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Abstract
The detection of anomalous structures in natural image data is of utmost importance for numerous tasks in the field of computer
vision. The development of methods for unsupervised anomaly detection requires data on which to train and evaluate new
approaches and ideas. We introduce the MVTec anomaly detection dataset containing 5354 high-resolution color images
of different object and texture categories. It contains normal, i.e., defect-free images intended for training and images with
anomalies intended for testing. The anomalies manifest themselves in the form of over 70 different types of defects such as
scratches, dents, contaminations, and various structural changes. In addition,we provide pixel-precise ground truth annotations
for all anomalies. We conduct a thorough evaluation of current state-of-the-art unsupervised anomaly detection methods
based on deep architectures such as convolutional autoencoders, generative adversarial networks, and feature descriptors
using pretrained convolutional neural networks, as well as classical computer vision methods. We highlight the advantages
and disadvantages of multiple performance metrics as well as threshold estimation techniques. This benchmark indicates that
methods that leverage descriptors of pretrained networks outperform all other approaches and deep-learning-based generative
models show considerable room for improvement.

Keywords Anomaly detection · Novelty detection · Datasets · Unsupervised learning · Defect segmentation

1 Introduction

Humans are very good at recognizing whether an image is
similar to what they have previously observed or whether it
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is something novel or anomalous. So far, machine learning
systems, however, seem to have difficulties with such tasks.

There are many relevant applications that must rely on
unsupervised algorithms that can detect anomalous regions.
In the manufacturing industry, for example, optical inspec-
tion tasks often lack defective samples that could be used for
supervised training or it is unclearwhich kinds of defectsmay
appear. In active learning systems, structures that are identi-
fied as anomalous might indicate the necessity of including
a specific image for training. Therefore, it is not surprising
that recently a significant amount of interest has been directed
towards anomaly detection in natural image data using mod-
ern machine learning architectures. Several terms are used
more or less equivalently in the literature to describe such
types of problem settings, such as anomaly detection, nov-
elty detection, outlier detection, or one-class classification.
We would like to differentiate between the following two
complementary problem settings. In this work, novelty detec-
tion refers to image-level classification settings in which the
inlier and outlier distributions differ significantly. Anomaly
detection, on the other hand, shall be defined as the task of
finding and ideally segmenting anomalies in images that are
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Fig. 1 Two objects (hazelnut and metal nut) and one texture (carpet)
from the MVTec Anomaly Detection dataset. For each of them, one
defect-free image and two images that contain anomalies are displayed.
Anomalous regions are highlighted in close-up figures together with
their pixel-precise ground truth labels. The dataset contains objects and
textures from several domains and covers various anomalies that differ
in attributes such as size, color, and structure

very close to the training data, i.e., differ only in subtle devi-
ations in possibly very small, confined regions.

A number of algorithms have been proposed that test
whether a network is able to detect whether new input data
matches the distribution of the training data. Many of them,
however, focus on image-level novelty detection, for which
an established evaluation protocol is to arbitrarily label a
number of classes from existing object classification datasets
as outlier classes and use the remaining classes as inliers for
training. It is then measured how well the trained algorithm
can distinguish between previously unseen outlier and inlier
samples. While the detection of outliers on an image level is
important and has received much attention from the research
community, only a small amount of work has been directed
towards solving anomaly detection problems. To encourage
the development of machine learning models to tackle this
problem and evaluate their performance, we require suitable
data. Curiously, there is a lack of comprehensive real-world
datasets for anomaly detection.

In many areas of computer vision, large-scale datasets
have led to incredible advances during the last few years.
Consider how closely intertwined the development of new
classification methods is with the introduction of datasets
such as MNIST (LeCun et al. 1998), CIFAR10 (Krizhevsky
and Hinton 2009), or ImageNet (Krizhevsky et al. 2012).

To the best of our knowledge, no comprehensive large-
scale, high-resolution dataset exists for the task of unsuper-
vised anomaly detection. As a first step to fill this gap and
to spark further research in the development of new methods
in this area, we introduce the MVTec Anomaly Detection

(MVTec AD or MAD for short) dataset1 that facilitates a
thorough evaluation of such methods. Some example images
are shown in Fig. 1.We identify industrial inspection tasks as
an ideal and challenging real-world use case for these scenar-
ios. Defect-free images of objects or textures are used to train
a model that must determine whether an anomaly is present
during test time. Unsupervised methods play a significant
role here since it is often unknown beforehand which types
of defects might occur during manufacturing. In addition,
industrial processes are highly optimized in order to mini-
mize the number of defective samples. Therefore, only a very
limited amount of imageswith defects is available, in contrast
to a vast amount of defect-free samples that can be used for
training. Ideally, methods should provide a pixel-accurate
segmentation of anomalous regions. All this makes indus-
trial inspection tasks perfect benchmarks for unsupervised
anomaly detection methods that work on natural images.

The present work is an extension of Bergmann et al.
(2019a), which presents theMVTecADdataset togetherwith
an initial baseline evaluation of state-of-the-art deep learning
and traditional anomaly detection models. This paper adds a
thorough evaluation that employsmultiple performancemea-
sures and discusses their advantages and shortcomings in
the context of anomaly detection. Furthermore, we introduce
techniques for selecting thresholds that allow to obtain binary
anomaly predictions. We benchmark updated implementa-
tions of the methods considered in the preceding version of
this paper and include an additional recent deep learning-
based approach (Bergmann et al. 2020). We further extend
the evaluation by providing a discussion of the execution time
andmemory consumption of the evaluatedmethods. Overall,
our main contributions in this extended work are:

– We introduce a novel and comprehensive dataset for the
task of unsupervised anomaly detection in natural image
data. It mimics real-world industrial inspection scenar-
ios and consists of 5354 high-resolution images of five
unique textures and ten unique objects from different
domains. There are 73 different types of anomalies in
the form of defects or structural deviations in the objects
or textures. For each defect image, we provide pixel-
accurate ground truth regions (1888 in total) that allow
to evaluate methods for both anomaly classification and
segmentation.

– We conduct a thorough evaluation of current state-of-
the-art methods as well as more traditional methods for
unsupervised anomaly segmentation on the dataset. We
show that the evaluated methods do not perform equally
well across object and defect categories. Methods that
leverage descriptors of pretrained networks outperform

1 The entire dataset is publicly available for download at https://www.
mvtec.com/company/research/datasets.
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all other evaluated approaches. Generative deep learning
methods that are trained from scratch show considerable
room for improvement.

– We provide a thorough discussion on various evalu-
ation metrics and threshold estimation techniques for
unsupervised anomaly segmentation and highlight their
advantages and shortcomings. Our evaluations demon-
strate the importance of selecting suitable metrics and
show that threshold selection is a highly challenging task
in practice. In addition, we include a discussion about
the runtime and memory consumption of the evaluated
methods. These are important criteria for the applicabil-
ity of the benchmarked methods in real-world scenarios
such as automated inspection tasks.

2 RelatedWork

2.1 Existing Datasets for Anomaly Detection

We first give a brief overview of datasets that are commonly
used for anomaly detection in natural images and demon-
strate the need for our novel dataset. We distinguish between
datasets that are designed for a simple binary decision
between anomalous and anomaly-free images and datasets
that allow for the segmentation of anomalous regions.

2.1.1 Classification of Anomalous Images

When evaluating methods for outlier detection in multi-class
classification scenarios, a common practice is to adapt exist-
ing classification datasets for which class labels are already
available. The most prominent examples areMNIST (LeCun
et al. 1998), CIFAR10 (Krizhevsky and Hinton 2009), and
ImageNet (Krizhevsky et al. 2012). A popular approach is to
select an arbitrary subset of classes, re-label them as outliers,
and train a novelty detection system solely on the remaining
inlier classes (An and Cho 2015; Chalapathy et al. 2018; Ruff
et al. 2018; Burlina et al. 2019). During the testing phase, it
is checked whether the trained model is able to correctly pre-
dict that a test sample belongs to one of the inlier classes. An
alternative approach is to train a classifier on all classes of
a single dataset, e.g., MNIST, and use images of an entirely
different dataset, e.g., notMNIST (Bulatov 2011), as outliers.
While these approaches immediately provide a large amount
of data for training and testing, the anomalous samples differ
significantly from the samples drawn from the training dis-
tribution. Therefore, when performing evaluations on such
datasets, it is unclear how a proposed method would gen-
eralize to data where anomalies manifest themselves in less
significant deviations from the training data manifold.

For this purpose, Saleh et al. (2013) propose a dataset
that contains six categories of abnormally shaped objects,

such as oddly shaped cars, airplanes, and boats, obtained
from internet search engines, that should be distinguished
from regular samples of the same class in the PASCAL VOC
dataset (Everingham et al. 2015). While this data might be
closer to the training data manifold, the decision is again
based on entire images rather than finding the parts of the
images that make them novel or anomalous.

2.1.2 Segmentation of Anomalous Regions

For the evaluation of methods that segment anomalies in
images, only very few datasets are currently available to the
public.Many of them are limited to the inspection of textured
surfaces or focus on novelty detection inmulti-class semantic
segmentation scenarios. To the best of our knowledge, there
does not yet exist a comprehensive dataset that allows for the
segmentation of anomalous regions in natural images where
the anomalies manifest themselves in subtle deviations from
the training data.

