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Abstract
Non-rigid structure from motion (nrsfm), is a long standing and central problem in computer vision and its solution is
necessary for obtaining 3D information from multiple images when the scene is dynamic. A main issue regarding the further
development of this important computer vision topic, is the lack of high quality data sets. We here address this issue by
presenting a data set created for this purpose, which is made publicly available, and considerably larger than the previous
state of the art. To validate the applicability of this data set, and provide an investigation into the state of the art of nrsfm,
including potential directions forward, we here present a benchmark and a scrupulous evaluation using this data set. This
benchmark evaluates 18 different methods with available code that reasonably spans the state of the art in sparse nrsfm. This
new public data set and evaluation protocol will provide benchmark tools for further development in this challenging field.

Keywords Non-rigid structure from motion · Dataset · Evaluation · Deformation modelling

1 Introduction

The estimation of structure from motion (SfM) using a
monocular image sequence is one of the central problems
in computer vision. This problem has received a lot of atten-
tion, and truly impressive advances have been made over
the last ten to twenty years (Hartley and Zisserman 2000;
Szeliski 2010; Özyeşil et al. 2017). It plays a central role in
robot navigation, self-driving cars, and 3D reconstruction of
the environment, to mention a few. A central part of maturing
regular SfM is the availability of sizeable data sets with rig-
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orous evaluations, e.g. Menze and Geiger (2015) and Aanæs
et al. (2012).

The regular SfM problem, however, primarily deals with
rigid objects, which is somewhat at odds with the world we
see around us. That is, trees sway, faces express themselves
in various expressions, and organic objects are generally
non-rigid. The issue of making this obvious and necessary
extension of the SfM problem is referred to as the non-rigid
structure from motion problem (nrsfm). A problem that also
has a central place in computer vision. The solution to this
problem is, however, not as mature as the regular SfM prob-
lem.A reason for this is certainly the intrinsic difficulty of the
problem and the scarcity of high quality data sets and accom-
panying evaluations. Such data and evaluations allow us to
better understand the problem domain and better determine
what works best and why.

To address this issue, we here introduce a high quality data
set, with accompanying ground truth (or reference data to be
more precise) aimed at evaluating non-rigid structure from
motion. To the best of our knowledge, this data set is sig-
nificantly larger and more diverse than what has previously
been available—c.f. Sect. 3 for a comparison to previous
evaluations of nrsfm. The presented data set better capture
the variability of the problem and gives higher statistical
strength of the conclusions reached via it. Accompanying
this data set, we have conducted an evaluation of 18 state
of the art methods, hereby validating the suitability of our
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data set, and providing insight into the state of the art within
nrsfm. This evaluation was part of the competition we held
at a CVPR 2017 workshop, and still ongoing. It is our hope
and belief that this data set and evaluation will help in fur-
thering the state of the art in nrsfm research, by providing
insight and a benchmark. The data set is publicly available at
http://nrsfm2017.compute.dtu.dk/dataset together with the
description of the evaluation protocol.

This paper is structured by first giving an overview of the
nrsfm problem, followed by a general description of related
work, wrt. other data sets. This section is then followed by
a presentation of our data set, including an overview of the
design considerations, c.f. Sect. 3, which is followed by a pre-
sentation of our proposed protocol for evaluation, c.f. Sect. 4.
This leads to the result of our benchmark evaluation inSect. 5.
The paper is rounded off by a discussion and conclusions in
Sect. 6.

2 Thenrsfmnrsfmnrsfm Problem

In this section, we will provide a brief introduction of the
nrsfm problem, followed by a more detailed overview of
the ways this problem has been addressed. The intention
is to establish a taxonomy to base our experimental design
and evaluation upon. In particular, we review sparse NRSfM
methods as these approaches are the one evaluated in our
benchmark.

The standard/rigid SfM problem, c.f. e.g. Hartley and Zis-
serman (2000), is an inverse problem aimed at finding the
camera positions (and possibly internal parameters) as well
as 3D structure—typically represented as a static 3D point
set, Q—from a sequence of 2D images of a rigid body. The
2D images are typically reduced to a sparse set of tracked 2D
point features, corresponding to the 3Dpoint set, Q. Themost
often employed observation model, linking 2D image points
to 3Dpoints and cameramotion is either the perspective cam-
era model, or the weak perspective approximation hereof.
The weak perspective camera model is derived from the full
perspective model, by simplifying the projective effect of
3D point depth, i.e. the distance between the camera and 3D
point.

The extension from rigid structure frommotion to the non-
rigid case is by allowing the 3D structure, here pointsQ f , to
vary from frame to frame, i.e.

Q f = [
Q f ,1 Q f ,2 · · · Q f ,P

]
, (1)

whereQ f ,p is the 3D position of point p at frame f . Tomake
this nrsfm problem well-defined, a prior or regularization is
often employed. Here most of the cases target the spatial
and temporal variations of Q f . The fitness of the prior to
deformation in question is a crucial element in successfully

solving the nrsfm problem, and a main difference among
nrsfm methods is this prior.

In this study, we denote nrsfm methods according to a
three category taxonomy, i.e. the deformablemodel used (sta-
tistical or physical), the camera model (affine, weak or full
perspective) and the ability to deal with missing data. The
remainder of this section will elaborate this taxonomy by
relating it with the current literature, leading up to a discus-
sion of how the nrsfm methods we evaluate, c.f. Table 1,
span the state of the art.

2.1 Deformable Models

The description of our taxonomy will start with the under-
lying structure deformation model category, divided into
statistical and physical based models.

2.1.1 Statistical

This set of algorithms apply a statistical deformation model
with no direct connection to the physical process of structure
deformations. They are in general heuristically defined a pri-
ori to enforce constraints that can reduce the ill-posedness
of the nrsfm problem. The most used low-rank model in
the nrsfm literature falls into this category, utilizing the
assumption that 3D deformations arewell described by linear
subspaces (also called basis shapes). The low-rankmodelwas
first introduced almost 20 years ago by Bregler et al. (2000)
solving nrsfm through the formalisation of a factorization
problem, as analogously proposed by Tomasi andKanade for
the rigid case (Tomasi and Kanade 1992). However, strong
nonlinear deformations, such as the one appearing in artic-
ulated shapes, may drastically reduce the effectiveness of
such models. Moreover, the first low-rank model presented
in Bregler et al. (2000) acted mainly as a constraint over the
spatial distribution of the deforming point cloud and it did
not restrict the temporal variations of the deforming object.

Differently, Gotardo and Martinez (2011a) had the intu-
ition to use the very same DCT bases to model camera
and deformation motion instead, assuming those factors
are smooth in a video sequence. This approach was later
expanded on by explicitly modeling a set of complementary
rank-3 spaces, and to constrain the magnitude of deforma-
tions in the basis shapes (Gotardo and Martinez 2011c).
An extension of this framework, increased the generaliza-
tion of the model to non-linear deformations, with a kernel
transformation on the 3D shape space using radial basis
functions (Gotardo andMartinez 2011b). This switch of per-
spective addressed themain issue of increasing the number of
available DCT bases, allowing more diverse motions, while
not restricting the complexity of deformations. Later, further
extension and optimization have been made to low-rank and
DCT based approaches. Valmadre and Lucey (2012) noticed
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that the trajectory should be a low-frequency signal, thus lay-
ing the ground for an automatic selection of DCT basis rank
via penalizing the trajectory’s response to one or more high-
pass filters. Moreover, spatio-temporal constraints have been
imposed both for temporal and spatial deformations (Akhter
et al. 2012).

