conditioned extensions
of the Inception Score and FID.

3.1 Conditional Inception Score

The conditional analysis of the Inception Score addresses
both aspects of conditional generation: the need to create
realistic and diverse images, and the need to have each gen-
erated image match its condition. We define two scores: the
between-class (BCIS) and the within-class (WCIS).

BCIS evaluates the IS on the class averages. It is a mea-
surement of the mutual information between the conditioned
classes and the real classes. The prediction probabilities for
all the samples in each conditioned class are averaged to pro-
duce the average prediction probability of the entire class,
then the IS is computed on these averages.

The BCIS is defined in the following manner:

BC I S(X; Y ) := I S(C; Y )

= exp {Ec[DKL(pG(y|c)‖pG(y))]} (8)

where,

pG(y|c) = 1

p(c)
· Ex∼DG [pG(y, c|x)]

= Ex∼Dc
G
[pG(y|x)]

(9)

WCIS evaluates the IS within each category. It is a mea-
surement of the mutual information between the real classes

conditioned on the samples and the real classes conditioned
on the conditioned classes. The final score is the geometric
average score over all the classes, which is equivalent to the
exponent on the arithmetic average of themutual information
over all the classes. To define this measure, we define two
random variables Xc := (X |C = c) and Yc := (Y |C = c)
which are the random variables X and Y conditioned on the
class being c.

The WCIS is defined as:

WCI S(X; Y ) := exp{Ec[I (Xc; Yc)]}, (10)

where the mutual information is computed as follows:

I (Xc; Yc) = Ex∼Dc
G
[DKL(pG(y|x)‖pG(y|c))], (11)

where Dc
G is the distribution of Xc.

In general, we wish the BCIS to be as high as possible
and the WCIS to be as low as possible. High BCIS indicates
a distinct class representation for each conditioned class and
a wide coverage across the conditioned classes, which is a
desired property. High WCIS indicates a wide coverage of
real classes within the conditioned classes, which is an unde-
sired property, since each conditioned class should represent
only a single real class. In this way, one obtains consistent
prediction within each class and has high variability between
classes.

The following theorem presents the compositional rela-
tionship between IS and the proposed conditional measures.

Theorem 1 Let C ∼ DC and Z ∼ DZ be two independent
random variable. Let X = G(Z ,C) for a continuous gen-
erator function G and let Y be a discrete random variable
distributed by p(y|X). Then,

I S(X; Y ) = BC I S(X; Y ) · WCI S(X; Y ) (12)

The proof is provided in the appendix.

By definition, as with the IS, both BCIS and WCIS lie
within [1, K ]. Since we wish IS to be as large as possible
and both BCIS and WCIS lie in the same interval, the the-
orem asserts that there is a tension between the BCIS and
WCIS measures, since both of them cannot be large at the
same time. In addition, since both components are larger than
1, the theorem shows that they both provide a lower bound
on the IS and the bound is tight when the other component
is equal to 1. The final realization is that the IS can be very
high even when the BCIS component is low, simply by hav-
ing a high WCIS. This gap between IS and BCIS indicates
bad conditional representation which is overlooked by the
unconditional evaluation.
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On these grounds, we propose the BCIS and WCIS
together as the conditional alternative to the IS. Each metric
shows adifferent property of the generated data and, as shown
in the theorem, the IS is readily obtained by multiplying the
conditional components.

3.2 Conditional Fréchet Inception Distance

For conditional FID, we want to measure the distance
between different distributions, according to the feature vec-
tor f (x), produced by the pre-trained feature extractor f
on a sample x . Analogous to the conditional IS metrics, we
measure the between-class distance between averages of con-
ditioned class features and averages of real class features, as
well as the average within-class distance for each matching
pair of real and conditioned classes.

BCFID measures the FID between the distribution of the
average feature vector of conditioned classes in the generated
data and the distribution of the average feature vector of real
classes in the class real data. It evaluates the coverage of the
conditioned classes over the real classes.

For each distribution specifier E ∈ {R,G}, we estimate
the per-classmeanμE

c , themeanofmeansμE
B , and the covari-

ance of the feature vectors �E
B .

μE
c = Ex∼Dc

E
[ f (x)] (13)

μE
B = Ec∼DC [μE

c ] = Ex∼DE [ f (x)] = μE (14)

�E
B = Ec∼DC [(μE

c − μE
B )(μE

c − μE
B )�] (15)

The BCFID is defined as:

BCF I D(DR,DG) :=‖μR
B − μG

B‖2
+Tr(�R

B + �G
B − 2(�R

B�G
B )

1
2 )

(16)

WCFID measures the FID between the distribution of
the generated data and the real data within each one of the
classes. It evaluates how similar each conditioned class is
to its respective real class. The total score is the mean FID
within the classes.

For each distribution specifier E ∈ {R,G}, the within-
class covariance matrices are defined as:

�E
W ,c = Ex∼Dc

E
[( f (x) − μE

c )( f (x) − μE
c )T ] (17)

The WCFID is defined as:

WCF I D(DR,DG)

:= Ec∼DC [F I D(Dc
R,Dc

G)]
:= Ec∼DC

[
‖μR

c − μG
c ‖2+

Tr(�R
W ,c + �G

W ,c − 2(�R
W ,c�

G
W ,c)

1
2 )

]
(18)

Note that we compare between matching pairs of con-
ditioned and real classes. When a mapping between condi-
tioned and real classes exists, i.e., in conditionalGANs, this is
straightforward. In the case when there is no such mapping,
i.e., in the class discovery case, such as when employing
the InfoGAN method, a mapping needs to be created. For
example, this can be done by using a classifier to get the
prediction probabilities for the generated images. Then aver-
age the probabilities for each conditioned class and apply the
Hungarian algorithm on the average probabilities.