Carrera et al. (2017) provideNanoTWICE,2 a dataset of 45
gray-scale images that show a nanofibrous material acquired
by a scanning electron microscope. Five defect-free images
can be used for training. The remaining 40 images contain
anomalous regions in the form of specks of dust or flattened
areas. Since the dataset only provides a single kind of texture,
it is unclear how well algorithms that are evaluated on this
dataset generalize to other textures of different domains.

A dataset that is specifically designed for optical inspec-
tion of textured surfaces was proposed by Wieler and Hahn
(2007). They provide ten classes of artificially generated
gray-scale textureswith defectsweakly annotated in the form
of ellipses. Each class comprises 1000 defect-free texture
patches for training and 150 defective patches for testing.
The annotations, however, are coarse and since the textures
were generated by very similar texture models, the variance
in appearance between the different textures is insignificant.
Furthermore, artificially generated datasets can only be seen
as an approximation to the real world.

Huang et al. (2018) introduce a surface inspection dataset
of magnetic tiles. It contains 1344 grayscale images of a
single texture. Each image is either anomaly-free or contains
one of five different surface defects, such as cracks or uneven
areas. For each defective image, pixel-precise ground-truth
labels are provided. Similarly, Song andYan (2013) introduce
a database of 1800 grayscale images of a single steel surface.
It contains six different defect types, such as scratches or
surface crazings. Each defect is coarsely annotated with a
bounding box.

Blum et al. (2019) recently introduced Fishyscapes,
a dataset intended to benchmark semantic segmentation
algorithms with respect to their ability to detect out-of-

2 http://www.mi.imati.cnr.it/ettore/NanoTWICE/.
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Fig. 2 Example images for all five textures and ten object categories of
theMVTec Anomaly Detection dataset. For each category, an anomaly-
free as well as an anomalous example is shown. The top row shows the

entire input image. The bottom row gives a close-up view. For anoma-
lous images, the close-up highlights the anomalous regions

distribution inputs. They artificially inserted images of novel
objects into images of the Cityscapes dataset (Cordts et al.
2016), for which pixel-precise annotations are available. The
task is then to train a model for semantic segmentation while
at the same time being able to identify certain objects as
novelties by leveraging the model’s per-pixel uncertainties.
In contrast to their dataset, we focus on the one-class set-
ting, where dataset images only show a single object and no
training annotations are available. Furthermore, our anoma-
lies manifest themselves in subtle deviations from the input
images rather than showing entirely different object classes.

The CAOS (Combined Anomalous Object Segmentation)
benchmark introduced by Hendrycks et al. (2019a) pro-
vides two datasets similar to Fishyscapes. It consists of the
StreetHazards and BDD-Anomaly datasets. StreetHazards
contains artificially rendered driving sceneswith inserted for-
eign objects. BDD-Anomaly also consists of driving scenes
and was derived from the BDD100K dataset (Yu et al. 2020)
by selecting two classes as anomalous and removing images
containing these classes from the training and validation sets.

As in the case of Fishyscapes, the CAOS datasets are geared
towards a multi-class setting.

2.2 Methods

The landscape of methods for unsupervised anomaly detec-
tion is diverse and many approaches have been suggested
to tackle the problem (An and Cho 2015; Pereraet and Patel
219). Pimentel et al. (2014) andEhret et al. (2019) give a com-
prehensive review of existing work. We restrict ourselves to
a brief overview of current state-of-the-art methods that are
able to segment anomalies, focusing on those that serve as
baselines for our benchmark on the dataset.

2.2.1 Generative Adversarial Networks (GANs)

Schlegl et al. (2017) propose to model the training data
manifold by a generative adversarial network (Goodfellow
et al. 2014) that is trained solely on defect-free images. The
generator is able to produce images that fool a simultane-
ously trained discriminator network in an adversarial way.
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Table 1 Statistical overview of the MVTec AD dataset

Category # Train # Test (good) # Test (defective) # Defect groups # Defect regions Image side length Grayscale

Textures Carpet 280 28 89 5 97 1024

Grid 264 21 57 5 170 1024 ✓

Leather 245 32 92 5 99 1024

Tile 230 33 84 5 86 840

Wood 247 19 60 5 168 1024

Objects Bottle 209 20 63 3 68 900

Cable 224 58 92 8 151 1024

Capsule 219 23 109 5 114 1000

Hazelnut 391 40 70 4 136 1024

Metal nut 220 22 93 4 132 700

Pill 267 26 141 7 245 800

Screw 320 41 119 5 135 1024 ✓

Toothbrush 60 12 30 1 66 1024

Transistor 213 60 40 4 44 1024

Zipper 240 32 119 7 177 1024 ✓

Total 3629 467 1258 73 1888 - -

For each category, the number of training and test images is given together with additional information about the defects present in the respective
test images

For anomaly detection, the algorithm searches for a latent
sample that reproduces a given input image and manages to
fool the discriminator. Anomaly maps can be obtained by a
pixelwise comparison of the reconstructed image with the
original input.

The search for a suitable latent sample requires the solu-
tion of a nonlinear optimization problem during inference,
e.g., bymeans of gradient descent. Thismakes their approach
computationally expensive. For faster inference, Schlegl
et al. (2019) propose to train an additional encoder network
that maps input images to their respective latent samples with
a single forward pass.

Instead of comparing each pixel of the input image with
the one in the resynthesized image directly, Lis et al. (2019)
propose to train a discrepancy network on artificially gen-
erated anomalies that directly outputs the regions where
the reconstruction failed. Since their method requires pixel-
precise semantic annotations of the training data, we do not
consider this method for our benchmark.

2.2.2 Deep Convolutional Autoencoders

Convolutional Autoencoders (CAEs) (Goodfellow et al.
2016) are commonly used as a base architecture in unsuper-
vised anomaly detection settings. They attempt to reconstruct
defect-free training samples through a bottleneck (latent
space). During testing, they should be unable to reproduce
images that differ from the data that was observed during
training. Anomalies are detected by a per-pixel comparison

of the input with its reconstruction. Recently, Bergmann et al.
(2019b) pointed out the disadvantages of per-pixel loss func-
tions in autoencoding frameworks when used in anomaly
segmentation scenarios and proposed to incorporate spatial
information of local patch regions using structural similarity
(Wang et al. 2004) for improved segmentation results.

There exist various extensions to CAEs such as memory-
augmented (Gong et al. 2019) or variational autoencoders
(VAEs) (Kingma and Welling 2014). The latter have been
used by Baur et al. (2019) for the unsupervised segmentation
of anomalies in brainMR scans. They, however, do not report
significant improvements over the use of standard CAEs.
This coincides with the observations made by Bergmann
et al. (2019b). Nalisnick et al. (2019) and Hendrycks et al.
(2019b) provide further evidence that probabilities obtained
from VAEs and other deep generative models might fail to
model the true likelihood of the training data. Therefore,
we restrict ourselves to deterministic autoencoder frame-
works in the evaluation of various methods on our dataset in
Sect. 6.

2.2.3 Features of Pretrained Convolutional Neural Networks

The aforementioned approaches attempt to learn feature
representations solely from the provided training data. In
addition, there are several methods that use feature descrip-
tors obtained from CNNs that have been pretrained on a
separate image classification task.
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Napoletano et al. (2018) propose to use clustered feature
descriptions obtained from the activations of a ResNet-18
(He et al. 2016) classification network pretrained on Ima-
geNet to distinguish normal from anomalous data. We refer
to their method as CNN Feature Dictionary. Training fea-
tures are extracted from patches that are cropped at random
locations from the input images and their distribution is mod-
eledwith aK-Means classifier. Since feature extraction for all
possible imagepatches quickly becomesprohibitively expen-
sive and the capacity of K-Means classifiers is limited, the
total number of available training features is typically heav-
ily subsampled. This method achieves state-of-the-art results
on the NanoTWICE dataset. Being designed for one-class
classification, it only provides a binary decision whether an
input image contains an anomaly or not. In order to obtain
a spatial anomaly map, the classifier must be evaluated at
multiple image locations, ideally at each single pixel. This
quickly becomes a performance bottleneck for large images.
To increase performance in practice, not every pixel location
is evaluated and the resulting anomaly maps are therefore
coarse.

Sabokrou et al. (2018) model the distribution of descrip-
tors extracted from the first layers of an AlexNet pretrained
on ImageNet with a unimodal Gaussian distribution. The
fully convolutional architecture of the employed network
allows for efficient feature extraction during training and
inference. However, the use of pooling layers rapidly down-
samples the input image and leads to a loss in resolution of
the output anomaly map. Furthermore, unimodal Gaussian
distributions cannot capture highly complex feature distribu-
tions. To tackle this issue, Marchal et al. (2020) propose to
model the feature distribution with deep normalizing flows.
They show that using amodel with increased capacity indeed
improves the performance over shallow distribution models.

Bergmann et al. (2020) propose a student–teacher frame-
work that also leverages networks pretrained on ImageNet
for the unsupervised segmentation of anomalous regions.
An ensemble of randomly initialized student networks is
trained to regress descriptors of pretrained teacher networks
on anomaly-free data.During inference, the student networks
fail to correctly predict the teachers’ descriptors for anoma-
lous regions and yield increased regression errors as well
as predictive uncertainties. In contrast to the CNN Feature
Dictionary, which requires heavy training data subsampling,
this approach is trained on all available feature vectors. Since
student and teacher networks densely extract local descrip-
tors for each image pixel with a single forward pass, dense
anomaly scores for each image pixel can be obtained with
a single forward pass through each student and teacher net-
work.