A related idea proposed by Li et al. (2018) attempts at
grouping recurrent deformations in order to better describe
deformations. At its core, the method has an additional
clustering step that links together similar deformations.
Recently a new prior model, related to the Kronecker–
Markov structure of the covariance of time-varying 3D point,
very well generalizes several priors introduced previously
(Simon et al. 2017). Another recent improvement is given
by Dawud Ansari et al. (2017) usage of DCT basis in con-
junction with singular value thresholding for camera pose
estimation.

Similar spatial and temporal priors have been introduced
as regularization termswhile optimizing a cost function solv-
ing for the nrsfm problem, mainly using a low-rank model
only. Torresani et al. (2008) proposed a probabilistic PCA
model for modelling deformations by marginalizing some of
the variables, assuming Gaussian distributions for both noise
and deformations.Moreover, in the same framework, a linear
dynamical model was used to represent the deformation at
the current frame as a linear function of the previous. Brand
and Bhotika (2001) penalizes deformations over the mean
shape of the object by introducing sensible parameters over
the degree of flexibility of the shape. Del Bue et al. (2005a)
instead compute a more robust non-rigid factorization, using
a 3D mean shape as a prior for nrsfm (Del Bue 2013). In a
non-linear optimization framework,Olsen andBartoli (2008)
include l2 penalties both on the frame-by-frame deformations
and on the closeness of the reconstructed points in 3D given
their 2D projections. Of course, penalty costs introduce a
new set of hyper-parameters that weights the terms, imply-
ing the need for further tuning, that can be impracticable
when cross-validation is not an option. Regularization has
also been introduced in formulations of Bundle Adjustment
for nrsfm (Aanæs and Kahl 2002) by including smoothness
deformations via l2 penalties mainly (Del Bue et al. 2007) or
constraints over the rigidity of pre-segmented points in the
measurement (Del Bue et al. 2006).

Another important statistical principal is enforcing that
low-rank bases are independent. In the coarse to fine
approach of Bartoli et al. (2008), base shapes are computed
sequentially by adding the basis, which explains most of the
variance in respect to the previous ones. They also impose a
stopping criteria, thus, achieving the automatic computation
of the overall number of bases. The concept of basis indepen-
dence clearly calls for a statisticalmodel close to independent
component analysis (ICA). To this end, Brandt et al. (2011)
proposed a prior term to minimize the mutual information

of each basis in the nrsfm model. Low-rank models are
indeed compact but limited in the expressiveness of complex
deformations, as noted in Zhu et al. (2014). To solve this
problem, Zhu et al. (2014) use a temporal union of subspace
that associate at each cluster of frames in time a specific sub-
space. Such association is solved by adopting a cost function
promoting self-expressiveness (Elhamifar and Vidal 2013).
Similarly, both spatial and temporal union of subspaces was
used also to account for independently deforming multiple
shapes (Agudo and Moreno-Noguer 2017a; Kumar et al.
2017). Interestingly, such union of subspaces strategy was
previously adopted to solve for the multi-body 3D recon-
struction of independently moving objects (Zappella et al.
2013). Another option is to use an over-complete representa-
tion of subspaces that can still be used by imposing sparsity
over the selected bases (Kong and Lucey 2016). In this way,
3D shapes in time can have a compact representation, and
they can be theoretically characterized as a block sparse dic-
tionary learning problem. In a similar spirit, Hamsici et al.
(2012) propose to use the input data for learning spatially
smooth shape weights using rotation invariant kernels.

All these approaches for addressing nrsfm with a low-
rank model have provided several non-linear optimization
procedures, mainly using alternating least squares (ALS),
Lagrange multipliers and alternating direction method of
multipliers (ADMM). Torresani et al. first proposed to alter-
nate between the solution of camera matrices, deformation
parameters and basis shapes. This first initial solution was
then extended by Wang et al. (2008) by constraining the
camera matrices to be orthonormal at each iteration, while
Paladini et al. (2012) strictly enforced the matrix manifold
of the camera matrices to increase the chances to converge to
the global optimum of the cost function. All these methods
were not designed to be strictly convergent, for this reason,
a bilinear augmented multiplier method (BALM) (Del Bue
et al. 2012) was introduced to be convergent while imply-
ing all the problems constraints being satisfied. Furthermore,
robustness in terms of outlying data was then included to
improve results in a proximal method with theoretical guar-
antees of convergence to a stationary point (Wang et al. 2015).

Despite the non-linearity of the problem, it is possible
to relax the rank constraint with the trace norm and solve
the problem with convex programming. Following this strat-
egy, Dai et al. (2014) provided one of the first effective
closed form solutions to the low-rank problem. Although
their convex solution, resulting from relaxation, did not pro-
vide the best performance, a following iterative optimization
scheme gave improved results. In this respect, Kumar et al.
(2017) proposed a further improvement on their previous
approach, where deformations are represented as a spatio-
temporal union of subspaces rather than a single subspace.
Thus complex deformation can be represented as the union
of several simple ones as already described in the previous
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paragraphs. To notice that evaluation is performed with syn-
thetic generated data only.

Later Kumar (2020) proposed a set of improvements over
Dai et al. approach 2014. Namely, metric rectification was
performed using incomplete information by choosing arbi-
trarily a triplet of solutions among the one available. The
solution in Kumar (2020) proposes a method to select the
best among the available triplets using a rotation smoothness
heuristic as a decision criteria. Then, a further improvement
is algorithmic. Instead of using Dai et al. strategy with a
matrix shrinkage operator that equally penalizes all the singu-
lar values, themethod inKumar (2020) introduces aweighted
nuclear norm function during optimisation. More recently
Ornhag and Olsson (2020) proposed a unified optimization
framework for low-rank inducing penalties that can be read-
ily applied to solve for nrsfm. The main advantage of the
approach is the ability to combining bias reduction in the
estimation and nonconvex low-rank inducing objectives in
the form of a weighted nuclear norm.

On the one hand, the procrustean normal distribution
(PND) model was proposed as an effective way to implicitly
separate rigid and non-rigid deformations (Lee et al. 2017;
Park et al. 2018). This separation provides a relevant regular-
ization, since rigidmotion can be used to obtain amore robust
camera estimation, while deformations are still sampled as
a normal distribution as done similarly previously (Torre-
sani et al. 2008). Such a separation is obtained by enforcing
an alignment between the reconstructed 3D shapes at every
frame. This should in practice factor out the rigid transfor-
mations from the statistical distribution of deformations. The
PND model has been then extended to deal with more com-
plex deformations and longer sequences (Cho et al. 2016).

2.1.2 Physical

Physical models represent a less studied class wrt. NRSfM,
which should ideally be the most accurate for modelling
nrsfm. Of course, applying the right physical model requires
a knowledge of the deformation type and object material,
which is information not readily available a priori.

A first class of physical models assume that the non-rigid
object is a piecewise partition into parts, i.e. a collection
of pre-defined or estimated patches that are mostly rigid or
slightly deformable. This observation is certainly true for
objects with articulated deformations, as it naturally models
natural and mechanical shapes connected into parts. One of
the first approaches to use this strategy is given by Varol et al.
(2009). By preselecting a set of overlapping patches from the
2D image points, and assuming each patch is rigid, homog-
raphy constraints can be imposed at each patch, followed by
global 3D consistency being enforced using the overlapping
points. However, the rigidity of a patch, even if small, is a
very hard constraint to impose and it does not generalise well

for every non-rigid shape. Moreover, dense point-matches
over the image sequence are required to ensure a set of over-
lapping points among all the patches. A relaxation to the
piece-wise rigid constraint was given by Fayad et al. (2010),
assuming each patch deforming with a quadratic physical
model, thus, accounting for linear and bending deformations.
These methods all require an initial patch segmentation and
the number of overlapping points, to this end, Russell et al.
(2011) optimize the number of patches and overlap by defin-
ing an energy based cost function. This approach was further
extended and generalised to deal with general videos (Rus-
sell et al. 2014) and energy functional that includes temporal
smoothing (Golyanik et al. 2019). The method of Lee et al.
(2016) instead use 3D reconstructions of multiple combina-
tions of patches and define a 3D consensus between a set of
patches. This approach provides a fast way to bypass the seg-
mentation problemand robustmechanism to prune outwrong
local 3D reconstructions. The method was further improved
to account for higher degrees of missing data in the chosen
patches so to generalise better the capabilities of the approach
in challenging nrsfm sequences (Cha et al. 2019).