In general, the desire is tominimize both component, since
each computes a different aspect of the distance between
the real and the generated distributions. BCFID measures
the distance between the real and the fake class averages,
therefore it measures the coverage of the classes. WCFID on
the other hand, measures the distance between the real and
fake samples within each class. Therefore, it measures the
similarity and diversity. This means that the two components
complement each other.

The following theorem ties the FID and the conditional
FID components.

Theorem 2 Let DR and DG be the distributions of real and
generated samples. Then,

F I D(DR,DG)≤ BCF I D(DR,DG)+WCF I D(DR,DG)

(19)

and the bound is tight under certain conditions. The proof is
provided in the appendix.

By this theorem, in conditional generation, FID gives an
optimistic evaluation to the model that ignores bad cases. A
good unconditional score can be obtained even though there
is a considerable friction between the real and generated dis-
tributions in termsof conditional generation. This friction can
occur either by bad representation of classes (high BCFID)
or unmatching diversity within classes (high WCFID). For
this reason, we propose the BCFID and WCFID as the con-
ditional alternative to the FID. In addition to providing two
meaningful scores that are similarly scaled, an upper bound
to the FID can be computed by adding the two components.
Since a good conditional generation corresponds to the case
where both BCFID andWCFID tend to be small, we suggest
using BCF I D(DR,DG) + WCF I D(DR,DG) as a single-
valued measure of conditional generation.

3.3 Within-Class Model Analysis

We note that the WCIS and WCFID, proposed in this work,
reduce the evaluations on the various classes into single val-
ues. While this is beneficial to summarize the performance
of a model as much as possible, this misses an opportunity
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Table 1 Unconditional and conditional metrics on CIFAR10 and MNIST for different conditional GANs

Evaluation metrics User study

FID ↓ WCFID ↓ BCFID ↓ IS ↑ WCIS ↓ BCIS ↑ Acc ↑ Quality ↑ Diversity ↑ Class ↑
CIFAR10 Real Data 0.02 0.09 0.04 8.45 1.14 7.41 91.15 - - -

CGAN 4.31 7.14 6.30 7.10 1.22 5.78 69.51 7.6 7.5 7.0

ACGAN 4.23 6.84 5.25 7.01 1.10 6.36 75.43 7.5 7.4 8.0

InfoGAN 5.17 14.59 10.13 6.52 2.01 3.25 65.69 4.1 6.9 4.2

SGAN 4.46 17.07 12.34 6.84 2.52 2.71 11.27 5.3 7.2 2.5

MNIST Real Data 19.86 35.99 34.17 9.86 1.04 9.52 99.61 - - -

CGAN 36.67 98.48 25.70 9.87 1.06 9.31 98.90 8.3 8.8 7.6

ACGAN 30.13 91.21 25.95 9.74 1.09 8.93 98.30 8.5 9.0 9.1

InfoGAN 76.73 321.56 93.51 9.38 1.33 7.03 89.83 5.3 6.0 6.3

SGAN 69.34 609.48 289.42 8.87 2.03 4.37 73.34 6.0 3.5 5.3

↓ indicates that a lower value is better and ↑ otherwise

Table 2 Unconditional and
conditional metrics on
ImageNet for BigGAN

FID IS Acc↑
-↓ WC↓ BC↓ -↑ WC↓ BC↑

Real Data 0.11 4.15 0.11 602.61 3.01 201.36 77.45

BigGAN 0.46 6.33 0.43 363.91 5.04 72.15 51.66

BigGAN@200K 1.06 9.17 0.94 257.38 7.62 33.71 27.70

BigGAN@100K 1.27 11.36 1.51 112.29 9.21 12.19 18.87

↓ indicates that a lower value is better and ↑ otherwise

to inspect the performance of the model on each class sep-
arately. By looking at the IS/FID component of each class
before the averaging into the WCIS/WCFID, we can reveal
which classes contribute to the performance of the model
and which classes are not generated well. This can be a valu-
able insight during training and fine-tuning of models. In
Sect. 4.3, we perform such in-depth analysis with the Big-
GAN(Brock et al. 2019) on the ImageNet (Russakovsky et al.
2015) dataset.

4 Experiments

Our experiments employ three datasets: MNIST (LeCun and
Cortes 2010), CIFAR10 (Krizhevsky et al. 2010), and Ima-
geNet (Russakovsky et al. 2015).We first consider controlled
simulations on MNIST to show the behavior of our metrics
compared to existing unconditional metrics. Three cases are
considered: noisy labels, noisy images, and mode collapse
within classes. We then consider our metrics on a variety of
well-established generative models and draw visual insights
for the reported metric scores. Finally, a user study was held
to compare the numeric results to human perception.

Evaluation Procedure When evaluating the models, we
use an equal number of randomly sampled real and generated
samples for each class. For MNIST and CIFAR10, the test

set was used as real samples, with 1000 samples from each
class. For ImageNet, 50 validation samples for each class
were used, for a total of 50, 000 validation samples.