Fig. 3 Size of anomalies for all textures (green) and objects (blue) in
the dataset on a logarithmic scale visualized as a box-and-whisker plot
with outliers. Defect areas are reported as the number of pixels within
a connected component relative to the total number of pixels within an
image. Anomalies vary greatly in size for each dataset category

2.2.4 Traditional Methods

We also consider two traditional methods for our bench-
mark. Böttger and Ulrich (2016) extract hand-crafted feature
descriptors from defect-free texture images. The distribu-
tion of feature vectors is modeled by a Gaussian Mixture
Model (GMM) and anomalies are detected for extracted
feature descriptors for which the GMM yields a low proba-
bility. Their algorithm was originally intended to be applied
to images of regular textures. Nevertheless, it can also be
applied to the objects of our dataset.

The secondmethod is calledVariationModel (Steger et al.
2018, Chapter 3.4.1.4). This method requires the objects in
question to be aligned. Then, a reference image is constructed
by calculating the pixelwise mean over a set of training
images. In order for small perturbations of the object’s shape
to be tolerated, one defines permissible variations by calcu-
lating the standard deviation of the gray values of each pixel.
For multichannel images, one can simply do this separately
for each channel. During inference, a statistical test is per-
formed for each image pixel that measures the deviation of
the pixel’s gray value from the reference. This deviation is
used to construct an anomaly map.

3 Description of the Dataset

The MVTec Anomaly Detection dataset comprises 15 cat-
egories with 3629 images for training and 1725 images for
testing.The training set contains only imageswithout defects.
The test set contains both: images containing various types
of defects and defect-free images. Table 1 gives an overview
for each object category. Some example images for every cat-
egory together with an example defect are shown in Fig. 2.
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Fig. 4 Example anomaly map for an anomalous input image of class
metal nut. Binary segmentation results formultiple thresholds are shown
as a contour plot. The thresholds are selected such that a certain false
positive rate is achieved on the input image. Due to the large class-
imbalance between anomalous and anomaly-free pixels, only results at
relatively low FPR yield a satisfactory segmentation of the color defect

Five categories cover different types of regular (carpet, grid)
or random (leather, tile, wood) textures, while the remaining
ten categories represent various types of objects. Some of
these objects are rigid with a fixed appearance (bottle, metal
nut), while others are deformable (cable) or include natural
variations (hazelnut). A subset of objects was acquired in
a roughly aligned pose (e.g., toothbrush, capsule, and pill)
while others were placed in front of the camera with a ran-
dom rotation (e.g., metal nut, screw, and hazelnut). The test
images of anomalous samples contain a variety of defects,
such as defects on the objects’ surface (e.g., scratches, dents),
structural anomalies like distorted object parts, or defects that
manifest themselves by the absence of certain object parts.
In total, 73 different defect types are present, on average five
per category. We give a detailed overview of the defects for
each category in Table 8. The defects were manually gen-
erated with the aim to produce realistic anomalies as they
would occur in real-world industrial inspection scenarios.
They greatly vary in size, as shown in a box-and-whisker
plot (Tukey 1977) in Fig. 3.

All images were acquired using a 2048 × 2048 pixel
high-resolution industrial RGB sensor in combination with
two bilateral telecentric lenses (Steger et al. 2018, Chapter
2.2.4.2) with magnification factors of 1:5 and 1:1, respec-
tively. Afterwards, the images were cropped to a suitable
output size. All image resolutions are in the range between
700 × 700 and 1024 × 1024 pixels. Each dataset image
shows a unique physical sample.We did not augment images

by taking multiple pictures of the same object in different
poses. Since gray-scale images are also common in industrial
inspection, three object categories (grid, screw, and zipper)
are made available solely as single-channel images. The
images were acquired under highly controlled illumination
conditions. For some object classes, however, the illumi-
nation was altered intentionally to increase variability. We
provide pixel-precise ground truth labels for each defective
image region. In total, the dataset contains 1888 anomalous
regions. All regions were carefully annotated and reviewed
by the authors. During the acquisition of the dataset, we
generated defects that are confined to local regions, which
facilitated a precise labeling of each anomaly. Additionally,
pixels on the border of anomalies or lying in ambiguous
regions were preferably labelled as anomalous. For locally
deformed objects, annotations were created on the deformed
area as well as in the region where the deformed object part
is expected to be located. Some defects manifest themselves
as missing parts. In these cases, we annotated the expected
location of the part as anomalous. Some examples of labels
for selected anomalous images are displayed in Figs. 1
and 7.

4 PerformanceMetrics

Assessing the performance of anomaly segmentation algo-
rithms is challenging. In the following, we give an overview
of commonly used metrics and discuss the advantages and
disadvantages of applying them to the evaluation of anomaly
segmentation methods on the proposed dataset. A quantita-
tive comparison of the described metrics can be found in
Sect. 6.

In the present work, we study anomaly segmentation algo-
rithms that are capable of returning a real-valued anomaly
score for each pixel in a test image. Larger values shall indi-
cate a higher likelihood of a pixel to be anomalous. Let us
consider a test set T := {I1, . . . , In} of n images. We denote
the anomaly scores for a test image Ii at pixel p as Ai (p) ∈ R.
For each test image, there exists a pixel-precise ground truth
Gi (p) ∈ {0, 1} that indicates whether an anomaly is present,
i.e., Gi (p) = 1, or not, i.e., Gi (p) = 0. In order to com-
pare the anomaly scores with the ground truth data, it is
necessary to pick a threshold t ∈ R to make a binary deci-
sion. A pixel is predicted to be anomalous if and only if
Ai (p) > t . Figure 4 shows an exemplary anomaly map gen-
erated by one of the evaluated methods for an anomalous
input image of class metal nut. It further depicts the corre-
sponding ground truth of the color defect aswell as the binary
segmentation results for decreasing thresholds as a contour
plot.
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4.1 Pixel-Level Metrics

Evaluating the performance of anomaly segmentation algo-
rithms on a per-pixel level treats the classification outcome of
each pixel as equally important. A pixel can be classified as
either a true positive (TP), false positive (FP), true negative
(TN), or false negative (FN). For each of the four cases the
total number of pixels on the test dataset T is computed as:

TP =
n∑

i=1

∣∣ {p | Gi (p) = 1} ∩ {p | Ai (p) > t} ∣∣, (1)

FP =
n∑

i=1

∣∣ {p | Gi (p) = 0} ∩ {p | Ai (p) > t} ∣∣, (2)

TN =
n∑

i=1

∣∣ {p | Gi (p) = 0} ∩ {p | Ai (p) ≤ t} ∣∣, (3)

FN =
n∑

i=1

∣∣ {p | Gi (p) = 1} ∩ {p | Ai (p) ≤ t} ∣∣. (4)

where |S| denotes the cardinality of a set S. Based on these
absolute measures, which depend on the total number of pix-
els in the dataset, relative scores such as the per-pixel true
positive rate (TPR), false positive rate (FPR), and precision
(PRC) can be derived:

TPR = TP

TP + FN
, (5)

FPR = FP

FP + TN
, (6)

PRC = TP

TP + FP
. (7)

Apart from these three widely used metrics, another com-
mon measure to benchmark segmentation algorithms is the
intersection over union (IoU), computed on two sets of pixels.
In the context of anomaly segmentation, one considers the set
of all anomalous predictions, i.e., P = ⋃n

i=1{p | Ai (p) > t},
and the set of all ground truth pixels that are labeled as anoma-
lous, i.e., G = ⋃n

i=1{p | Gi (p) = 1}. Analogously to the
relative measures above, the IoU for the class ‘anomalous’
can also be expressed in terms of absolute pixel classification
measures:

IoU = |P ∩ G|
|P ∪ G| = TP

TP + FP + FN
. (8)

All these measures have the advantage that they are easy
and efficient to compute. However, treating each pixel as
entirely independent introduces a bias towards large anoma-
lous regions. Detecting a single defect with a large area can
make up for the failure to detect numerous smaller defects.

Since the size of defects varies greatly for each of the cate-
gories in the proposed dataset (cf. Fig. 3), one should further
consider metrics that are computed for each connected com-
ponent of the ground truth.

4.2 Region-Level Metrics

Instead of treating every pixel independently, region-level
metrics average the performance over each connected com-
ponent of the ground truth. This is especially useful if
the detection of smaller anomalies is considered equally
important as the detection of larger ones. This is often the
case in practical applications. In this work, we evaluate the
per-region overlap (PRO) that has previously been used to
benchmark anomaly segmentation algorithms (Napoletano
et al. 2018; Bergmann et al. 2020).

First, for each test image the ground truth is decomposed
into its connected components. LetCi,k denote the set of pix-
els marked as anomalous for a connected component k in the
ground truth image i and Pi denote the set of pixels predicted
as anomalous for a threshold t . The per-region overlap can
then be computed as

PRO = 1

N

∑

i

∑

k

|Pi ∩ Ci,k |
|Ci,k | , (9)

where N is the number of total ground truth components in
the evaluated dataset. The PROmetric is closely related to the
TPR. The crucial difference is that the PRO metric averages
the TPR over each ground truth region instead of averaging
over all image pixels. Note that it is not straightforward to
adapt other per-pixel measures such as the PRC or the IoU
to the per-region case. This is caused by the fact that they
make use of the FPR, and false positives cannot be readily
attributed to any specific ground truth region.