Differently from these approaches, Taylor et al. (2010)
constructs a triangular mesh, connecting all the points, and
considering each triangle as being locally rigid. Global con-
sistency is here imposed to ensure that the vertexes of each
triangle coincide in 3D. Again, this approach is to a certain
extent similar to Varol et al. (2009), which requires a dense
set of points in order to comply with the local rigidity con-
straint.

A strong prior, which helps dramatically to mitigate the
ill-posedness of the problem, is obtained by considering the
deformation isometric, i.e. the metric length of curves does
not change when the shape is subject to deformations (e.g.
paper and metallic materials to some extent). A first solution
considering a regularly sampled surface mesh model was
presented in Salzmann et al. (2007). Using an assumption
that a surface can be approximated as infinitesimally planar,
Chhatkuli et al. (2014) proposed a local method that frame
nrsfm as the solution of partial differential equations (PDE)
being able to deal with missing data as well. As a further
update (Parashar et al. 2017) formalizes the framework in
the context of Riemannian geometry, which led to a practical
method for solving the problem in linear time and scaling
for a relevant number of views and points. Furthermore, a
convex formulation for nrsfm with inextensible deforma-
tion constraints was implemented using second-order cone
programming (SOCP), leading to a closed form solution to
the problem (Chhatkuli et al. 2018). Vicente and Agapito
(2012) implemented soft inextensibility constraints in an
energy minimization framework, e.g. using recently intro-
duced techniques for discrete optimization.

Another set of approaches try to directly estimate the
deformation function using high order models. Del Bue and
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Bartoli (2011) extended and applied 3D warps such as the
thin plate spline, to the nrsfm problem. Starting from an
approximate mean 3D reconstruction, the warping function
can be constructed and the deformation at each frame can be
solved by iterating between camera and 3D warp field esti-
mation. Finally, Agudo et al. (2016) introduced the use of
finite elements models (FEM) in nrsfm. As these models are
highly parametrized, requiring the knowledge of the mate-
rial properties of the object (e.g. the Young modulus), FEM
needs to be approximated in order to be efficiently estimated,
however, in ideal conditions it might achieve remarkable
results, since FEM is a consolidated technique for modelling
structural deformations. Lately, Agudo and Moreno-Noguer
(2017b) presented a duality between standard statistical rank-
constrained model and a new proposed force model inspired
from the Hooke’s law. However, in principle, their physical
model can account for a wider range of deformations than
rank-based statistical approaches.

2.2 Missing Data

The initial methods for nrsfm assumed complete 2D point
matches among views when observing a deformable object.
However, given self and standard occlusions, this is rarely
the case. Most approaches for dealing with suchmissing data
in nrsfm were framed as a matrix completion problem, i.e.
estimate the missing entries of the matrix storing the 2D
coordinates obtained by projecting each deforming 3D point.

Torresani et al. (2001) first proposed removing rows and
lines of the matrix corresponding to missing entries in order
to solve the nrsfm problem. However, this strategy suffers
greatly from even small percentages of missing data, since
the subset of completely known entries can be very small.
Most of the iterative approaches indeed include an update
step of the missing entries (Paladini et al. 2012; Del Bue
et al. 2012) where the missing entries become an explicit
unknown to estimate. Gotardo and Martinez (2011a) instead
strongly reduce the number of parameters by estimating only
the camera matrix explicitly under severe missing data. This
variable reduction is known as VARPRO in the optimization
literature. It has been recently revisited in relation to several
structure from motion problems (Hyeong Hong et al. 2017).

2.3 Camera Model

Most nrsfm methods in the literature assume a weak per-
spective cameramodel. However, in cases where the object is
close to the camera and undergoing strong changes in depth,
time-varying perspective distortions can significantly affect
the measured 2D trajectories.

As low-rank nrsfm is treated as a factorization problem,
a straightforward extension is to follow best practices from
rigid SfM for perspective camera. Xiao and Kanade (2005)

have developed a two step factorization algorithm for recon-
struction of 3D deformable shapes under the full perspective
camera model. This is done using the assumption that a
set of basis shapes are known to be independent. Vidal and
Abretske (2006) have also proposed an algebraic solution to
the non-rigid factorization problem. Their approach is, how-
ever, limited to the case of an object being modelled with
two independent basis shapes and viewed in five different
images. Wang et al. (2007) proposed a method able to deal
with the perspective cameramodel, but under the assumption
that its internal calibration is already known. They update the
solutions from a weak perspective to a full perspective pro-
jection by refining the projective depths recursively, and then
refine all the parameters in a final optimization stage. Finally,
Hartley and Vidal (2008) have proposed a new closed form
linear solution for the perspective camera case. This algo-
rithm requires the initial estimation of a multifocal tensor,
which the authors report is very sensitive to noise. Lladó
et al. (2006) and Lladó et al. (2010) proposed a non-linear
optimization procedure. It is based on the fact that it is pos-
sible to detect nearly rigid points in the deforming shape,
which can provide the basis for a robust camera calibration.

2.4 EvaluatedMethods

We have chosen a representative subset of the aforemen-
tioned methods, which are summarized according to our
taxonomy in Table 1. This gives us a good representation
of recent works, distributed according to our taxonomy with
a decent span of deformation models (statistical/physical)
and camera models (orthographic, weak perspective or per-
spective). This also takes into account in-group variations
such as DCT basis for statistical deformation and isometry
for physical deformation. Even lesser used priors, such as
compressibility, are represented. While this is not a full fac-
torial study, we think this reasonably spans the recent state of
the art of nrsfm. Our choice has, of course, also been influ-
ence by method availability, as we want to test the author’s
original implementation, to avoid our own implementation
bias/errors. All in all, we have included 18 methods in our
evaluation.

Note that we have chosen not to include the method of
Taylor et al. (2010), even if code is available, the approach
failed approximately two thirds of the time when tested on
our data set.