To obtain the scores of the ‘Real Data’ in Tables 1, 2 (i.e.,
the score obtained not from generating but from the train-
ing data itself, which serves as an unofficial upper bound of
the performance), an equal number of samples were taken
from the train set. For instance, for MNIST, 10, 000 samples
were taken from the train data (1000 for each class). These
same samples were also used for the synthetic experiments
of noise and mode collapse where they undergo various aug-
mentations.

For each dataset, we applied a pretrained classifier, to give
class probabilities for calculating the InceptionScores, and as
a feature extractor, to calculate the FID scores. For ImageNet,
we used the InceptionV3 (Szegedy et al. 2015) architecture,
as used in the original formulation of the IS Salimans et al.
(2016) and FID (Heusel et al. 2017). For CIFAR10, we used
the VGG-16 (Simonyan and Zisserman 2014) architecture,
and for MNIST, a classifier with two convolutional blocks
and two fully connected layers. The test accuracy is 99.06%
forMNIST, 85.20% for CIFAR10 and 77.45% for ImageNet.

The activations of the last hidden layer (a.k.a the penul-
timate layer) were employed as the extracted features f (x).
The feature dimension is 128 for MNIST, 512 for CIFAR10
and 2048 for ImageNet.
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Fig. 3 Label noising: Labels were randomly replaced with probabil-
ity p to simulate bad conditional generation. a Each row has images
conditioned on the same class. Images in red indicate bad conditional

generation. b The effect of label noising on the unconditional and con-
ditional IS metrics as a function of noise. c Same for the conditional
FID score

Note that since the classification and feature extraction
differs between each dataset, model scores should be com-
pared per dataset, and not between datasets.

Dealing with Low-Rank Covariance Matrices In the
unconditional setting, the estimation of the covariancematrix
is done with a large set of images. However, the number of
samples can be greatly reduced in the conditional setting. If
the number of classes is small (e.q. MNIST, CIFAR10), the
covariance matrices �R

B , �G
B are likely to be of low rank.

When the number of samples per class is small (e.q. Ima-
geNet), this applies to�R

W ,c, �
G
W ,c.We have found that, espe-

cially forWCFID, this can results in very unstable results. As
a compromise, instead ofmeasuring the FIDon the entire fea-
ture space, we randomly select as set of features and perform
the covariance computation in a sub-space thatmeets the lim-
itations of the number of classes and the number of samples
per class. We run this evaluation 100 times in order to reduce
the variance caused by the sampling. For ImageNet, we ran-
domly select 50 features from the 2048 feature vector, com-
pute the FID score using these features, and finally average
the FID scores of all trials to get a final FID score. ForMNIST
and CIFAR10 this was done with 10 features at a time.

Because the FID scales with the number of dimensions
used in the measurement, we normalize the measured FID

(and also for the BCFID and WCFID) by the number of
dimensions.

4.1 Synthetic Experiments

4.1.1 Label Noising

Label noising is the process of assigning random labels to
some of the images, instead of their ground truth labels. This
process simulates different levels of adherence to the con-
ditional input. To maintain an equal number of images per
conditioned class, instead of simply re-selecting a random
class, we performed a random permutation of a subset of
the images proportionally to a parameter p ∈ [0, 1]. When
p = 0 no noising was applied and when p = 1 all image
labels were randomly permuted. Figure 3 shows how label
noising simulates decline in conditional generation perfor-
mance. In Fig. 3a each row of each subfigure represents a
conditioned class, the red images highlight when the con-
ditional generation fails. When setting p = 0, all images
are correctly generated on their conditional input and as p
increases, more images are incorrectly generated.
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Fig. 4 Image noising: The effect of various noises on the uncondi-
tional and conditionalmetrics over an increasingmagnitude. aGaussian
noise. b Salt & pepper noise. c Random pixel permutation. (top) Exam-
ple images before and after the application of each noise, (middle)

The effect on the unconditional and conditional Inception Score due to
varying noise intensity, (bottom) The effect on the unconditional and
conditional FID due to varying noise intensity

In Fig. 3b and c, the IS and FID metrics and our proposed
conditional variants are presented under the effect of label
noising. The plots depict a number of interesting behaviors.
First, the unconditional IS and FID remain constant across
the experiment. That is because thesemetrics do not consider
any conditional requirements from the generated images, and
the unconditional performance has remained the same. Sec-
ond, label noising has a dramatic effect on the conditional
IS and FID metrics. The BCIS, which evaluates both the
consistency of each condition in the target classes and the
coverage of the target classes falls immediately due to the
declining consistency in the conditioned images. TheWCIS,
on the other hand, which measures inconsistency, shows a
rapid increase as a compensation of the decline of the BCIS
score. All conditional components of the FID increase, since
the label noise inflicts a shift in the distribution within each
class and on the class averages.
Image noising Tomeasure if the conditional metrics are also
sensitive to unconditional degradation in quality, we applied
three types of unconditional noise on the images and com-
pared the effect on the scores. The noise was applied with

increasing magnitude p between [0, 1]. We applied Gaus-
sian noise with mean 0 and variance p, salt & pepper noise
with probability p per pixel, and random pixel permutation
with probability p. Figure 4 shows the IS and FID with the
conditional scores. For IS, the BCIS declines more rapidly
than the IS, making it more sensitive to image quality. This is
matchedwith an increase of theWCIS, which defines the gap
between BCIS and IS, due to the trade-off shown in Eq. 12.
The WCIS provides a support for the IS which gives a false
sense of generation quality, best seen during pixel permuta-
tion. For FID, the conditional metrics have the same trend as
the unconditional one. With the gap between the FID and the
conditional FID sum increasing with the level of noise.