4.3 Threshold-Independent Metrics

All of the metrics listed above depend on the previous selec-
tion of a suitable threshold t , which is a challenging problem
in practice (cf. Sect. 5). If the threshold determination fails,
the performance metrics might give a skewed picture of the
real performance of a method. Therefore, one often evaluates
the above metrics at multiple distinct thresholds. Further-
more, it is desirable to compare two metrics simultaneously
since, for example, a high TPR is only useful if the corre-
sponding FPR is low. A way to achieve this is to plot two
metrics against each other and compute the area under the
resulting curve. A well-known example is the receiver oper-
ator characteristic (ROC), which plots the FPR versus the
TPR.Another frequently usedmeasure is the precision–recall
curve (PR), which plots the true positive rate (recall) versus
the precision. In this work, we additionally investigate the

123



1046 International Journal of Computer Vision (2021) 129:1038–1059

Table 2 Area under the precision–recall curve for each dataset category

Category f-AnoGAN Feature dictionary Student teacher �2-autoencoder SSIM-autoencoder Texture inspection Variation model

Carpet 0.025 0.679 0.711 0.042 0.035 0.568 0.017

Grid 0.050 0.213 0.512 0.252 0.081 0.179 0.096

Leather 0.156 0.276 0.490 0.089 0.037 0.603 0.072

Tile 0.093 0.692 0.789 0.093 0.077 0.187 0.218

Wood 0.159 0.421 0.617 0.196 0.086 0.529 0.213

Bottle 0.160 0.814 0.775 0.308 0.309 0.285 0.536

Cable 0.098 0.617 0.592 0.108 0.052 0.102 0.084

Capsule 0.033 0.157 0.377 0.276 0.128 0.071 0.226

Hazelnut 0.526 0.404 0.585 0.590 0.312 0.689 0.485

Metal nut 0.273 0.760 0.940 0.416 0.359 0.153 0.384

Pill 0.121 0.724 0.734 0.255 0.233 0.207 0.274

Screw 0.062 0.017 0.358 0.147 0.050 0.052 0.138

Toothbrush 0.133 0.477 0.567 0.367 0.183 0.140 0.416

Transistor 0.130 0.364 0.346 0.381 0.191 0.108 0.309

Zipper 0.027 0.369 0.588 0.095 0.088 0.611 0.038

Mean 0.136 0.466 0.599 0.241 0.148 0.299 0.234

The best-performing method for each dataset category is highlighted in boldface. Overall, methods that leverage pretrained feature extractors for
anomaly segmentation outperform all other evaluated approaches

PRO curve, which plots the FPR versus the PRO, as well as
the IoU curve, which shows the FPR versus the IoU.

It is important to note that the test split of our anomaly
detection dataset is highly imbalanced in the sense that the
number of anomalous pixels is significantly smaller than the
number of anomaly-free ones. Only 2.7% of all pixels in the
test set are labeled as anomalous. Therefore, thresholds that
yield a large FPR result in segmentation results that are no
longer meaningful. This is especially the case for industrial
applications. There, large false positive rates would lead to a
large amount of defect-free parts being wrongly rejected. An
example is shown in Fig. 4, where segmentation results are
given formultiple thresholds as a contour plot. The thresholds
were selected such that they result in different false positive
rates on the input image, ranging from 1%, for which the
defect is well detected, to 100%, where the entire image
is segmented as anomalous. For FPRs as low as 30% the
segmentation result is already degenerated. Therefore, we
additionally include metrics in our evaluations that compute
the area under the curves only up to a certain false positive
rate. To ensure that the maximum attainable values of this
performance measure is equal to 1, we normalize the result-
ing area. Since the PR curve has been specifically designed
to handle large class imbalances and does not use the FPR in
its computation, we always evaluate its entire area.

5 Threshold Selection

Evaluating anomaly segmentation algorithmsusing threshold-
independentmetrics such asmeasuring the area under a curve
entirely circumvents the need for picking a suitable threshold.
However,when employing an algorithm in practice, onemust
ultimately decide on a threshold value to determine whether
a part is classified as defective or not. This is a challenging
problem due to the lack of anomalous samples during train-
ing time. Even if a small number of anomalous samples was
available for threshold estimation, we still consider it prefer-
able to estimate a threshold solely on anomaly-free data. This
is because there is no guarantee that the provided samples
cover the entire range of possible anomalies and the estimated
threshold might perform poorly for other, unknown, types.
Instead, we want to find a threshold that separates the distri-
bution of anomaly-free data from the rest of the entire data
manifold such that even subtle deviations can be detected.

In this work, we consider three threshold estimation tech-
niques for anomaly segmentation where the thresholds are
estimated solely on a set of anomaly-free validation images
prior to testing. In our experiments, we evaluated how well
each technique transfers from the validation to the test set
and which performance is ultimately achieved when select-
ing these particular thresholds.

MaximumThreshold In theory, a method should classify all
pixels of the validation images as anomaly-free. To achieve
this, one can simply select the threshold to equal the maxi-
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mum value of all occurring anomaly scores on the validation
set. In practice, this is often a highly conservative estimate
since already a single outlier pixel with a large anomaly score
can lead to thresholds that do not perform well on the test
set.

p-Quantile Threshold To make the estimation more robust
against outliers, one can compute a threshold taking the entire
distribution of validation anomaly scores into account and
allowing for a certain amount of outlier pixels. Here, we
investigate the p-quantile, which selects a threshold such that
a percentage p of validation pixels is classified as anomaly-
free.

k-Sigma Threshold A third approach is to first compute the
mean μ and standard deviation σ over all anomaly scores
of the validation set, and then define a threshold to be t =
μ+ kσ . This additionally takes the spread of the distribution
of anomaly scores into account. If this distribution can be
assumed to perfectly follow a Gaussian distribution, k can
also be chosen to achieve a certain false positive rate on the
validation set. However, since in practice this might not be
the case, the false positive rate on the validation set might
differ significantly.

Max-Area Threshold All estimators presented so far com-
pute thresholds simply on the one-dimensional distribution of
validation anomaly scores and do not take the spatial location
of image pixels into account. In particular, they are insen-
sitive to the size of false positive regions, as many small
regions are treated equally to a single larger one. In appli-
cations where only anomalies of a certain minimum size are
expected, one can leverage this information to filter such
small false positive regions and determine a threshold by
permitting connected components on the validation images
that do not exceed a predefined maximum permissible area.
This ensures that an anomaly detector that classifies con-
nected components as anomalous based on their area would
not detect a single defect on the validation images.

6 Benchmark

We conduct a thorough evaluation of multiple state-of-the-
art methods for unsupervised anomaly segmentation on our
dataset. It is intended to serve as a baseline for future meth-
ods. We then discuss the strengths and weaknesses of each
method on the various objects and textures of the dataset. We
show that, while eachmethod can detect anomalies of certain
types, none of the evaluatedmethodsmanages to excel for the
entire dataset. In particular, we find that methods that lever-
age features of networks pretrained on the ImageNet dataset
outperform all other evaluated approaches. Deep learning-

based generative models that are trained from scratch, such
as convolutional autoencoders or generative adversarial net-
works, show large room for improvement.

We assess the effect of different performance metrics on
the evaluation result and compare different threshold esti-
mation techniques. Furthermore, we provide information on
inference time and memory consumption for each evaluated
method.

6.1 Training and Evaluation Setup

The following paragraphs list the training and evaluation
protocols for each method. For each dataset category, we
randomly split 10% of the anomaly-free training images into
a validation set. The same validation set was used for all
evaluated methods.

Fast AnoGAN For the evaluation of Fast AnoGAN (f-
AnoGAN), we use the publicly available implementation
by the original authors on Github.3 The GAN’s latent space
dimension is fixed to 128 and generated images are of size 64
× 64 pixels, which results in a relatively stable training for all
categories of the dataset. GAN training is conducted for 100
epochs using the Adam optimizer with an initial learning rate
of 10−4 and a batch size of 64. The encoder network for fast
inference is trained for 50000 iterations using the RMSProp
optimizer with an initial learning rate of 5× 10−5 and batch
size of 64. Since the implementation of Fast AnoGAN only
operates on single-channel images, all input images are con-
verted to grayscale beforehand.