3 Dataset

As stated, in order to compare state of the art methods for
nrsfm, we have compiled a larger data set for this purpose.
Even though there is a lackof empirical evidencew.r.t.nrsfm,
it does not imply, that no data sets for nrsfm exist.
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Table 1 Methods included in our nrsfm evaluation with annotations of how they fit into our taxonomy

Method Citation Deformable model Camera model Missing data

BALM Del Bue et al. (2012) Statistical Orthographic Yes

Bundle Del Bue et al. (2007) Statistical Weak perspective Yes

Compressible Kong and Lucey (2016) Statistical Weak perspective –

Consensus Lee et al. (2016) Physical Orthographic –

CSF Gotardo and Martinez (2011a) Statistical Weak perspective Yes

CSF2 Gotardo and Martinez (2011c) Statistical Orthographic Yes

EM PPCA Torresani et al. (2008) Statistical Weak perspective Yes

KSTA Gotardo and Martinez (2011b) Statistical Orthographic Yes

MDH Chhatkuli et al. (2018) Physical Perspective Yes

MetricProj Paladini et al. (2012) Statistical Orthographic Yes

MultiBody Kumar et al. (2017) Statistical Orthographic –

PTA Akhter et al. (2011) Statistical Orthographic –

RIKS Hamsici et al. (2012) Statistical Orthographic –

ScalableSurface Dawud Ansari et al. (2017) Statistical Orthographic Yes

SoftInext Vicente and Agapito (2012) Physical Perspective Yes

SPFM Dai et al. (2014) Statistical Orthographic –

CMDR Golyanik et al. (2019) Physical Orthographic –

F-consensus Cha et al. (2019) Physical Orthographic Yes

As an example in Lee et al. (2016), Gotardo and Mar-
tinez (2011a, b, c), Kumar et al. (2017), Akhter et al. (2011),
Hamsici et al. (2012) and Dai et al. (2014), a combination of
two data sets are used. Namely seven sequences of a human
body from the CMU motion capture database (University
2002), two MoCap sequences of a deforming face (Torre-
sani et al. 2004; Del Bue et al. 2005b), a computer animated
shark (Torresani et al. 2004) and a challenging flag sequence
(Fayad et al. 2010). To the best of our knowledge, this list
in Table 2 represents the most used evaluation data sets for
nrsfm with available ground truth.

The CMU data set (University 2002) captures the motion
of humans. Since the other frequently used data sets are also
related to animated faces (Torresani et al. 2004; Del Bue et al.
2005b), this implies that there is a high over representation
of humans in this state of the art and that a higher variability
in the deformed scenes viewed is deemed beneficial. In addi-
tion, the shark sequence (Torresani et al. 2004) is not based
on real images and objects but on computer graphics and
pure simulation. As such, there is a need for new data sets,
with reliable ground truth or reference data,1 and a higher
variability in the objects and deformations used.

As such, we here present a data set consisting of
five widely different objects/scenes and deformations. The
physical object motions are generated mechanically using
animatronics, therefore assuring experimental repeatability.

1 With real measurements like ours the ’ground truth’ data also include
noise, why ’reference data’ is a more correct term.

Furthermore, we have defined six different camera motions
using orthographic and full perspective camera models. This
setup, all in all, gives 60 different sequences organized in
a factorial experimental design, thus, enabling a more strin-
gent statistical analysis. In addition to this, since we have
tight 3D surface models of our objects or scenes, we are able
to determine occlusions of all 2D feature points. This in turn
gives a realistic handling of missing data, which is often due
to object self occlusion. Given this procedure of generat-
ing occlusions, missing data always follow a more realistic
structured pattern in contrast with the most common, and
unrealistic, random process of removing 2D measurement
entries used in previous evaluation dataset.

As indicated, these data sets are achieved by stop-motion
using mechanical animatronics. These are recorded in our
robotic setup, Fig. 1, previously used for generating high
quality data sets c.f. e.g. Aanæs et al. (2016). We will here
present details of our data capture pipeline, followed by a
brief outline and discussion of design considerations.

The goal of the data capturing is to produce 3 types of
related data:

Ground Truth: A series of 3D points that change over time.
Input Tracks: 2D tracks used as input.
Missing Data: Binary data indicating the tracks that are

occluded at specific image frames.

We record the step-wise deformation of our animatronics
from K static views, obtaining both image data and dense 3D
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Table 2 A description of the
previous data set sequences with
available ground truth

Name Citation Frames × points Type Shape

shark Torresani et al. (2008) 240 × 91 Synthetic Animal motion

face1 Torresani et al. (2008) 74 × 37 Mocap Face motion

face2 Torresani et al. (2008) 316 × 40 Mocap Face motion

cubes Xiao et al. (2006) 200 × 14 Synthetic ToyProblem

face_occ Paladini et al. (2012) 70 × 37 Mocap Face motion

flag Fayad et al. (2010) 540 × 50 Mocap Cloth deformation

yoga Akhter et al. (2011) 307 × 41 Mocap Human motion

drink Akhter et al. (2011) 1102 × 41 Mocap Human motion

stretch Akhter et al. (2011) 307 × 41 Mocap Human motion

dance Akhter et al. (2011) 264 × 41 Mocap Human motion

pickup Akhter et al. (2011) 357 × 41 Mocap Human motion

walking Akhter et al. (2011) 260 × 41 Mocap Human motion

capoeira Gotardo and Martinez (2011a) 250 × 41 Mocap Human motion

jaws Gotardo and Martinez (2011a) 321 × 49 Synthetic Animal motion

The table shows the number of frames and points, the way to generate the sequence (mainly with motion
capture data) and the type of shape used

Fig. 1 Images of the robot cell for dataset acquisition. Left image shows
the robot with the structured light scanner (blue box) and the area where
the animatronic systems are positioned (yellowbox).Right image shows
the structured light scanner up close, green arrows show the position
of the PointGrey Grasshopper3 cameras, and the red arrow marks the
Lightcrafter 4500 projector (Color figure online)

surface geometry. We obtain 2D point features by applying
standard optical flow tracking (Bouguet 2001) to the image
sequence obtained from each of the K views, which is then
reprojected onto the recorded surface geometry. The ground
truth is then the union of these 3D tracks. By using optical
flow for tracking instead of MoCap markers, we obtain a
more realistic set of ground truth points. We create input 2D
points by projecting the recorded ground truth using a virtual
camera in a fully factorial design of camera paths and camera
models.

In the following, we will detail some of the central parts
of the above procedure.

3.1 Animatronics & Recording Setup

Our stop-motion animatronics arefivemechatronic devices
capable of computer controlled gradual deformation. They
are shown in Fig. 2, and they cover five types of deforma-

tions: Articulated Motion, Bending, Deflation, Stretching,
and Tearing. We believe this covers a good range of interest-
ing and archetypal deformations. It is noted, that nrsfm has
previously been tested on bending and tearing (Taylor et al.
2010; Vicente and Agapito 2012; Chhatkuli et al. 2018; Lee
et al. 2016), but without ground truth for quantitative com-
parison.Additionally, elastic deformations, like deflation and
stretching, are quite commonplace but did not appear in any
previous data sets, to the best of our knowledge.

The animatronics can hold a given deformation or pose for
a large extent of time, thus, allowing us to record accurately
the object’s geometry. We, therefore, do not need a real-time
3D scanner or elaborate multi-scanner setup. Instead, our
recording setup consists of an in-house built structured light
scanner mounted on an industrial robot as shown in Fig. 1.
This does not only provide us with accurate 3D scan data,
but the robot’s mobility also enables a full scan of the object
at each deformation step.

The structured light scanner utilizes twoPointGreyGrasshop-
per39.1MPCCDcameras and aprojectorWinTechLightcrafter
4500 Pro projecting patterns onto the scene and acquiring
images. Then, we use the Heterodyne Phase Shifting method
(Reich et al. 1997) to compute the point clouds using 16
periods across the image and 9 shifts. We verified preci-
sion according to standard VDI 2634-2 (Deutsches Institut
für Normung 2012), and found that the scanner has a form
error of [0.01, 0.32mm], a sphere distance error of [−0.33,
0.50mm] and a flatness error of [0.29, 0.56mm]. This is
approximately 2 orders of magnitude better than the results
we see in our evaluation of the nrsfm methods.
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(a) Articulated (b) Bending

(c) Deflation (d) Stetching

(e) Tearing

Fig. 2 Animatronic systems used for generating specific types of non-
rigid motion

3.2 Recording Procedure

The recording procedure acquires for each shape a series of
image sequences and surface geometries of its deformation
over F frames. We record each frame from K static views
with our aforementioned structured light scanner. As suchwe
obtain K image sequences with F images in each. We also
obtain F dense surface reconstructions, one for each frame
in the deformation. The procedure is summarized in pseudo
code in Algorithm 1. Figure 3 illustrates sample images of
three views obtained using the above process.