4.1.2 Image Manipulation

Image noise is often found in real images due to the circum-
stances under which the images were taken. However, it is
not very prominent in generated images. Other artifacts, such
as image blur, structure deformation, and compression loss,
are usually more observable in generated images. In order to
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Fig. 5 Image manipulation: The effect of various manipulations on the
unconditional and conditional metrics over an increasing magnitude.
a Gaussian blur filter. b Swirl effect applied on the image. c Dimen-
sionality reduction with PCA. (top) Example images before and after

the application of each manipulation, (middle) The effect on the uncon-
ditional and conditional Inception Score due to varying manipulation
intensity, (bottom) The effect on the unconditional and conditional FID
due to varying manipulation intensity

Fig. 6 Mode collapse: The effect of mode collapse on the unconditional and conditional IS and FID metrics over an increasing severity. a Gradual
mode collapse on a single class. b Incremental full mode collapse on all classes
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Fig. 7 Abstract depiction of CGAN, InfoGAN, ACGAN, and our modified SGAN. The modification of SGAN is visualized with the dotted line.
Figure is a modified version from https://github.com/clvrai/ACGAN-PyTorch

simulate that, we applied three differentmanipulations on the
images and compared their effect on the scores once more.
Again, the appliedmanipulation was done with an increasing
magnitude p ∈ [0, 1]. We applied Gaussian filter (blur) with
σ = 5p, swirl effect with a rotation of θ = π p |r−R|

R around
the center (r is the distance from the center for each pixel and
R is the max distance in a single axis), and dimensionality
reduction with PCA with �K (1−p)� components (K = 764
is the number of pixels).

Figure 5 shows the IS and FIDwith the conditional scores.
We have found the same behaviour as with ‘image noising’
(Fig. 4). For IS, there is a constant decline in the BCIS, and an
increase inWCIS dampens the decrease of the unconditional
IS. For FID, all metrics follow the same trend and there is
an increasing gap between the FID and the conditional FID
sum as the effect grows in magnitude.

4.1.3 Mode Collapse

Mode collapse occurs when the model fails to generalize on
the distribution of the target dataset and collapses to repre-
sent only a portion of the distribution. It is a common failure
of generative models, which occurs when the model G gen-
erates similar images for many different initial priors z. In
the conditional setting, the collapse can be more specific and
occur only within a specific class.

To simulate mode collapse, we performed the evaluation
11 times (steps). In each step, we sub-sampled the subset
of the collapsed classes so that the remained set is 2/3 of its
previous size. This leads to the final step having a pool size of
less than 2% of the original size. We then randomly selected
100 images from each class and measured the scores on the
selected images.

Figure 6 shows how the unconditional and conditional
FID metrics react to the collapse. (a) shows a single class

collapse in where in each step the diversity in that class grad-
ually declines. (b) shows all of the classes fully collapse one
by one at each step. Our metric is more sensitive to mode
collapse, both when it occurs in a single class or in multiple
classes. As can be seen, the mode collapse is the most not-
icable in WCFID, and is less detectable in BCFID. This is
because the collapse reduces the variance inside each class,
but does not change the class average very much. This results
is well aligned with the observation in Sect. 3.2 that BCFID
measures the coverage in the representation of the classes,
while WCFID is more sensitive the the diversity inside each
class. We have found the FID to be as sensitive to mode col-
lapse as BCFID, which means that it is less sensitive to mode
collapse thanWCFIDwhen it occurs in specified classes only.

No evaluation on the unconditional and conditional ISwas
performed in this setting, since they both cannot detect mode
collapse.

4.2 Model Comparison

We next evaluate the performance of various pretrained con-
ditional GAN models on different datasets. In Table 1, for
CIFAR10 andMNIST, we consider CGAN (Mirza and Osin-
dero 2014), ACGAN (Odena et al. 2017), InfoGAN (Chen
et al. 2016), and SGAN (Odena 2016). Note that for SGAN,
the generator is not class conditioned, and so we modified
the generator to accept both noise and class label as input,
and the adversarial loss was applied on the conditioned class.
The conceptual differences between the models can be seen
in Fig. 7.

For conditional generation, there are four extreme cases:
(i) good unconditional and good conditional generation,
(ii) bad unconditional and bad conditional generation, (iii)
good unconditional and bad conditional generation, (iv) bad
unconditional and good conditional generation. We argue
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Fig. 8 Illustrations for CIFAR10. Conditional generation of a CGAN, b ACGAN, c InfoGAN and d SGAN

Fig. 9 Illustrations for MNIST. Conditional generation of a CGAN, b ACGAN, c InfoGAN and d SGAN

that the fourth scenario is impossible since the conditional
generation metrics always present a more critical evaluation
(i.e. a lower bound in IS and upper bound in FID) than the
unconditional metric. Therefore bad unconditional genera-
tion always leads to bad conditional generation aswell. Cases
(i) and (ii) are the more trivial cases where the model is either
good or bad on both tasks. Case (iii) tells a scenariowhere the
unconditional generation is good but the conditional require-
ment failed. We will now inspect each model and identify
under which scenarios it falls.