Anomalymaps are obtained by a per-pixel �2 - comparison
of the input imagewith the generated output. For all evaluated
dataset categories, training, validation and testing images are
zoomed to size 256 × 256 pixels. 50000 training patches of
size 64 × 64 pixels are randomly cropped from the training
images. During testing, a patchwise evaluation is performed
with a horizontal and vertical stride of 64 pixels.
�2- and SSIM-Autoencoder:

For the evaluation of the �2- and SSIM-autoencoder, we
build on the same CAE architecture that was described by
Bergmann et al. (2019b). They reconstruct patches of size
128 × 128, employing either a per-pixel �2 loss or a loss
based on the structural similarity index (SSIM). We extend
the architecture by an additional convolution layer to process
images at resolution 256 × 256. We find an SSIM window
size of 11 × 11 pixels to work well in our experiments. The
latent space dimension is chosen to be 128. Larger latent
space dimensions do not yield significant improvements in
reconstruction quality while lower dimensions lead to degen-
erate reconstructions. Training is run for 100 epochs using

3 https://github.com/tSchlegl/f-AnoGAN.
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Fig. 5 PRO curves for each dataset category and all evaluated methods. The per-region overlap (y-axis) is plotted against false positive rates up to
30% (x-axis)

Table 3 Comparison of threshold independent performance metrics

Metric f-AnoGAN Feature dictionary Student teacher �2- Autoencoder SSIM-autoencoder Texture inspection Variation model

AU-PR 0.136 (7) 0.466 (2) 0.599 (1) 0.241 (4) 0.148 (6) 0.299 (3) 0.234 (5)

AU-ROC 0.472 (7) 0.836 (2) 0.922 (1) 0.590 (4) 0.584 (5) 0.656 (3) 0.526 (6)

AU-PRO 0.528 (7) 0.803 (2) 0.924 (1) 0.632 (4) 0.617 (5) 0.741 (3) 0.556 (6)

AU-IoU 0.073 (7) 0.168 (2) 0.190 (1) 0.099 (4) 0.091 (6) 0.100 (3) 0.095 (5)

AU-PRO0.01 0.113 (6) 0.201 (4) 0.432 (1) 0.218 (3) 0.075 (7) 0.263 (2) 0.197 (5)

AU-PRO0.05 0.249 (7) 0.459 (3) 0.734 (1) 0.372 (4) 0.279 (6) 0.488 (2) 0.328 (5)

AU-PRO1.00 0.784 (7) 0.931 (2) 0.974 (1) 0.838 (5) 0.840 (4) 0.890 (3) 0.796 (6)

For each metric and evaluated method, the normalized area under the curve is computed and averaged across all dataset categories. The best-
performing method for each dataset category is highlighted in boldface. The ranking of each method with respect to the evaluated metric is given in
brackets. For the ROC, PRO and IoU curves, the area is computed up to an FPR of 30%. The AU-PRO metric is additionally reported for varying
integration limits

the Adam optimizer with an initial learning rate of 2× 10−4

and a batch size of 128.
For each dataset category, 10000 training samples are

augmented from the train split of the original dataset. For tex-
tures, randomly sampled patches are cropped evenly across
the training images. For objects, we apply a random transla-
tion and rotation to the entire input image and zoom the result
to match the autoencoder’s input resolution. Additional mir-
roring is applied where the object permits it.

For the dataset objects, anomaly maps are generated by
passing an image through the autoencoder and comparing
the reconstruction with its respective input using either per-
pixel �2 comparisons or SSIM. For textures, we reconstruct
patches at a stride of 64 pixels and average the resulting
anomalymaps. SinceSSIMdoes not operate on color images,
for the training and evaluation of the SSIM-autoencoder all
images are converted to grayscale.
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Feature Dictionary We use our own implementation of
the CNN feature dictionary proposed by Napoletano et al.
(2018), which extracts features from the 512-dimensional
average pooling layer of a ResNet-18 pretrained on Ima-
geNet. Principal Component Analysis (PCA) is performed
on the extracted features to explain 95% of the variance. K-
means is runwith 50 cluster centers and the nearest descriptor
to each center is stored as a dictionary vector. We extract
100000 patches of size 128 × 128 for both the textures and
objects. All images are evaluated at their original resolution.
A stride of 8 pixels is chosen to create a spatially resolved
anomaly map. For grayscale images, the channels are tripli-
cated for feature extraction since the usedResNet-18operates
on three-channel input images.

Student–Teacher Anomaly Detection For the evaluation of
Student–Teacher anomaly detection, we use three teacher
networks pretrained on ImageNet that extract dense feature
maps at receptive field sizes of 17, 33, and 65 for an input
image size of 256 × 256 pixels. For each teacher network,
an ensemble of 3 student networks is trained to regress the
teacher’s output. We use the same network architectures as
described by Bergmann et al. (2020). For the pretraining of
teacher networks, we follow the proposed training protocol
by the original authors, using only the feature matching and
correlation loss for knowledge distillation. Training is per-
formed for 100 epochs using the Adam optimizer at an initial
learning rate of 10−4 and a batch size of 1.

GMM-Based Texture Inspection Model For the Texture
Inspection Model (Böttger and Ulrich 2016), an optimized
implementation is available in the HALCONmachine vision
library.4 Images are converted to grayscale, zoomed to an
input size of 400 × 400 pixels, and a four-layer image
pyramid is constructed for training and evaluation. On each
pyramid level, a separateGMMwith dense covariancematrix
is trained. The patch size of examined texture regions on each
pyramid level is set to 7× 7 pixels. We use a maximum of 50
randomly selected images from the original training set for
training the Texture Inspection Model. Anomaly maps for
each pyramid level are obtained by evaluating the negative
log-likelihood for each image pixel using the correspond-
ing trained GMM.We normalize the anomaly scores of each
level such that the mean score is equal to 0 and their standard
deviation equal to 1 on the validation set. The different levels
are then combined to a single anomaly map by averaging the
four normalized anomaly scores per pixel position.

Variation Model In order to create the Variation Model
(Steger et al. 2018, Chapter 3.4.1.4), we use all available
training images of each dataset category in their original

4 https://www.mvtec.com/products/halcon.

size and calculate the mean and standard deviation at each
pixel location. This works best if the images show aligned
objects. Since this is not always the case, we implemented a
specific alignment procedure for our experiments on the fol-
lowing six dataset categories.Bottle andmetal nut are aligned
using shape-basedmatching (Steger20012001; Steger 2002),
grid and transistor using template matching with normal-
ized cross-correlation as the similarity measure (Steger et al.
2018, Chapter 3.11.1.2). Capsule and screw are segmented
via simple thresholding and then aligned by using a rigid
transformation which is determined by geometric features of
the segmented region.

The anomaly map for a test image is obtained as follows.
We define the value of each pixel in the anomaly map by
calculating the distance from the gray value of the corre-
sponding test pixel to the trained mean value and divide this
distance by a multiple of the trained standard deviation. For
multichannel images, this process is done separately for each
channel and we obtain an overall anomaly map as the pix-
elwise maximum of all the channels’ individual maps. Note
that when a spatial transformation is applied to input images
during inference, some input pixels might not overlap with
the mean and deviation images. For such pixels, no meaning-
ful anomaly score can be computed. In our evaluation, we set
the anomaly score for such pixels to the minimum attainable
value of 0. As for the GMM-based Texture Inspection, we
use the optimized implementation of the HALCONmachine
vision library.

6.2 Performance Evaluation

We begin by comparing the performance of all methods for
different threshold independent evaluation metrics, followed
by an analysis of each method individually. The computation
of curve areas that involve the false positive rate is performed
up to an FPR of 0.3 if not mentioned otherwise.

Table 2 shows the area under the precision–recall curve
for each method and dataset category. The Student–Teacher
anomaly detection method performs best for most of the
evaluated objects and textures. Regarding each method’s
mean performance on the dataset, the two top-performing
approaches, i.e., Student–Teacher and Feature Dictionary,
both leverage pretrained feature extractors. The generative
deep learning-based methods that are trained from scratch
perform significantly worse, often only performing on par
or inferior to the more traditional approaches, i.e., the Varia-
tionModel and theGMM-based Texture Inspection. For each
object and method, the corresponding PRO curves are given
in Fig. 5. Benchmark results for all other evaluated metrics
on all dataset categories can be found in Appendix A.

Table 3 assesses the influence of different performance
metrics on the evaluation result. The mean area under the
ROC, PRO, PR, and IoU curves are given for each evalu-
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Fig. 6 Comparison of performance curves for the dataset category zipper

ated method. Areas are averaged over all dataset categories.
Additionally, the area under the PRO curve is computed up
to three different integration limits: 0.01, 0.05, and 1.0. For
each method, its ranking with respect to the current metric
and all other methods is given in brackets. When integrat-
ing up to a false positive rate of 30%, (first three rows) the
rankings produced by the investigated metrics are fairly con-
sistent. Student–Teacher anomaly detection performs best
in all cases, followed by the CNN Feature Dictionary.
f-AnoGAN performs worst for all evaluated metrics. When
varying the integration threshold of the false positive rate for
the AU-PRO metric (last three rows), the ranking of some
methods changes significantly. For example,when evaluating
the full area under the PRO curve, the CNN Feature Dictio-
nary ranks second, while it ranks only fourth place if the area
is computed only up to an FPR of 1%. This highlights that the
choice of the integration threshold is important for metrics
that involve the false positive rate and one must select it care-
fully depending on the requirements of the application. For
tasks where low false positive rates are crucial, one might
prefer sufficiently small integration thresholds over larger
ones.

Table 3 further shows that when decreasing the integra-
tion limit of the FPR, the area under the PRO curve drops
for all methods within factors of 2 (Student–Teacher) and 11
(SSIM-Autoencoder). This shows that many methods only
manage to detect anomalies when at the same time a sig-
nificant amount of false positive pixels are allowed in the
segmentation result. This might limit the applicability of
these methods in practice, as illustrated in Fig. 4. Figure 6
shows example curves for all evaluatedmetrics for the dataset
category zipper. For this object, defect sizes do not vary as
much as for other dataset categories (Fig. 3), and hence the
ROC and PRO curves are similar. The PR curve shows that
the precision of all methods except Student–Teacher and
the Texture Inspection Model is smaller than 0.5 for most
recall values. This indicates that these methods predict more
false positive pixels than true positives for any threshold.
Compared to the precision, the IoU additionally takes the

false negative predictions into account. Therefore, the IoU
is bounded by the maximum attained precision value and
methods with low overall precision also yield low IoU val-
ues for any threshold. For large false positive rates, the IoU
converges towards the ratio of the number of ground truth
anomalous pixels divided by the total number of pixels in the
evaluated dataset.