3.3 3D Ground Truth Data

The next step is to take acquired images I f ,k and surfaces
S f , and extract the ground truth points. We do this by apply-
ing optical flow tracking (Bouguet 2001) as implemented in
OpenCV 2.4 to obtain 2D tracks, which are then reprojected
onto S f . The union of these reprojected tracks gives us the
ground truth, Q. This process is summarized in pseudo code
in Algorithm 2.

Algorithm1:Process for recording image data for track-
ing and dense surface geometry for an animatronic.

1 Let F be the number of frames
2 Let k be the number of static scan views K
3 for f ∈ F do
4 Deform animatronic to pose f
5 for k ∈ K do
6 Move scanner to view k
7 Acquire image I f ,k
8 Acquire structured light scan S f ,k

9 end
10 Combine scans S f ,k for full, dense surface S f

11 end

Algorithm 2: Process for extracting the ground truth Q
from recorded images and surface scans.

1 Let F be the number of frames
2 Let k be the number of static scan views K
3 Let S f be the surface at frame f
4 Let I f ,k be the image from view k, frame f
5 S = {S1 . . . SF}
6 for k ∈ K do
7 Ik = {I1,k . . . IF,k}
8 Apply optical flow (Bouguet 2001) to Ik to get 2D tracks Tk
9 Reproject Tk onto S to get 3D tracks Qk

10 end
11 Q = {Q1 . . . QK }

Fig. 3 Illustrative sample of ourmulti-view, stop-motion recording pro-
cedure. Animatronic pose evolves vertically and scanner view change
horizontally

3.4 Projection using aVirtual Camera

To produce the desired input, we project the ground truth Q
using a virtual camera, similar to what has been done in Lee
et al. (2016),Gotardo andMartinez (2011a),Dai et al. (2014),
and Del Bue et al. (2005b). This step has two factors related
to the camera that we wish to control for: Path and camera
model. To keep our design factorial, we define six different
camera paths, which will all be used to create the 2D input.
They are illustrated in Fig. 4. We believe these are a good
representation of possible camera motion with both linear
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Camera path taxonomy. The box represents the deforming scene
and the wiggles illustrates the main direction of deformation, e.g. the
direction of stretching

motion and panoramic panning. The Circle and Half Circle
paths correspond well to the way scans are performed in SfM
and structured light methods: By moving around the target
object we try to cover most of its shape. Line and Flyby are to
simulate a scenario where instead the camera move linearly
as in the automotive and drone-alikemovements respectively.
Zigzag and Tricky motions are about having depth variations
in the camera movement, which is important for perspective
camera, where each frame will have different projective dis-
tortions. Tricky camera path resemblesmore a criticalmotion
in the direction of the optical ray of the camera as expected,
for instance, in medical imaging. To conclude, as mentioned
earlier, the camera model can be either orthographic or per-
spective.

The factorial combination of these elements yields to 12
input sequences for each ground truth. Additionally, as we
have previously recorded the dense surface for each frame
(see Sect. 3.2), we estimate missing data via self-occlusion.
Specifically, we create a triangular mesh for each S f and
estimate occlusion via raycasting into the camera along the
projection lines. Vertices whose ray intersects a triangle on
the way to the camera are removed, from the input for the
given frame, as those verticeswould naturally be occluded. In
this way, we ensure as realistic as possible structuredmissing
data by modelling self-occlusion given the different camera
paths. This process is summarized in pseudo code in Algo-
rithm 3.

3.5 Discussion

While stop-motion does allow for diverse data creation, it
is not without drawbacks. Natural acceleration is easily lost
when objects deform in a step-wise manner and recordings

Algorithm 3: Creation of input tracksWc,p and missing
data Dc,p from ground truth Q for each combination of
camera path p and model c.

1 Let F be the number of frames
2 Let P be the set of camera paths shown in Fig. 4
3 Let C be either perspective or orthographic
4 Let Q f be the ground truth at frame f
5 Let S f be the surface at frame f
6 for S f ∈ {S1 . . . SF } do
7 Estimate mesh M f from S f
8 end
9 for c ∈ C do

10 for p ∈ P do
11 for f ∈ F do
12 Set camera pose to p f
13 Project Q f using model c to get points w f
14 Do occlusion test q f against M f to get missing data

d f

15 end
16 Wc,p = {w1 . . . wF }
17 Dc,p = {d1 . . . dF }
18 end
19 end

are unnaturally free of noise likemotion blur. However, with-
out this technique, it would have been prohibitive to create
data with the desired diversity and accurate 3D ground truth.

The same criticism could be levied against the use of a
virtual camera, it lacks the shakiness and acceleration of a
real world camera. On the other hand, it allows us to pre-
cisely vary both the camera path and camera model. This
enables us to perform a factorial analysis, in which we can
study the effects of different configurations on nrsfm. As
we show in Sec. 5 some interesting conclusions are drawn
from this analysis. Most nrsfm methods are designed with
an orthographic camera in mind. As such investigating the
difference between data under orthographic and perspective
projection is of interest. Such an investigation is only practi-
cally possible using a virtual camera.

4 EvaluationMetric

In order to compare the methods of Table 1 w.r.t. our data
set, a metric is needed. The purpose is to project the high
dimensional 3D reconstruction error into (ideally) a one
dimensional measure.

Several different metrics have been proposed for nrsfm
evaluation in the past literature, e.g. the Frobenius norm (Pal-
adini et al. 2009), mean (Hamsici et al. 2012), vari-
ance normalized mean (Gotardo and Martinez 2011c) and
RMSE (Taylor et al. 2010).

All of the abovementioned evaluationmetrics are basedon
the L2-norm in one form or another. A drawback of the L2-
norm is its sensitive to large errors, often letting a few outliers
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dominating the evaluation. To address this, we incorporate
robustness into our metric, by introducing truncation of the
individual 3D point reconstruction errors. In particular, our
metric is based on a RMSE measure similar used in Taylor
et al. (2010).

Given the visualisation effectiveness and general adoption
of box plots (Velleman and Hoaglin 1981), we propose to use
their whisker function to identify and to model outliers in the
error distribution. Such a strategy will enable the inclusion
of outliers in the metric with the additional benefit of reduc-
ing their influence in the RMSE. Consider E being the set of
point-wise errors (||X f ,p − Q f ,p||) and E1, E3 as the first
and third quartile of that set. As described inWilliamson et al.
(1989), we define the whisker as w = 3

2 (E3 − E1), then any
point that is more than a whisker outside of the interquan-
tile range (I QR = E3 − E1) is considered as an outlier.
Those outliers are then truncated at E3 +w allowing them to
be included in a RMSE without dominating the result. This
strategy works well for approximately normally distributed
data. With this in mind, our truncation function is defined as
follows,

t (x,q) =
{

||x − q||, ||x − q|| < E3 + w

E3 + w, otherwise
(2)

Thus the robust RMSE is defined as,

m (Q,X) =

√√√√
√

1

FP

F,P∑

f ,p

t
(
X f ,p,Q f ,p

)
. (3)

A nrsfm reconstruction is given in an arbitrary coordinate
system, thus we must align the reference and reconstruction
before computing the error metric. This is typically done via
Procrustes Analysis (Gower 1975), but as it minimizes the
distance between two shapes in a L2-norm sense it is also
sensitive to outliers. Therefore, we formulate our alignment
process as an optimization problem based on the robust met-
ric of Eq. 3. Thus the combinedmetric and alignment is given
by,

m(X,Q) = min
s,R,t

√√√√
1

FP

∑

f ,p

t
(
s
[
RX f p + t

]
,Q f p

)
,

where s = scale,

R = rotation and reflection,

t = translation. (4)

An implication of using a robust, as opposed to a L2-
norm, is that the minimization problem of (4) cannot be
achieved by a standard Procrustes alignment, as done in
Taylor et al. (2010). As such, we optimize (4) using the

Levenberg-Marquardt method, where s, R and t have been
initialized via Procrustes alignment (Gower and Dijksterhuis
2004). In summary, (4) defines the alignment and metric that
has been used for the evaluation presented in Sect. 5.