The analysis is done by following the results in Table 1.
Additionally, Figs. 8, 9 show examples of the generation for

each dataset for selected classes. In generation, relatively
to each other, ACGAN and CGAN lie under case (i), Info-
GAN under (ii), and SGAN under (iii) for CIFAR10 and (ii)
for MNIST. Both CGAN and ACGAN performed better than
InfoGAN and SGAN in all metrics. CGAN andACGANper-
formed very similar on CIFAR10 andACGAN slightly better
on MNIST. Both InfoGAN and SGAN performed poorly
compared to the other two models. However, we observed
that SGAN performed better than InfoGAN on the uncondi-
tional metrics, but worse on the conditional ones. This shows
that the condition applied by the SGAN discriminator is less
efficient than that of CGAN or ACGAN.
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The results in the tables can be understood from Figs. 8, 9.
Both CGAN and ACGAN succeed reasonably well in gen-
eration and representing the correct class, on both datasets.
InfoGAN generates some images that are from the correct
class, but wrong classes are often generated as well. Finally,
SGAN fails to do any consistent conditioning on CIFAR10
and has many wrong classes in MNIST as well.

The lower performance of InfoGAN is not surprising,
because it operates in an unsupervised setting. However, it is
surprising to see that the condition applied by its generator
(which is similar in design to that of ACGAN) allows it to
better perform than SGAN in conditional generation, despite
the latter being trained in a supervised fashion.

The experiments on CIFAR10 highlight the importance of
conditional evaluation metrics. SGAN performs quite simi-
larly to CGAN and ACGAN in both FID and IS. However,
it is in a clear disadvantage when comparing the conditional
expansions. InfoGAN also highlights the problem of using
accuracy as a measure. The accuracy received for the gener-
ated images in CIFAR10 is relatively high, and not far behind
CGAN and ACGAN. However, the conditional metrics all
show that the evaluation based on accuracy is too optimistic.

Another observation we have found in Table 1, is that the
IS was not very informative. On both CIFAR10 and MNIST,
all models received a relatively high score, even though other
metrics showed otherwise. This is not the case for the BCIS
metric, which is sensitive in detecting models that performed
badly in the conditional sense.

4.2.1 User Study

To see how the metrics translate to human perception, we
performed a user study for both MNIST and CIFAR10. The
user study was performed on 20 participants with knowl-
edge in this field. The participants were not aware of the
purpose of the study and did not knowwhichmodel theywere
evaluating. The participants were asked to grade the ‘qual-
ity’, ‘diversity’ and ‘class relation’ of the generated images
between 1 (low) and 10 (high), for each model separately.
The results in Table 1 show that ACGAN got higher scores
on both datasets for conditional generation, with CGAN not
far behind, and SGAN performing the worst. This is aligned
with the results of the conditional metrics in our experiments.
The study also shows that without considering the condition,
the overall quality of ACGAN and CGAN is the same, and
the quality of InfoGAN is the worst. This agrees with the
conclusion of the quantitative evaluation as well.

4.3 BigGAN In-Depth Analysis

BigGAN (Brock et al. 2019) is a state of the art image gen-
eration model on the ImageNet (Russakovsky et al. 2015)
dataset. In this section we evaluate BigGANwith our metrics

Fig. 10 Not all classes perform equally, and the classes are not ranked
similarly for different metrics. a WCFID, b accuracy, and cWCIS, per
class for BigGAN. The average score is shown in red. A windowed
average over 50 bins is shown in black

and use them to perform an in-depth analysis of its condi-
tional generation capabilities.

BigGAN’s performance on the variousmetrics can be seen
in Table 2. We measured the performance of both the fully
trained BigGAN and intermediate stages1 of the training.
Note that for FID, the score is different than in the original
paper since we normalized the score by the size of the feature
vector, as described in the beginning of Sect. 4. The results
show that BigGAN improves on all metrics during training.
They also show, that compared to advanced stages of the
training (100K, 200K), the performance is getting close to
that of real images from ImageNet.

A closer inspection shows a variance in generation quality
of the model for the different classes. Figure 10a shows us
that not all classes have the sameWCFID and, instead, some
classes are better represented. Which classes are better than
others, can serve as a useful insight for fine-tuning a trained
model to concentrate on the worst represented classes, or to
compare between various trained generative models.

Figure 11 shows the 10 best and worst classes represented
in terms of WCFID. The WCFID metric has a strong corre-
lation with the quality of the class. The images from classes

1 https://github.com/ajbrock/BigGAN-PyTorch.
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Fig. 11 BigGAN images of best and worst classes in terms of WCFID. a, b real and fake images for classes with the highest WCFID. c, d real and
fake images for classes with the lowest WCFID

with the best scores are of high quality and resemblance to
the real images. The images for classes with the worst scores
do not resemble their target class. In addition, as evident from
the experiment, several classes (for example, ’digital clock’)
have a high WCFID that is due to mode collapse.

