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Abstract
Visual Localization is one of the key enabling technologies for autonomous driving and augmented reality. High quality
datasets with accurate 6 Degree-of-Freedom (DoF) reference poses are the foundation for benchmarking and improving
existing methods. Traditionally, reference poses have been obtained via Structure-from-Motion (SfM). However, SfM itself
relies on local features which are prone to fail when images were taken under different conditions, e.g., day/night changes.
At the same time, manually annotating feature correspondences is not scalable and potentially inaccurate. In this work, we
propose a semi-automated approach to generate reference poses based on feature matching between renderings of a 3Dmodel
and real images via learned features. Given an initial pose estimate, our approach iteratively refines the pose based on feature
matches against a rendering of the model from the current pose estimate. We significantly improve the nighttime reference
poses of the popular Aachen Day–Night dataset, showing that state-of-the-art visual localization methods perform better
(up to 47%) than predicted by the original reference poses. We extend the dataset with new nighttime test images, provide
uncertainty estimates for our new reference poses, and introduce a new evaluation criterion. We will make our reference poses
and our framework publicly available upon publication.

Keywords Visual localization · Benchmark construction · Learned local features

1 Introduction

Visual localization is the problem of estimating the camera
pose, i.e., the position and orientation from which an image
was taken, with respect to a known scene. Visual localization
is a core component of many interesting applications such as
self-driving cars (Heng et al. 2019) and other autonomous
robots such as drones (Lim et al. 2012), as well as for aug-
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mented and virtual reality systems (Castle et al. 2008; Lynen
et al. 2015).

Similar to other areas in computer vision, the availability
of benchmark datasets such as Shotton et al. (2013), Valentin
et al. (2016),Kendall et al. (2015), Sattler et al. (2012), Sattler
et al. (2018), Badino et al. (2011) and Maddern et al. (2017)
has served as a main driving force for research. Yet, there
is a fundamental difference between visual localization and
areas such as semantic segmentation and object detection in
the way ground truth is obtained. For the latter, ground truth
is provided by human annotations. However, humans are not
able to directly predict highly accurate camera poses. Instead,
ground truth is typically computed through a reference algo-
rithm, e.g., Structure-from-Motion (SfM). Thus, localization
benchmarks do not measure absolute pose accuracy. Rather,
theymeasure to what degreemethods are able to replicate the
results of the reference algorithm. Given that the reference
approach itself will produce inaccuracies and errors in the
pose estimates, we use the term “reference poses” instead of
“ground truth poses”.

It is crucial that the reference algorithm generates poses
with a higher accuracy than the actual localization meth-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-020-01399-8&domain=pdf
http://orcid.org/0000-0002-6526-0706


822 International Journal of Computer Vision (2021) 129:821–844

Image Pose Estimate Overlay

Iteration 1

Feature Matching

Iteration 5

Feature Matching

Fig. 1 Overview of our approach: Given an image, we render a syn-
thesized view of a 3D model from the given initial pose estimate of
the image. Superimposing the rendered image over the original image
provides a visual cue on the accuracy of the pose estimate. We match
features extracted from the actual image and the rendering (shown as
green lines connecting the corresponding positions in the overlay of the

two images). This provides 2D–3D correspondences between the image
and the underlying scenemodel. These 2D–3Dmatches are then used to
obtain a refined estimate. Iterating this approach leads to subsequently
more accurate poses (as evident from the smaller lines caused by amore
accurate overlay). The final pose estimate can also be verified visually

ods evaluated on a benchmark. It is thus common to provide
more data to the reference algorithm compared to what is
made available to the localization approaches. For example,
data from other sensors such as depth (Shotton et al. 2013;
Valentin et al. 2016), Lidar (Maddern et al. 2017), an external
motion capture system such as Vicon (Schops et al. 2019),
or additional images not available to the localization meth-
ods (Schops et al. 2019) can be used if available. This paper
considers the case where only images are available. In this
case, SfM is typically used as the reference algorithm, i.e.,
the reference poses are obtained jointly from all test images
whereas localization approaches typically localize a single
image at a time. This should lead to more accurate reference
poses compared to what can be obtained from a single image.

In particular, we are interested in reference pose gener-
ation in the context of long-term localization, which is the
problem of localizing images taken under different condi-
tions, e.g., day–night or seasonal changes, against a scene
captured under a reference condition. Given that scenes
change over time, long-term localization is an important
problem in practice. The main challenge in this setting is
data association, i.e., establishing feature matches between
images taken under different conditions. Naturally, this
causes problems for generating reference poses using SfM
algorithms, which themselves rely on local features such as
SIFT (Lowe 2004) for data association. In previous work, we
thus relied on human annotations to obtain feature matches
between images taken under different conditions (Sattler
et al. 2018). However, this approach is not scalable. Fur-
thermore, human annotations of feature positions in images
tend to be inaccurate, as they can easily be off by 5–10 pixels
or more.