Notice also that this registration procedure estimates a
single rotation and translation for the entire sequence. In this
way, we avoid the practise of registering the GT 3D shape at
every frame of the reconstructed 3D sequence. Such frame-
by-frame procedure does not account for the global temporal
consistency of the reconstructed 3D sequence and in par-
ticular regarding possible sign flips of the 3D shape, scale
variations, or reflections that might happen abruptly from
one frame to the other during reconstruction. Registering the
3D ground truth frame-by-frame is also unrealistic, because
in general, it is not feasible to do in a real operative recon-
struction scenario where 3D GT is not available.

To conclude, the choice of an evaluationmetric always has
a streak of subjectivity and for this reason, we investigated
the sensitivity of choosing a particular one. We did this by
repeating our evaluation with another robust metric, where
the minimum track-wise distance between the ground truth
and reconstructionwas used.By just using the n-th percentile,
instead of our truncation, the magnitude of the RMSE sig-
nificantly decreases, but the major findings and conclusions,
as presented in Sect. 5, were the same. As such we conclude
that our conclusions are not overly sensitive to the choice of
metric.

5 Evaluation

With our data set and robust error metric, we have performed
a thorough evaluation and analysis of the state-of-the-art in
nrsfm, which is presented in the following. This is done in
part as an explorative analysis and in part to answer some
of what we see as most pressing, open questions in nrsfm.
Specifically:

– Which algorithms perform the best?
– Which deformable models have the best performance or
generalization?

– How well can the state-of-the-art handle data from a per-
spective camera?

– Howwell can the state-of-the-art handle occlusion-based
missing data?

To answer these questions, we perform our analysis in a
factorial manner, aligned with the factorial design of our data
set. To do this, we view a nrsfm reconstruction as a function
of the following factors:

Algorithm ai : Which algorithm was used.
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Camera Model m j : Which camera model was used
(perspective or orthographic).

Animatronics sk : Which animatronics sequence was
reconstructed.

Camera Path pl : How the camera moved.
Missing Data dn : Whether occlusion based missing data

was used.

We design our evaluation to be almost fully crossed, meaning
weobtain a reconstruction for every combination of the above
factors.

The only missing part is that the authors of Multi-
Body (Kumar et al. 2017) only submitted reconstructions
for orthographic camera model.

Our factorial experimental design allows us to employ
a classic statistical method known as ANalysis Of VAriance
(ANOVA) (Seber andLee 2012). TheANOVAnot only allow
us to deduce the precise influence of each factor on the recon-
struction but also allows for testing their significance. To be
specific, we model the reconstruction error in terms of the
following bilinear model,

y =μ + ai + m j + sk + pl + dn

+ asik + apil + adin + ms jk

+ mp jl + md jn + spkl + sdkn + pdln, (5)

where,

y = reconstruction error,

μ = overall average error,

xyi, j = interaction term between factor xi and y j .

This model, Eq. (5), contains both linear and interaction
terms, meaning the model reflects both factor influence as
independent and as cross effects, e.g. asik is the interaction
term for ’algorithm’ and ’animatronics’. For each term, we
test for significance by choosing between two hypotheses:

H0 : c0 = c1 = . . . = cN

H1 : c0 �= c1 �= . . . �= cN (6)

with cn being a term from (5) e.g. ai or md jn . Typically,H0

is referred to as the null hypothesis, meaning the term cn
has no significant effect. ANOVA allows for estimating the
probability of falsely rejecting the null hypothesis for each
factor. This statistic is referred to as the p-value. A term is
referred to as being statistically significant if its p-value is
below a certain threshold. In this paper we consider a signif-
icance threshold of 0.0005 or approximately 3.5σ . As such,
we clearly evaluated which factors are important for nrsfm
and which are not.

Table 3 ANOVA table for nrsfm reconstruction error without missing
data with sources as defined in (5)

Factor Sum sq. DoF Mean sq. F p-value

ai 3.6×105 15 2.4×104 204.8 5.5×10−242

m j 1.1×104 1 1.1×104 90.4 3.2×10−20

sk 1.0×105 4 2.6×104 219.0 3.6×10−121

pl 1.5×104 5 3.0×103 25.6 9.3×10−24

asik 4.1×104 60 6.9×102 5.9 2.9×10−33

apil 4.1×104 75 5.5×102 4.7 2.3×10−28

ms jk 1.3×103 4 3.2×102 2.7 0.03

mp jl 1.8×103 5 3.6×102 3.1 0.0086

spkl 1.1×104 20 5.7×102 4.9 2.3×10−11

Error 8×104 689 1.2×102

Total 7×105 878

All factors are statistically significant at a 0.0005 level exceptms jk and
mp jl

Another interesting property of the ANOVA is that all
coefficients in a given factor sums to zero,

N∑

i=0

ci = 0. (7)

So each factor can be seen as adjusting the predicted recon-
struction error from the overall average. It should be noted
that the “algorithm”/“camera model” interaction ami j has
been left out of (5) due to MultiBody (Kumar et al. 2017)
only being tested with one camera model.

The error model of (5) is not directly applicable to the
error of all algorithms as not all state-of-the-artmethods from
Table 1 can deal with missing data. As such we perform the
evaluation in two parts. One where we disregard missing
data and include all available methods from Table 1, and one
where we use the subset of methods that handles missing
data and utilize the full model of (5). The former is covered
in Sect. 5.1 and the latter is covered in Sect. 5.2.

5.1 Evaluation without Missing Data

In the following, we discuss the results of the ANOVA with-
out taking ’missing data’ into account, using the model as in
Eq. (5) without terms related to dn :

y = μ + ai + m j + sk + pl + asik

+ apil + ms jk + mp jl + spkl . (8)

The results of the ANOVA using Eq. (8) is summarized in
Table 3. All factors exceptms jk andmp jl are statistically sig-
nificant.As such,we can conclude that all the aforementioned
factors have a significant influence on the reconstruction
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Table 4 Linear term μ + ai sorted in ascending numerical order, this
is the average error for the given algorithm

MultiBody KSTA RIKS

29.36 31.94 32.21

CSF2 MetricProj CSF

32.83 34.09 41.19

Bundle PTA F-Consensus

46.66 46.80 53.17

ScalableSurface CMDR EM PPCA

53.88 53.91 59.21

SoftInext BALM MDH

61.94 66.34 70.34

Compressible SPFM Consensus

79.18 85.34 94.61

Algorithms are referred to by their alias in Table 1. All numbers are
given in millimeters

Table 5 Interaction term μ + ai + sk + asik

This is equivalent to the algorithms average error on each animatronic.
Lowest error for each animatronic is marked with bold text. Algorithms
are referred to by their alias in Table 1. All numbers are given in mil-
limeters

error. Therefore, we will explore the specifics of each fac-
tor in the following, starting with ’algorithm’.