Figure 7 shows an example for each method where
anomaly detectionworkedwell, i.e., the thresholded anomaly
map substantially overlaps with the ground-truth (left col-
umn) and where each method produced an unsatisfactory
result (right column). Anomaly scores were thresholded such
that an average FPR of 0.01 across the entire test set is
achieved. Based on the selected images, we now discuss indi-
vidual properties of each evaluated method when applied to
our dataset.

f-AnoGAN The f-AnoGAN method computes anomaly
scores based on per-pixel comparisons between its input and
reconstruction. Due to the increased contrast between the
screw and the background, it manages to segment the tip of
the screw. Because of imperfect reconstructions, however,
the method also yields numerous false positives around the
objects’ edges and around regions where strong reflections
are present. It entirely fails to detect the structural anomaly
on the carpet since a removal of the defect by reconstruction
does not result in an image substantially different from the
input.

Feature Dictionary The CNN Feature Dictionary was
originally designed to model the distribution of repetitive
texture patches. However, it also yields promising results
for anomaly segmentation on objects when anomalies man-
ifest themselves in features that deviate strongly from the
local descriptors of the training data manifold. For example,
the small crack on the capsule is well detected. However,
since the method randomly subsamples training patches, it
yields increased anomaly scores in regions that are underrep-
resented in the training set, e.g., on the imprint on the left half
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Fig. 7 Qualitative results for each evaluated method. The left column shows examples where each method worked well. A failure case is shown in
the right column. Thresholds were selected such that a false positive rate of 0.01 is achieved on the test set of an evaluated category

of the capsule. Additionally, due to the limited capacity of K-
Means, the training feature distribution is often insufficiently
well approximated. The method does not capture the global
context of an object. Hence, it fails to detect the anomaly
on the cable cross section, where the inner insulation on the
bottom left shows the wrong color, as it is brown instead of
blue.

Student–Teacher Anomaly Detection This method exhib-
ited the best overall performance in our benchmark. Simi-
larly to the CNN Feature Dictionary, the Student–Teacher
approach models the distribution of local patch descriptors.
It outputs dense anomaly maps with an anomaly score for

each input pixel and hence does not require a strided evalua-
tion that might lead to rather coarse segmentations. Since this
approach does not rely on data subsampling during training
and makes use of all available training features, its anomaly
scores show only small variations in anomaly-free regions.
However, one can observe slightly increased anomaly scores
on the transistor’s legs, which exhibit strong reflections and
make feature prediction challenging. Like the CNN Feature
Dictionary, it does not incorporate global context and there-
fore fails to detect the missing leg of the transistor.

�2- and SSIM-Autoencoder Both autoencoders rely on
accurate reconstruction of their inputs for precise anomaly
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detection. However, they often fail to reconstruct small
details and produce blurry images. Therefore, they tend to
yield increased anomaly scores in regions that are challeng-
ing to reconstruct accurately, as can be observed on the object
boundaries of the hazelnut and the bristles of the tooth-
brush. Like for f-AnoGAN, the �2-autoencoders per-pixel
comparisons result in unsatisfactory anomaly segmentation
performancewhen the gray-value difference is small between
the input and reconstruction, as is the case for the transparent
color defect on the tile. Since the SSIM-autoencoder only
operates on grayscale images, it often fails to detect color
defects entirely, such as the red color stroke on the leather
texture.

GMM-Based Texture InspectionModel HALCON’s Texture
Inspectionmodels the distribution of gray-valueswithin local
image patches using a GMM. It performs well on uniform
texture patterns, for example, those that are present in the
dataset category leather. Since it only operates on grayscale
images, it often fails to detect color defects such as the one
on the pill. Because the boundaries of objects are underrepre-
sented in the training data, it often yields increased anomaly
scores in these areas.

Variation Model For the evaluation of the Variation Model,
prior object alignment is performed where possible. It per-
forms well for rigid objects such as the metal nut, which
allows for a precise alignment. Due to the applied transfor-
mation, not every single input image pixel overlaps with the
mean and deviation image. For these background pixels, no
meaningful anomaly score can be computed. For dataset cat-
egories where an alignment is not possible, e.g., carpet, this
method fails entirely. Due to the high variance of the gray
values in the training images, the model assigns high likeli-
hoods to almost every gray value.

6.3 Threshold Estimation Techniques

InSect. 5,wediscussedvarious techniques to estimate thresh-
olds purely on a validation set of anomaly-free images. In
order to assess their performance in practice, we computed
thresholds on three different categories of the dataset: bot-
tle, pill, and wood. The Maximum threshold simply selects
the maximum anomaly score of all validation pixels. For the
p-Quantile threshold, we used p = 0.99, which means that
one percent of all validation pixels will be marked as anoma-
lous by each method. We selected a k-Sigma threshold such
that under the assumption of normally distributed anomaly
scores, also a quantile of 0.99 is reached. We additionally
investigated a Max-Area threshold that allows connected
components of anomalous pixels with an area smaller than
0.1% of the area of the entire input image.

Figure 8 marks the FPR and PRO values achieved when
applying the different thresholds. For each dataset category,
the three best performing methods in terms of AU-PRO are
displayed. Since the Maximum threshold does not allow a
single false positive pixel on the entire validation set, it is the
most conservative threshold estimator among the evaluated
ones, yielding the lowest false positive rates on the test set.
However, in some cases, it entirely fails to produce any true
positives as well, due to outliers on the validation set.

All other threshold estimation techniques allow a certain
amount of false positives on the validation set. Hence, they
also yield increased false positive rates on the test set. Both
The p-Quantile and k-Sigma thresholds attempt to fix the
false positive rate at one percent. However, due to the inac-
curate segmentations of each method, the application of each
threshold results in a significantly higher FPR. Furthermore,
the marker locations of the two thresholds are often very
different for the same anomaly detectionmethod, which indi-
cates that the assumption of normally distributed anomaly
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Fig. 8 Performance of different threshold estimates in terms of FPR and PRO on three different dataset categories. For each category, the three top
performing methods are displayed. Thresholds are computed on a validation set of anomaly-free images
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scores often does not hold in practice. For many of the
evaluated methods, the Max-Area threshold is only slightly
less conservative than picking the maximum of all anomaly
scores. This indicates that already only a slight decrease of
the Maximum threshold results in connected components of
false positives that one might deem large enough to classify
them as anomalies in practice.

Our results show that selecting a suitable threshold for
anomaly segmentation purely on anomaly-free validation
images is a highly challenging problem in practice. The same
estimator might yield very different results depending on the
anomaly detection method and dataset under consideration.
For applications that require very low false positive rates,
one is at risk of picking too conservative thresholds that fail
to detect any anomalies. On the other hand, allowing for too
many false positives quickly yields segmentation results that
are no longer useful in practice as well.

6.4 Time andMemory Consumption

The runtime and required memory of a method during
inference are important criteria for its applicability in real-
world scenarios. However, since both greatly depend on
implementation-specific details, measuring them accurately
is challenging. For example, the amount of memory used by
deep-learning based methods can often be greatly reduced
when freeing intermediate feature maps during a forward
pass. The execution time of an algorithm is directly affected
by the specific libraries being used and the amount of
exploited potential for parallelization. Hence, we do not
provide exact numbers for inference time and memory con-
sumption but rather point out qualitative differences between
the evaluated methods.

As can be expected, the methods performing multiple for-
ward passes through a network have the highest inference
times. A particularly extreme example is the CNN Feature
Dictionary, which requires several seconds to process a sin-
gle image. This is due to the patch-wise evaluation and the
fact that only a single anomaly score is produced for each
patch. It is possible to reduce the time by using a larger stride
for the patches at the cost of coarser anomaly maps. Meth-
ods that require only a single model evaluation per image
and run entirely on the GPU, such as the autoencoders eval-
uated on the objects of the dataset, allow for much faster
inference times in the range of a few milliseconds. How-
ever, when performing strided evaluations on the textures,
multiple forward passes become necessary and their run-
time increases to several hundreds of milliseconds. The same
is true for f-AnoGAN. Since the Student–Teacher anomaly
detection employs multiple teacher networks and an ensem-
ble of students for each teacher, the evaluation of a single
image requires a forward pass through each of the models.
Because the evaluation of eachmodel falls in the range of tens

Table 4 Approximate number of model parameters of each evaluated
deep learning based method in millions

Method #Parameters

f-AnoGAN 24.57 M

Feature dictionary 11.46 M

Student teacher 26.07 M

�2-autoencoder 1.20 M

SSIM-autoencoder 1.20 M

of milliseconds, the total runtime is in the range of several
hundreds of milliseconds. For the more traditional methods,
i.e., the Variation Model and the Texture Inspection Model,
we use optimized implementations of theHALCONmachine
vision library that entirely run on the CPU and achieve run-
times in the range of tens and hundreds of milliseconds,
respectively.