To validate that the accuracy score cannot deliver these
insights, we present in Fig. 10b the accuracy for each
class, sorted according to their WCFID (same order as (a)).
Similarly to WCFID, not all classes have the same score.
However,we can observe that the accuracy scores for each
class are only partly (inversely) correlated with the per-
formance in WCFID. In order to try and understand the
difference between the scores in WCFID and accuracy,
Fig. 12 shows the best and worst classes in terms of accu-
racy. Some classes were placed in the top 10 in both metrics
(WCFID and accuracy), but others were not equally ranked.
When looking at the worst ranked classes, we notice that the

low rank in accuracy does not always correlate with a low
quality or diversity. For example, ’notebook’ and ’monitor’
were both ranked at the bottom when considering the accu-
racy, but looked not as bad as the worst classes in WCFID.
We observe that these classes were ranked low not because
they were poorly generated, but because it is hard to tell them
apart.

The same comparison is performed once more in Fig. 10b
forWCIS. Similarly to accuracy, theWCIS does not rank the
classes in the same order as WCFID. However, by following
the smoothed line over 50 neighboring bind, we conclude
that the WCIS is more similar to WCFID than the accuracy.
Especially for the classes that are ranked high on WCFID
(low score), we have found a high correlationwith the classes
that are ranked high on WCIS (low score).

Because the Inception Score is ranking the classes by their
likeness to their respective class, and WCFID ranks classes
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Fig. 12 BigGAN images of best and worst classes in terms of Accuracy. a, b real and fake images for classes with the highest accuracy. c, d real
and fake images for classes with the lowest accuracy

by their diversity, we believe it is a good practice to analyze
models with both methods.

5 Discussion

This work tackled one aspect of conditional generation, the
class conditional one. However, conditional generation can
come in other forms, such as continuous labels, multi-label,
or even text. It is not clear how to expand the existingmethods
to these settings, and it is also not certain that one method
will be good for all settings. It is reasonable, that as more
effort will be put on defining the criteria to evaluate condi-
tional generation, new solutions will be able to support other
settings as well.

In this work, the formulation of the conditional met-
rics applies a weighted average on both the classes and the
instances of each class.When the classes are balanced, which
is often the case in computer vision datasets, the difference
between applying a weighted or a simple average is neg-
ligible. However, in many real world scenarios, the class
prevalence is unbalanced. In this case, applying a simple or a
weighted average will have a strong effect on the final score.
On the one hand, applying a weighted average will evalu-
ate the classes proportionally to their prevalence, but might
ignore low performance on rare classes. On the other hand,
applying a simple weight can magnify the poor performance
of a small set of cases, which will result in a poor overall
performance. Either approaches are valid, depending on the
objective, but different results will be observed.
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6 Conclusions

We presented two new evaluation procedures for class-
conditional image generation based on well established
metrics for unconditional generation. These metrics are easy
to implement and can be used to compare models from dif-
ferent architectures and to inspect and select the best model
during training. The proposed metrics are supported by the-
oretical analysis and a number of experiments. Our metrics
are shown to be beneficial in comparing trained models and
gaining significant insights when developing models.
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Proofs of theMain Results

Lemma 1 Let C ∼ DC and Z ∼ DZ be two independent
random variable. Let X = G(Z ,C) for a continuous gen-
erator function G and let Y be a discrete random variable
distributed by p(y|X). Then,

I S(X; Y ) = exp{I (X; Y )} (20)

Proof We consider that:

I S(X; Y )=exp
{
Ex∼DG [DKL(pG(y|x)‖pG(y))]}

=exp

{∫

x
pG(x)

∑
y

pG(y|x) · log pG(y|x)
pG(y)

dx

}

=exp

{∫

x

∑
y

pG(x, y) · log pG(x, y)

pG(y) · pG(x)
dx

}

=exp{I (X; Y )}
(21)

�
Theorem 1 Let C ∼ DC and Z ∼ DZ be two independent
random variable. Let X = G(Z ,C) for a continuous gen-
erator function G and let Y be a discrete random variable

distributed by p(y|X). Then,

I S(X; Y ) = BC I S(X; Y ) · WCI S(X; Y ) (22)

Proof By Lem. 1, the Inception Score can be represented
as I S(X; Y ) = exp{I (X; Y )}, and by definition, we have:
BC I S(X; Y ) = I S(C; Y ). Next, we would like to represent
I (C; Y ) in terms of I (X; Y ) and Ec[I (Xc; Yc)]. First, by
marginalizing with respect to X |C , we have:

I (C; Y ) =
∑
c

p(c)
∑
y

pG(y|c) · log pG(y|c)
pG(y)

=
∑
c

p(c)
∑
y

(∫

x

pG(x, c) · pG(y|x, c)
p(c)

dx

)

· log pG(y|c)
pG(y)

(23)

Since Y is independent ofC given X , we have: pG(y|x, c) =
pG(y|x). Hence,

I (C; Y ) =
∑
c

∑
y

(∫

x
pG(x, c) · pG(y|x) dx

)

· log pG(y|c)
pG(y)

=
∑
c

(∫

x

∑
y

pG(x, c) · pG(y|x)

· log
(
pG(y|c)
pG(y)

· pG(y|x)
pG(y|x)

)
dx

)

=
∑
c

∫

x

∑
y

pG(x, c) · pG(y|x) · log pG(y|x)
pG(y)

dx

+
∑
c

∫

x

∑
y

pG(x, c) · pG(y|x) · log pG(y|c)
pG(y|x) dx

(24)

Weconsider that pG(x) = ∑
c pG(x, c). Therefore,wehave:

I (C; Y ) =
∫

x

∑
y

pG(x) · pG(y|x) · log pG(y|x)
pG(y)

dx

+
∑
c

∫

x

∑
y

pG(x, c) · pG(y|x) · log pG(y|c)
pG(y|x) dx

= I (X; Y ) +
∑
c

∫

x

∑
y

pG(x, c) · pG(y|x)

· log pG(y|c)
pG(y|x) dx

= I (X; Y ) −
∑
c

∫

x

∑
y

pG(x, c) · pG(y|x) · (25)

log
pG(y|x)
pG(y|c) dx

= I (X; Y ) −
∑
c

p(c)
∫

x

∑
y

pG(x |c) · pG(y|x)

· log pG(y|x)
pG(y|c) dx
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= I (X; Y ) −
∑
c

p(c) · I (Xc; Yc)

= I (X; Y ) − Ec[I (Xc; Yc)]

Finally, we conclude that:

BC I S(X; Y ) = exp{I (C; Y )}
= exp{I (X; Y ) − Ec[I (Xc; Yc)]}
= exp{I (X; Y )}

exp{Ec[I (Xc; Yc)]} = I S(X; Y )

WCI S(X; Y )

(26)

�
Theorem 2 Let DR and DG be the distributions of real and
generated samples. Then,

F I D(DR,DG)≤ BCF I D(DR,DG)+WCF I D(DR,DG)

(27)

and the bound is tight.

Proof First, we recall the definitions of the FID and BCFID
measures:

F I D(DG,DR) = ‖μR − μG‖2 + Tr(�R

+�G − 2(�R�G)
1
2 ) (28)

and

BCF I D(DG ,DR) = ‖μR
B − μG

B‖2 + Tr(�R
B

+�G
B − 2(�R

B�G
B )

1
2 ) (29)

We notice that μR
B = μR and μG

B = μG . Hence, the only
difference between the two quantities arises from the second
terms.

Next, we would like to develop the formulation of �E
W ,c

for E ∈ {R,G}:

�E
W ,c = Ex∼XE

c

[
( f (x) − μE

c )( f (x) − μE
c )T

]

=
∫

x
pE (x |c) · ( f (x) − μE

c )( f (x) − μE
c )T dx

=
∫

x
pE (x |c) · ( f (x) − μE + μE − μE

c )

( f (x) − μE + μE − μE
c )T dx

=
∫

x
pE (x |c) ·

[(
( f (x) − μE ) + (μE − μE

c )
)

(
( f (x) − μE ) + (μE − μE

c )
)T

]
dx

= (μE − μE
c )(μE − μE

c )T

+
∫

x
pE (x |c) · ( f (x) − μE )( f (x) − μE )T dx

+
∫

x
pE (x |c) · [( f (x) − μE )(μE − μE

c )T

+(μE − μE
c )( f (x) − μE )T ] dx

= (μE − μE
c )(μE − μE

c )T +
∫

x
pE (x |c)

·( f (x) − μE )( f (x) − μE )T dx

+
∫

x
pE (x |c) · [( f (x) − μE )(μE − μE

c )T

+(μE − μE
c )( f (x) − μE )T ] dx

=
∫

x
pE (x |c) · ( f (x) − μE )( f (x) − μE )T dx

+(μE − μE
c )(μE − μE

c )T + 2(μE
c − μE )(μE − μE

c )T

=
∫

x
pE (x |c) · ( f (x) − μE )( f (x) − μE )T dx

−(μE − μE
c )(μE − μE

c )T (30)

Hence,

Ec∼DC [�E
W ,c] =

∑
c

p(c) ·
∫

x
pE (x |c)

· ( f (x) − μE )( f (x) − μE )T dx

−
∑
c

p(c) · (μE
c − μE )(μE

c − μE )T = �E − �E
B

(31)

In particular,

�E = �E
B + Ec[�E

W ,c] = �E
B + �E

W (32)

Therefore, we summarize:

F I D(DR,DG) = ‖μR − μG‖2 + Tr(�R + �G − 2(�R�G)
1
2 )

= ‖μR
B − μG

B ‖2 + Tr
(
�R

B + Ec[�R
W ,c]

)

+ Tr
(
�G

B + Ec[�G
W ,c]

)

− 2Tr

([(
Ec[�R

W ,c] + �R
B

) (
Ec[�G

W ,c] + �G
B

)] 1
2
)

(33)

Now we can say the following:

F I D(DR,DG) = BCF I D(DR,DG)

+ WCF I D(DR,DG) −
∑
c

p(c) · ‖μR
c − μG

c ‖2

− 2Tr

(((
Ec[�R

W ,c] + �R
B

)
·
(
Ec[�G

W ,c] + �G
B

)) 1
2
)

+ 2Tr

(∑
c

p(c)(�R
W ,c�

G
W ,c)

1
2 + (�R

B�G
B )

1
2

)
(34)

We denote:

M :=
∑
c

p(c) · ‖μR
c − μG

c ‖2

+ 2Tr

(((
Ec[�R

W ,c] + �R
B

)
·
(
Ec[�G

W ,c] + �G
B

)) 1
2
)

− 2Tr

(∑
c

p(c)(�R
W ,c�

G
W ,c)

1
2 + (�R

B�G
B )

1
2

)
(35)
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Next, we would like to show that M ≥ 0. We consider
that M sums the non-negative term

∑
c p(c)‖μR

c − μG
c ‖2

with the following term:

Tr

(((
Ec[�R

W ,c] + �R
B

)
·
(
Ec[�G

W ,c] + �G
B

)) 1
2
)

− Tr

(∑
c

p(c)(�R
W ,c�

G
W ,c)

1
2 + (�R

B�G
B )

1
2

)

= Tr

(((∑
c

p(c) · �R
W ,c + �R

B

)

·
(∑

c

p(c) · �G
W ,c + �G

B

)) 1
2
⎞
⎠

− Tr

(∑
c

(p(c) · �R
W ,c · p(c) · �G

W ,c)
1
2 + (�R

B�G
B )

1
2

)

= Tr

(∑
c

p(c)

((
�R

W ,c

) 1
2 −

(
�G

W ,c

) 1
2
)2

+
((

�R
B

) 1
2 −

(
�G

B

) 1
2
)2

)

− Tr

⎛
⎝

⎛
⎝

(∑
c

p(c)�R
W ,c + �R

B

) 1
2

−
(∑

c

p(c)�G
W ,c + �G

B

) 1
2
⎞
⎠

2
⎞
⎟⎠

(36)

Since the function H(x1, x2) =
(
x1/21 − x1/22

)2
is con-

vex, by Jensen’s trace inequality, the above term is non-
negative.

This implies the desired inequality:

F I D(DR,DG) ≤ BCF I D(DR,DG)+WCF I D(DR,DG)

(37)

Finally, we would like to demonstrate the tightness of the
bound, aside from the trivial case of all or some of the covari-
ancematrices being 0 andμR

c = μG
c for all c. Consider a case

where all of the matrices �E
B and �E

W ,c are simultanously
diagonalizable, i.e., there exist an invertible matrix P , such
that:

�E
B = P · �E

B · P−1 and �E
W ,c = P · �E

W ,c · P−1 (38)

where �E
B and �E

W ,c are the diagonal matrices of the eigen-

values of �E
B and �E

W ,c respectively.
Since all matrices are diagonal, we can rewrite M as fol-

lows:

M :=
∑
c

p(c) · ‖μR
c − μG

c ‖2

+2Tr

(((
Ec[�R

W ,c] + �R
B

)
·
(
Ec[�G

W ,c] + �G
B

)) 1
2
)

−2Tr

(∑
c

p(c)(�R
W ,c�

G
W ,c)

1
2 + (�R

B�G
B )

1
2

)

=
∑
c

p(c) · ‖μR
c − μG

c ‖2

+2
k∑

d=1

⎛
⎝

(∑
c

p(c) · σ R
W ,c,d + σ R

B,d

)1/2

(∑
c

p(c) · σG
W ,c,d + σG

B,d

)1/2
⎞
⎠

− 2
k∑

d=1

(∑
c

p(c) · (σ R
W ,c,d)

1/2 · (σG
W ,c,d)

1/2

+ (σ R
B,d)

1/2(σG
B,d)

1/2
)

(39)

where σ E
m,d denotes the d-th element on the diagonal of the

matrix �E
m (m is a specifier of the form (W , c) or B). In

addition, k is the output dimension of f .
In addition, assume that (i) for each d ∈ [k] there is only

one member of {σ R
W ,c,d}kd=1 ∪{σ R

B,d} that is nonzero, and the
same for {σG

W ,c,d}kd=1∪{σG
B,d} and, (ii) it has the same index.

e.g. for d = 3, only σ R
W ,2,3 is nonzero in the variances of

the real data and the equivalent σG
W ,2,3 is the only nonzero

variance in the generated data.
Finally, if we also have, μR

c = μG
c , for all c, then we get

M = 0.
For example, we consider the following setting. Let DC

be a distribution over two classes c = 1 and c = 2. Let g
be a function that satisfies: Ex∼Dc

E
[g(x)] = 1 for all classes

c = 1, 2 and specifiers E = R,G.We consider a function f :
R
n → R

2 that satisfies the following: for any sample x ∼ D1
E

or x ∼ D2
E ,wehave: f (x) = (1, g(x)) and f (x) = (g(x), 1)

respectively. Hence, μE
c = (1, 1) for all c and E = R,G.

Therefore, we have:

∑
c

p(c) · ‖μR
c − μG

c ‖2 = 0 (40)

and also

�E
B =

(
0 0
0 0

)
, �E

W ,1 =
(

σ E
1 0
0 0

)
, �E

W ,2 =
(
0 0
0 σ E

2

)
(41)
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where σ E
i is the standard deviation of g(x) for x ∼ Dc

E .
Therefore, we have:

Tr

(((
Ec[�R

W ,c] + �R
B

)
·
(
Ec[�G

W ,c] + �G
B

)) 1
2
)

= Tr

((
Ec[�R

W ,c] · Ec[�G
W ,c]

) 1
2
)

=
√

σ R
1 · σ R

2 +
√

σG
1 · σG

2

= Tr

(∑
c

p(c)(�R
W ,c�

G
W ,c)

1
2

)

= Tr

(∑
c

p(c)(�R
W ,c�

G
W ,c)

1
2 + (�R

B�G
B )

1
2

)
(42)

We conclude that M = 0 as desired. �

Naturally, these cases assume perfect alignment between the
real and generated data and also between and within classes
in each dataset, which is very unlikely. This really highlights
how much information is lost when measuring FID instead
of the BCFID + WCFID as an evaluation score.
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