Table 4 shows the average reconstruction error for each
algorithm. The method MultiBody (Kumar et al. 2017)
has the lowest average reconstruction error over all exper-
iments followed by KSTA (Gotardo and Martinez 2011b)
and RIKS (Hamsici et al. 2012). For more detailed insights
refer to Table 5 showing the ’algorithm’ vs ’animatronic’
effect on the reconstruction error. As it can be seen, Multi-
Body (Kumar et al. 2017) does not have the lowest error for all
animatronics, as e.g. KSTA (Gotardo and Martinez 2011b)

Table 6 Interaction term μ + ai + pl + apil

Algorithms are referred to by their alias in Table 1. All numbers are
given in millimeters

Table 7 Linear term μ + m j
sorted in ascending numerical
order, this is the average error
for the given camera model

Orthographic Perspective

50.45 57.66

All numbers are given inmillime-
ters

has a significantly lower error on the Tearing and Articu-
lated deformations. Both of these can roughly be described
as rigid bodies moving relative to each other, and it would
seemKSTA (Gotardo andMartinez 2011b) is the best at han-
dling these deformations.

Methods with a physical prior, like MDH (Chhatkuli et al.
2018) and SoftInext (Vicente and Agapito 2012) have in gen-
eral lower performance, as it is evident fromTables 1, 5 and 6.
MDH (Chhatkuli et al. 2018) is designed with an isometry
prior, therefore one would expect it to perform well in the
bending deformation. Indeed, while its interaction term asik
has its lowest value for the bending deformation, denoting
the fitness of the chosen prior, the average reconstruction
error is higher. On a more careful inspection of the recon-
structed 3D sequences, it is evident that for a few frames
MDH and SoftInext struggle to obtain an accurate 3D recon-
struction and this affects the whole evaluation. Moreover,
the 3D reconstruction shows intermittent sign flips of the 3D
reconstructed shape. To this end, a stronger temporal consis-
tency may help to reduce this negative effect and improve the
method performance.

A similar trend can be observed in Table 6, which shows
the ’algorithm’ vs ’camera path’ effect on the reconstruction
error. While MultiBody (Kumar et al. 2017) has the lowest
average error, it is surpassed in the Half Circle and Tricky
’camera path’ by RIKS (Hamsici et al. 2012). On the other
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Table 8 Linear term μ + sk sorted in ascending numerical order, this
is the average error for the given animatronic

Deflation Tearing Bending

39.86 46.32 54.38

Stretching Articulated

56.42 73.29

All numbers are given in millimeters

Table 9 Linear term μ + pl
sorted in ascending numerical
order, this is the average error
for the given camera path

Zigzag Line Half Circle

47.29 51.21 51.42

Flyby Tricky Circle

53.29 59.94 61.18

All numbers are given inmillime-
ters

hand, MultiBody has the lowest error under the Circle path
by quite a significant margin.

From this analysis we can conclude that MultiBody per-
forms the best on average, but is surpassed w.r.t. to certain
camera paths and animatronic deformations by algorithms
such as RIKS (Hamsici et al. 2012) and KSTA (Gotardo and
Martinez 2011b). This also clearly indicates that one needs
to control for both deformation type and camera motion in
future nrsfm comparisons, as the above conclusion could be
changed by choosing the right combination of camera path
and deformation. On the other hand, these findings show that
nrsfm performance can be optimized by choosing the right
camera path (e.g. Zigzag) and the right algorithm for the
deformation in question (Tables 7 and 8).

The camera model and its path have a significant impact
on reconstruction error, a trend that can be observed from
Table 6.

Table 9 shows that there is a significant difference in aver-
age error w.r.t. ’camera path’. It is interesting to note, that the
Circle path has one of the highest average errors, only sur-
passed by the Tricky camera path. The latter was specifically
designed to be challenging, as such, it is surprising to find
that the Circle and Tricky path’s average error only differ by
3.08mm. In fact, MultiBody (Kumar et al. 2017) seems to be
the only method that benefits from the circle type of camera
path, as can be seen in Table 6. Table 7 shows the average
error of reconstructions for an orthographic and a perspec-
tive camera model. As it can be seen, there is a difference of
7.20mm,which is significant but not as large as the difference
w.r.t. ’algorithm’ (Table 4) or ’camera path’ (Table 9). This
suggests that, while the error increases the state-of-the-art in
nrsfm can still operate under a perspective camera model.
This is quite interesting as most nrsfm approaches are not
designed with a perspective camera in mind. It would seem
that an orthographic or weak-perspective camera acts a rea-

Table 10 ANOVA table for nrsfm reconstruction error with missing
data. Factors are as defined in (5) and described at the beginning of this
section

Factor Sum sq. DoF Mean sq. F p-value

ai 1.3×105 8 1.6×104 90.9 7.7×10−108

m j 1.4×104 1 1.4×104 81.6 1.2×10−18

sk 7.5×104 4 1.9×104 106.5 3.8×10−73

pl 4.1×104 5 8.2×103 47.0 8.8×10−43

dn 1.6×104 1 1.6×104 89.8 2.7×10−20

asik 1.6×104 32 5.0×102 2.9 3.4×10−7

apil 5.6×104 40 1.4×103 8.0 6.4×10−37

adin 1.1×104 8 1.3×103 7.5 1.1×10−9

ms jk 2.6×103 4 6.5×102 3.7 0.0052

mp jl 2.5×103 5 5.1×102 2.9 0.013

md jn 2.9×102 1 2.9×102 1.6 0.2

spkl 2.7×104 20 1.4×103 7.8 6.7×10−21

sdkn 3.6×103 4 8.9×102 5.1 0.00048

pdln 8.1×103 5 1.6×103 9.3 1.4×10−8

Error 1.4×105 824 1.8×102

Total 5.7×105 962

All factors are statistically significant at a 0.0005 level except ms jk ,
mp jl and md jn

sonable approximation given the perspective distortions and
the scale of the object deformation.

There is also a significant difference between the aver-
age reconstruction error of each animatronic which Table 8
shows. Articulated has by far the highest average reconstruc-
tion error, making it the most difficult to reconstruct for the
current state-of-the-art in nrsfm. Since most approaches use
low-rank methods, a highly structured motion such as an
Articulated is difficult to handle with a low-rank prior, espe-
cially if points are densely sampled on all joints. On the other
hand, Deflation seems to be quite easy to handle for most of
the state-of-the-art methods.

5.2 Evaluation with Missing Data

As previously mentioned, we are interested in ’missing data’
and its effect on nrsfm. We, thus, here use Eq. (5), which is
used to evaluate the subset of methods capable of handling
missing data, as shown in Table 1.

It should be noted that while MDH (Chhatkuli et al. 2018)
is nominally capable of handlingmissing data, it has not been
included in this part of the study. The reason being that the
code provided only reconstructs frames with minimum ratio
of visible data, thus our error metric cannot be applied. As
such, we have 9 methods in total in this category.

We treat ’missing data’ as a categorical factor having two
states: with or without missing data. This is because the
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missing percentage of our occlusion-based missing data is
dependent on the ’animatronic’, ’camera path’ and ’camera
model’ factors. Additionally, there is a significant sampling
bias in the occlusion-based missing data. For example, in-
plane motion, like Articulated and Tearing, rarely get a
missing percentage above 25% and more volumetric motion
such as Deflation rarely go below 40% missing data. This
would make it difficult to distinguish between the influence
of the ’missing data’ factor and the animatronic factor.