In order to facilitate a relative comparison of the amount
of memory required to perform inference in deep learning
models, one commonly reports the total number of model
parameters as a lower bound. The number of parameters for
each model evaluated in this paper is given in Table 4. Since
the Variation Model and the Texture Inspection Model are
not based on deep learning and work in an entirely different
way, simply counting the number of model parameters and
comparing them to the deep learning based approaches is
not advisable. The Variation Model, for example, stores two
model parameters for each image pixel and thus, the total
number of parameters is in the same range as one of the eval-
uated deep learning models. However, the Variation Model
does not need to allocate any additional memory and one can
still expect the deep learning based approaches to consume a
lot more memory during inference due to their intermediate
computation of high-dimensional feature maps.

7 Conclusions

We have introduced the MVTec Anomaly Detection dataset,
a novel dataset for unsupervised anomaly detection thatmim-
icks real-world industrial inspection scenarios. The dataset
provides the possibility to evaluate unsupervised anomaly
detection methods on various texture and object classes with
different types of anomalies. Because pixel-precise ground
truth labels for anomalous regions in the images are pro-
vided, it is possible to evaluate anomaly detection methods
for both image-level classification as well as pixel-level seg-
mentation.

We have evaluated several state-of-the-art methods as
well as two classical methods for anomaly segmentation
thoroughly on this dataset. The evaluations are intended to
serve as a baseline for the development of future methods.
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Our results show that discriminative approaches that lever-
age descriptors of pretrained networks outperform methods
that learn feature representations from scratch solely on the
anomaly-free training data. We have provided information
on inference time as well as memory consumption for each
evaluated method.

Furthermore, we have discussed properties of common
evaluation metrics and threshold estimation techniques for
anomaly segmentation and have highlighted their advantages
and shortcomings. We have shown that determining suitable
thresholds solely on anomaly-free data is a challenging prob-
lem because the performance of each estimator highly varies
for different dataset categories and evaluated methods.

We hope that the proposed datasetwill stimulate the devel-
opment of new unsupervised anomaly detection methods.
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A Additional Results

For completeness, we provide additional qualitative and
quantitative results for each evaluated method and dataset
category. Tables 5, 6 and 7 report the area under the ROC,
IoU, and PR curves, respectively. Areas were computed up
to a false positive rate of 30% and normalized with respect to
themaximum attainable value. Figures 9 and 10 qualitatively
show anomaly images produced for the different methods on
selected dataset categories (Table 8).

Table 5 Normalized area under the ROC curve up to an average false positive rate per-pixel of 30% for each dataset category

Category f-AnoGAN Feature dictionary Student teacher �2-autoencoder SSIM-autoencoder Texture inspection Variation model

Carpet 0.251 0.943 0.927 0.287 0.365 0.874 0.162

Grid 0.550 0.872 0.974 0.741 0.820 0.878 0.488

Leather 0.574 0.819 0.976 0.491 0.356 0.975 0.381

Tile 0.180 0.854 0.946 0.174 0.156 0.314 0.304

Wood 0.392 0.720 0.895 0.417 0.404 0.723 0.408

Bottle 0.422 0.953 0.943 0.528 0.624 0.454 0.667

Cable 0.453 0.797 0.866 0.510 0.302 0.512 0.423

Capsule 0.362 0.793 0.952 0.732 0.799 0.698 0.843

Hazelnut 0.825 0.911 0.959 0.879 0.847 0.955 0.802

Metal nut 0.435 0.862 0.979 0.572 0.539 0.135 0.462

Pill 0.504 0.911 0.955 0.690 0.698 0.440 0.666

Screw 0.814 0.738 0.961 0.867 0.885 0.877 0.697

Toothbrush 0.749 0.916 0.971 0.837 0.846 0.712 0.775

Transistor 0.372 0.527 0.566 0.657 0.562 0.363 0.601

Zipper 0.201 0.921 0.964 0.474 0.564 0.928 0.209

Mean 0.472 0.836 0.922 0.590 0.584 0.656 0.526

The best-performing method for each dataset category is highlighted in boldface
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Table 6 Normalized area under the PRO curve up to an average false positive rate per-pixel of 30% for each dataset category

Category f-AnoGAN Feature dictionary Student teacher �2-autoencoder SSIM-autoencoder Texture inspection Variation model

Carpet 0.253 0.895 0.914 0.306 0.392 0.855 0.165

Grid 0.626 0.757 0.973 0.798 0.847 0.857 0.545

Leather 0.584 0.819 0.971 0.519 0.389 0.981 0.394

Tile 0.252 0.873 0.949 0.251 0.166 0.472 0.425

Wood 0.517 0.778 0.929 0.520 0.530 0.827 0.455

Bottle 0.440 0.906 0.942 0.567 0.703 0.636 0.659

Cable 0.428 0.815 0.840 0.507 0.368 0.597 0.405

Capsule 0.447 0.791 0.971 0.771 0.830 0.834 0.802

Hazelnut 0.872 0.913 0.961 0.922 0.897 0.958 0.849

Metal nut 0.482 0.701 0.943 0.607 0.501 0.384 0.562

Pill 0.700 0.872 0.958 0.847 0.803 0.606 0.834

Screw 0.808 0.725 0.948 0.864 0.875 0.864 0.701

Toothbrush 0.809 0.718 0.946 0.891 0.841 0.786 0.774

Transistor 0.494 0.590 0.664 0.657 0.602 0.542 0.554

Zipper 0.202 0.897 0.955 0.457 0.515 0.923 0.221

Mean 0.528 0.803 0.924 0.632 0.617 0.741 0.556

The best-performing method for each dataset category is highlighted in boldface

Table 7 Normalized area under the IoU curve up to an average false positive rate per-pixel of 30% for each dataset category

Category f-AnoGAN Feature dictionary Student teacher �2-autoencoder SSIM-autoencoder Texture inspection Variation model

Carpet 0.025 0.139 0.139 0.030 0.034 0.123 0.015

Grid 0.030 0.057 0.075 0.050 0.046 0.058 0.032

Leather 0.035 0.051 0.072 0.027 0.019 0.074 0.020

Tile 0.057 0.315 0.361 0.055 0.044 0.113 0.106

Wood 0.089 0.171 0.228 0.096 0.081 0.188 0.096

Bottle 0.115 0.327 0.321 0.159 0.187 0.142 0.218

Cable 0.080 0.172 0.179 0.087 0.043 0.081 0.069

Capsule 0.024 0.061 0.086 0.061 0.061 0.047 0.070

Hazelnut 0.141 0.150 0.168 0.150 0.134 0.172 0.133

Metal nut 0.188 0.423 0.505 0.262 0.239 0.059 0.217

Pill 0.099 0.220 0.231 0.142 0.142 0.100 0.141

Screw 0.020 0.013 0.032 0.023 0.021 0.021 0.017

Toothbrush 0.080 0.123 0.137 0.104 0.097 0.076 0.099

Transistor 0.095 0.153 0.157 0.182 0.143 0.088 0.166

Zipper 0.018 0.148 0.168 0.062 0.073 0.162 0.026

Mean 0.073 0.168 0.190 0.099 0.091 0.100 0.095

The best-performing method for each dataset category is highlighted in boldface
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Fig. 9 Additional qualitative results for three selected textures of our dataset

Fig. 10 Additional qualitative results for six selected objects of our dataset
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Table 8 Overview over the number of images for each defect type for
each category

Category Defect Type #Images

Carpet Color 19

Cut 17

Hole 17

Metal contamination 17

Thread 19

Grid bent 12

Broken 12

Glue 11

Metal contamination 11

Thread 11

Leather Color 19

Cut 19

Fold 17

Glue 19

Poke 18

Tile Crack 17

Glue strip 18

Gray stroke 16

Oil 18

Rough 15

Wood Color 8

Combined 11

Hole 10

Liquid 10

Scratch 21

Bottle Broken large 20

Broken small 22

Contamination 21

Cable Bent wire 13

Cable swap 12

Combined 11

Cut inner insulation 14

Cut outer insulation 10

Missing cable 12

Missing wire 10

Poke insulation 10

Table 8 continued

Category Defect Type #Images

Capsule Crack 23

Faulty imprint 22

Poke 21

Scratch 23

Squeeze 20

Hazelnut Crack 18

Cut 17

Hole 18

Print 17

Metal nut Bent 25

Color 22

Flip 23

Scratch 23

Pill Color 25

Combined 17

Contamination 21

Crack 26

Faulty imprint 19

Pill type 9

Scratch 24

Screw Manipulated front 24

Scratch head 24

Scratch neck 25

Thread side 23

Thread top 23

Toothbrush Defective 30

Transistor Bent lead 10

Cut lead 10

Damaged case 10

Misplaced 10

Zipper Broken teeth 19

Combined 16

Fabric border 17

Fabric interior 16

Rough 17

Split teeth 18

Squeezed teeth 16

123



1058 International Journal of Computer Vision (2021) 129:1038–1059

References

An, J., &Cho, S. (2015).Variational autoencoder based anomaly detec-
tion using reconstruction probability. SNU Data Mining Center:
Tech. rep.

Baur,C.,Wiestler, B.,Albarqouni, S.,&Navab,N. (2019).Deep autoen-
coding models for unsupervised anomaly segmentation in brain
MR images. In A. Crimi, S. Bakas, H. Kuijf, F. Keyvan, M. Reyes,
& T. van Walsum (Eds.), Brainlesion: Glioma, multiple sclerosis,
stroke and traumatic brain injuries (pp. 161–169).Cham:Springer.

Bergmann, P., Fauser, M., Sattlegger, D., Steger, C. (2019a). MVTec
AD: A comprehensive real-world dataset for unsupervised
anomaly detection. InProceedings of the IEEE conference on com-
puter vision and pattern recognition (pp. 9592–9600).

Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C. (2019b).
ImprovingUnsupervisedDefect Segmentation byApplying Struc-
tural Similarity to Autoencoders. In: Tremeau A, Farinella G,
Braz J (eds) 14th international joint conference on computer
vision, imaging and computer graphics theory and applications.
Scitepress, Setúbal, vol 5: VISAPP, pp 372–380

Bergmann, P., Fauser,M., Sattlegger, D., Steger, C. (2020). Uninformed
students: Student-teacher anomaly detection with discriminative
latent embeddings. In 2020 IEEE/CVF conference on computer
vision and pattern recognition (CVPR) (pp. 4182–4191).

Blum, H., Sarlin, P. E., Nieto, J., Siegwart, R., Cadena, C. (2019).
Fishyscapes: A benchmark for safe semantic segmentation in
autonomous driving. In The IEEE international conference on
computer vision (ICCV) workshops.

Böttger, T., & Ulrich, M. (2016). Real-time texture error detection on
textured surfaces with compressed sensing. Pattern Recognition
and Image Analysis, 26(1), 88–94.

Bulatov, Y. (2011). notMNIST dataset. Tech. rep. https://yaroslavvb.
blogspot.com/2011/09/notmnist-dataset.html.

Burlina, P., Joshi, N., & Wang, I. J. (2019). Where’s Wally now? Deep
generative and discriminative embeddings for novelty detection.
In IEEE conference on computer vision and pattern recognition.

Carrera, D., Manganini, F., Boracchi, G., & Lanzarone, E. (2017).
Defect detection in SEM images of nanofibrous materials. IEEE
Transactions on Industrial Informatics, 13(2), 551–561.

Chalapathy, R.,Menon, A. K., &Chawla, S. (2018). Anomaly detection
using one-class neural networks. arXiv:1802.06360.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benen-
son, R., Franke, U., Roth, S., Schiele, B. (2016). The cityscapes
dataset for semantic urban scene understanding. In Proceedings of
the IEEE conference on computer vision and pattern recognition
(CVPR) (pp. 3213–3223).

Ehret, T., Davy, A., Morel, J. M., & Delbracio, M. (2019). Image
anomalies: A review and synthesis of detection methods. Journal
of Mathematical Imaging and Vision, 61(5), 710–743.

Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I.,
Winn, J., & Zisserman, A. (2015). The PASCAL visual object
classes challenge: A retrospective. International Journal of Com-
puter Vision, 111(1), 98–136.

Gong, D., Liu, L., Le, V., Saha, B., Mansour, M.R., Venkatesh, S.,
Hengel, Avd. (2019). Memorizing normality to detect anomaly:
Memory-augmented deep autoencoder for unsupervised anomaly
detection. In Proceedings of the IEEE/CVF international confer-
ence on computer vision (ICCV).

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,Warde-Farley, D.,
Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adver-
sarial nets. In Advances in neural information processing systems
(pp. 2672–2680).

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning.
Adaptive computation and machine learning series. Cambridge,
MA: MIT Press.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for
image recognition. In IEEE Conference on computer vision and
pattern recognition (pp. 770–778).

Hendrycks, D., Basart, S., Mazeika, M., Mostajabi, M., Steinhardt, J.,
& Song, D. (2019a). A benchmark for anomaly segmentation.
arXiv:1911.11132.

Hendrycks, D., Mazeika, M., Dietterich, T. (2019b). Deep anomaly
detection with outlier exposure. In International conference on
learning representations.

Huang, Y., Qiu, C., Guo, Y., Wang, X., & Yuan, K. (2018). Surface
defect saliency of magnetic tile. In 2018 IEEE 14th international
conference on automation science and engineering (CASE) (pp.
612–617).

Kingma, D. P., &Welling,M. (2014). Auto-encoding variational Bayes.
In Proceedings of the international conference on learning repre-
sentations (ICLR).

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of fea-
tures from tiny images. Technical report, University of Toronto.

Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012). ImageNet classifi-
cation with deep convolutional neural networks. In Proceedings of
the 25th international conference on neural information process-
ing systems (vol. 1, pp. 1097–1105).

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of
the IEEE, 86(11), 2278–2324.

Lis, K., Nakka, K., Fua, P., & Salzmann,M. (2019). Detecting the unex-
pected via image resynthesis. In Proceedings of the IEEE/CVF
international conference on computer vision (ICCV).

Marchal, N.,Moraldo, C., Blum,H., Siegwart, R., Cadena, C.,&Gawel,
A. (2020). Learning densities in feature space for reliable segmen-
tation of indoor scenes. IEEE Robotics and Automation Letters,
5(2), 1032–1038.

Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., & Lakshmi-
narayanan, B. (2019). Do deep generative models know what they
don’t know?

Napoletano, P., Piccoli, F., & Schettini, R. (2018). Anomaly detection
in nanofibrous materials by CNN-based self-similarity. Sensors,
18(1), 209.

Perera, P., & Patel, V. M. (2019). Learning deep features for one-class
classification. IEEE Transactions on Image Processing, 28(11),
5450–5463.

Pimentel, M. A., Clifton, D. A., Clifton, L., & Tarassenko, L. (2014).
A review of novelty detection. Signal Processing, 99, 215–249.

Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.
A., Binder, A., Müller, E., & Kloft, M. (2018). Deep one-class
classification. In: Dy J, Krause A (eds) Proceedings of the 35th
international conference on machine learning, PMLR, proceed-
ings of machine learning research (vol. 80, pp. 4393–4402).

Sabokrou, M., Fayyaz, M., Fathy, M., Moayed, Z., & Klette, R.
(2018). Deep-anomaly: Fully convolutional neural network for fast
anomaly detection in crowded scenes.Computer Vision and Image
Understanding, 172, 88–97.

Saleh, B., Farahdi, A., & Elgammal, A. (2013). Object-centric anomaly
detection by attribute-based reasoning. In IEEE conference on
computer vision and pattern recognition (pp. 787–794).

Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., &
Langs,G. (2017).Unsupervised anomaly detectionwith generative
adversarial networks to guide marker discovery. In International
conference on information processing in medical imaging (pp.
146–157). Springer.

Schlegl, T., Seeböck, P., Waldstein, S., Langs, G., & Schmidt-Erfurth,
U. (2019). f-AnoGAN: Fast unsupervised anomaly detection with
generative adversarial networks. InMedical Image Analysis, 54.

Song, K., & Yan, Y. (2013). A noise robust method based on com-
pleted local binary patterns for hot-rolled steel strip surface defects.
Applied Surface Science, 285, 858–864.

123

https://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
https://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
http://arxiv.org/abs/1802.06360
http://arxiv.org/abs/1911.11132


International Journal of Computer Vision (2021) 129:1038–1059 1059

Steger, C. (2001). Similarity measures for occlusion, clutter, and illumi-
nation invariant object recognition. In: Radig B, Florczyk S (eds)
Pattern recognition. Lecture notes in computer science. Springer,
Berlin, vol. 2191, pp. 148–154.

Steger, C. (2002). Occlusion, clutter, and illumination invariant
object recognition. International Archives of Photogrammetry and
Remote Sensing, vol XXXIV, part, 3A, 345–350.

Steger, C., Ulrich, M., & Wiedemann, C. (2018).Machine vision algo-
rithms and applications (2nd ed.). Weinheim: Wiley-VCH.

Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley series
in behavioral science. Reading, MA: Addison-Wesley.

Wang, Z., Bovik, A. C., Sheikh, H. R.,&Simoncelli, E. P. (2004). Image
quality assessment: From error visibility to structural similarity.
IEEE Transactions on Image Processing, 13(4), 600–612.

Wieler,M.,&Hahn,T. (2007).Weakly supervised learning for industrial
optical inspection. In 29th Annual symposium of the German asso-
ciation for pattern recognition. https://resources.mpi-inf.mpg.de/
conference/dagm/2007/prizes.html.

Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan,
V., & Darrell, T. (2020). BDD100K: A diverse driving dataset for
heterogeneous multitask learning. In 2020 IEEE/CVF conference
on computer vision and pattern recognition (CVPR) (pp. 2633–
2642).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://resources.mpi-inf.mpg.de/conference/dagm/2007/prizes.html
https://resources.mpi-inf.mpg.de/conference/dagm/2007/prizes.html

	The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection
	Abstract
	1 Introduction
	2 Related Work
	2.1 Existing Datasets for Anomaly Detection
	2.1.1 Classification of Anomalous Images
	2.1.2 Segmentation of Anomalous Regions

	2.2 Methods
	2.2.1 Generative Adversarial Networks (GANs)
	2.2.2 Deep Convolutional Autoencoders
	2.2.3 Features of Pretrained Convolutional Neural Networks
	2.2.4 Traditional Methods


	3 Description of the Dataset
	4 Performance Metrics
	4.1 Pixel-Level Metrics
	4.2 Region-Level Metrics
	4.3 Threshold-Independent Metrics

	5 Threshold Selection
	6 Benchmark
	6.1 Training and Evaluation Setup
	6.2 Performance Evaluation
	6.3 Threshold Estimation Techniques
	6.4 Time and Memory Consumption

	7 Conclusions
	A Additional Results
	References