The results of the ANOVA is summarized in Table 10
and all factors except ms jk , mp jl and md jn are statistically
significant (Tables 11 and 12). This means that ’missing
data’ has a significant influence on the reconstruction error.
Table 13 shows the interaction between ’algorithm’ and
’missing data’. As expected, the mean error without miss-
ing data is very similar to the averages in Table 4 with
KSTA (Gotardo and Martinez 2011b) having the lowest
expected error. However, with missing data, MetricProj (Pal-
adini et al. 2012) actually has a lower average reconstruction
error. This is due to its low increase in error of 5.85mmwhen
operating under occlusion-based missing data. In compari-
son, KSTA (Gotardo and Martinez 2011b), CSF2 (Gotardo
andMartinez 2011c) and CSF (Gotardo andMartinez 2011a)
are much more unstable with average increases in error of
9.65, 18.15 and 13.49mm respectively. Common among the
three methods is the fact that they assume a Discrete Cosine
Transform (DCT) as their prior. Indeed, we see a similar
increase for ScalableSurface of 16.52mm and this method
also uses a DCT basis.

These results suggest that while DCT-based approaches
are quite accurate without missing data, they are not very
robust when operating under occlusion-based missing data.
Thus, they would likely not be very robust when applied
to real-world deformations, where occlusion-based missing
data is unavoidable. This indicates that future research should
focus on making DCT basis methods more robust or to mod-
ify the DCT model to better generalize for ’missing data’.
Finally, BALM (Del Bue et al. 2012) method exhibit some
peculiar behavior as its average error actually decreases by
3.33mm, contrary to expectation. A likely cause is a different
computational structure of the algorithm, since the full data
case uses mainly SVD for factorisation while the missing
data approach has a more elaborated algorithmic approach
with manifold projections and matrix entries imputation.

Table 12 shows the average error as an interaction between
’animatronic’ and ’missing data’, i.e. the average reconstruc-
tion error of each animatronic with and without missing data.
It is interesting to note that the in-plane deformations, i.e.
Tearing, Stretching and Articulated, generally have a smaller
increase in error withmissing data compared to themore vol-
umetric deformation, i.e. Deflation and Bending, compared
to the error without missing data. The increase is respec-
tively 3.96, 4.65 and 8.38mm versus 12.27 and 13.47mm.

Table 11 Interaction between ’camera path’/’missing data’; μ + pl +
dn + pdln

Numbers are given in milimeters

Table 12 Interaction between ’animatronic’/’missing data’; μ + sk +
dn + sdkn

Numbers are given in milimeters

The main difference between the two groups is that the ratio
of missing data is consistently low for the in-plane deforma-
tions. This would suggest that the ratio of missing data has
an impact on the reconstruction error.

Table 11 shows the average error as interaction between
’camera path’ and ’missing data’. The Tricky path has by far
the highest average error. This is expected, as the small cam-
era movement ensures that a portion of the tracked points
is consistently hidden. As such, while Tricky and Circle
were almost equally difficult without missing data, this is no
longer the case with missing data as Circle’s average error
only increases by 4.9mm. Indeed, all other camera paths
have approximately the same increase in error with miss-
ing data. These paths also ensure that all observed points
are equally visible. What differs consistently is the spatio-
temporal distribution of missing data, which has a physical
plausible structured pattern. the missing data distributions in
our dataset are in contrast with previous evaluations where
often missing entries were generated randomly, thus not
reflecting a real 3D modelling scenario. These results also
suggest that the distribution of missing data is as important
as the ratio in affecting the reconstruction error. Indeed this is
in line with the observations made by Paladini et al. (2012).

The aforementioned observations demonstrate the impor-
tance of testing against occlusion-based missing data as it
contains a spatio-temporal structure of missing data that a
randomly removed subset lacks. Many nrsfm methods treat
missing data as a matrix fill-in problem, meaning recreat-
ing missing values from interpolation of spatio-temporally
close observations. Thus, it is clear that conceptually it
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Table 13 Interaction between ’algorithm’/’missing data’; μ + ai + dn + adin

This is the average error for each algorithm either with or without occlusion-based missing data

is much easier to interpolate random, evenly distributed
missing data, compared to the spatio-temporally clustered
structure of occlusion-based missing data. It is noted, that
KSTA (Gotardo andMartinez 2011b) and CSF (Gotardo and
Martinez 2011a) were both evaluated using random subset
missing data in the original works, and was found to approx-
imately have the same performance whether from 0 to 50%
missing data. These results are obviously quite different from
the conclusion of our study and we hypothesize, that the
spatio-temporal structure of our occlusion-based missing is
probably the primary cause for the drop in performance of
many approaches.

6 Discussion and Conclusion

To summarize our findings, we would like to firstly mention
that, the algorithm with the lowest error on average without
missing data was found to beMultiBody (Kumar et al. 2017).

There is, however, a large variation between the different
algorithms performance depending on the factors chosen.
As such our study does not conclude that Multibody (Kumar
et al. 2017) is definitively better than all othermethods in gen-
eral. As an example, for some camera paths RIKS (Hamsici
et al. 2012) had lower average error than MultiBody (Kumar
et al. 2017). Also, with missing data MetricProj (Paladini
et al. 2009) has the lowest reconstruction error. Other obser-
vations include that methods with a DCT basis were found
to have a great increase in error with occlusion-based miss-
ing data. In general, the evaluated methods stay about two
orders of magnitude behind the accuracy of the ground truth,
showing that there is a need of improving current approaches.

Our study also shows findings that support hypotheses of
where nrsfm research could head in the future. Even though
some of these hypotheses have been stated before in related
work, the strength of our data set and evaluation is able to
confirm these. Firstly, it is clear that methods using the weak
perspective approximation to the perspective camera model
only incur a small penalty for doing so on average. This
camera model seems like a good approximation, although it
should be noted, that our data set does not challenge the algo-
rithms extremely in this regard, with only an average 1.6 fold
change in the depth variations. In particular, nrsfm applied
in the medical domain, e.g. endoscopic imaging, may better
benefit from a perspective camera model as the deforming

body can be imaged at different depths while approaching
with the endoscope to the regions of interest. Providing an
in vivo data set for this scenario is a complex task requir-
ing medical staff support. Some initial and promising efforts
have been done for evaluating deformable registration meth-
ods (Modrzejewski et al. 2019) that could lead to a related
nrsfm evaluation.

Moreover, given continuously deforming shapes, global
temporal consistency should be enforced in order to avoid
frame-by-frame sign flips, reflections and other ambiguities
given the stronger geometrical expressiveness of deformable
models. This is truly necessary in an operative scenariowhere
such a problem might drastically reduce the effectiveness of
the nrsfm approaches.

Another main avenue of investigation was the effect of
missing data. Here we found, that that this aspect has a large
impact on the reconstruction error. This is somewhat at odds
with previous findings, and we speculate that this has to
do with our missing data having structure originating from
object self occlusion, as opposed to generate missing data
with random sampling. In particular, occlusion-based miss-
ing data increases the reconstruction error of all methods
except BALM (Del Bue et al. 2012). Our study thus indi-
cates this area to be a fruitful area of investigation for nrsfm
research.

Another observation is that the physical based methods
did quite poorly compared to themethods using a statistically
based deformationmodel. This is in a sense counter intuitive,
provided that the physical models capture the deformation
physics well. This, in turn, leads us to the observation that
stronger efforts could be beneficial as far as better physical
based deformation models.

As stated, many of these observations, support hypothesis
held in the nrsfm community, and it strengths them, that we
have here provided empirical support for them. On the other
hand, this study also helps to validate the suitability of our
compiled data set. In regard to which, it should be noted,
both deformation types and camera paths have a statistically
significant impact on reconstruction error, regardless of the
algorithm used. This indicated that our proposed taxonomy
and the data set design has value.

All in all, we have here presented a state of the art data set
for nrsfm evaluation. We have applied 18 different nrsfm
method to this data set. Methods that span the state of the
art of nrsfm. This evaluation validates the usability of our
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proposed, and publicly available data set, and gives several
insights into the current state of the art of nrsfm, including
directions for further research.
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