This paper is motivated by the observation that the ref-
erence poses for the nighttime test images of the Aachen
Day–Night dataset (Sattler et al. 2018, 2012), obtained
from human annotations, are not accurate enough to bench-
mark state-of-the-art localization methods. This paper thus

proposes a semi-automated approach to reference pose gen-
eration. Our method is inspired by previous work on pose
verification via view synthesis (Taira et al. 2018, 2019; Torii
et al. 2018) and the observation that modern learned local
features (Dusmanu et al. 2019; Revaud et al. 2019) cap-
ture higher-level shape information. The latter allows feature
matching between real images and 3Dmodels, e.g., obtained
via multi-view stereo (Schönberger et al. 2016). As shown in
Fig. 1, our approach starts with a given initial pose estimate.
It renders the 3D scene model from the current pose esti-
mate. Featurematches between the actual and the re-rendered
image are then used to refine the pose estimate. This proce-
dure is repeated for a fixed number of iterations. Detailed
experiments, for multiple ways to obtain initial poses, show
that our approach yields more accurate pose estimates.

Re-rendering the image from its estimate pose enables
visual inspection of the accuracy of the estimate. Using this
aid, we observe that even larger differences in pose of 20cm
or more can have little impact on the rendered image. This
is not particularly surprising as the uncertainty of a pose
estimate depends on the distance to the scene. However, it
also implies that using fixed position and rotation thresholds
on the pose error to measure localization accuracy (Shotton
et al. 2013; Sattler et al. 2018) is not appropriate if there are
significant changes in scene depth between test images. As
a second contribution, we thus discuss and evaluate multiple
evaluation measures that (explicitly or implicitly) use per-
image uncertainty measures rather than global thresholds on
pose errors.

In detail, this paper makes the following contributions:
(1) we propose an approach based on view synthesis and
learned features that can be used to generate reference pose
for long-term visual localization benchmarks. (2) we provide
a detailed experimental analysis of our approach, including
studying different initialization approaches, different strate-
gies for rendering and different features. (3) we show that the
existing nighttime reference poses of the Aachen Day–Night
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dataset are not accurate enough to evaluate state-of-the-
art long-term localization approaches. We further use our
approach to obtain refined reference poses and show that
current localization approaches achieve a much higher (up
to 47%) pose accuracy than indicated by the original ref-
erence poses. (4) we extend the Aachen Day–Night dataset
by additional nighttime test images, effectively doubling the
number of available test images. We evaluate state-of-the-
art localization approaches on the extended dataset and will
provide a benchmark at visuallocalization.net. (5) we discuss
and experimentally study additional evaluationmeasures. (6)
we will make source code for our approach and our evalua-
tion measures publicly available to facilitate the creation of
new benchmarks. (7) we provide a concise review of current
trends in the area of visual localization.

2 RelatedWork

Besides discussing related work on benchmark creation for
visual localization and the use of view synthesis for pose
estimation and verification, this section also aims at giving
an interested reader a concise overview over main trends in
the area of visual localization.

Visual Localization Traditionally, most visual localization
algorithms have been based on a combination of local fea-
tures and a 3D scene model (Se et al. 2002; Robertson
and Cipolla 2004; Li et al. 2010, 2012; Choudhary and
Narayanan 2012; Irschara et al. 2009; Sattler et al. 2011;
Jones and Soatto 2011; Williams et al. 2007). In most cases,
the underlying 3D model is a sparse 3D point cloud con-
structed using SfM (Schönberger et al. 2016; Snavely et al.
2008) or SLAM (Davison et al. 2007; Mur-Artal and Tardós
2017). Each point in this model has been triangulated from
two or more local image features such as SIFT (Lowe 2004)
or ORB (Rublee et al. 2011). Thus, each 3D point can be
associated with one or more local image descriptors. 2D–
3D correspondences between local features in a query image
and 3D model points can be found using nearest neighbor
search in the descriptor space. In turn, these 2D–3D matches
can be used to estimate the camera pose of the query image
by applying an n-point pose solver (Haralick et al. 1994;
Kukelova et al. 2013, 2010; Larsson et al. 2017; Albl et al.
2016; Kneip et al. 2011; Fischler and Bolles 1981) inside a
hypothesize-and-verify framework such as RANSAC (Fis-
chler and Bolles 1981) and its variants (Chum and Matas
2008; Lebeda et al. 2012; Raguram et al. 2013). Research
on such 3D structure-based methods has mostly focused on
scalability, e.g., by accelerating the 2D–3D matching stage
(Li et al. 2010, 2012; Choudhary and Narayanan 2012; Sat-
tler et al. 2017; Donoser and Schmalstieg 2014; Lim et al.
2012; Jones and Soatto 2011; Cheng et al. 2019) and the use

of image retrieval (Irschara et al. 2009; Sattler et al. 2012;
Sarlin et al. 2019; Taira et al. 2018; Liu et al. 2017; Cao and
Snavely 2013), by reducing memory requirements through
model compression (Li et al. 2010; Cao and Snavely 2014;
Camposeco et al. 2019; Lynen et al. 2015; Dymczyk et al.
2015), or by making the pose estimation stage more robust
to the ambiguities encountered at scale (Li et al. 2012; Zeisl
et al. 2015; Svärm et al. 2017; Toft and Larsson 2016; Alcan-
tarilla et al. 2011; Aiger et al. 2019).

Such approaches are computationally too complex for
mobile devices with limited resources, e.g., robots and smart
phones. In order to achieve real-time localization on such
devices, non-real-time global localization against a pre-built
map is combined with real-time local camera pose tracking
(Mur-Artal and Tardós 2017; Middelberg et al. 2014; Lynen
et al. 2015; Schneider et al. 2018; Kasyanov et al. 2017;
DuToit et al. 2017; Jones and Soatto 2011; Ventura et al.
2014). To this end, results from the localization process (most
often 2D–3D inliers) are integrated into visual(-inertial)
odometry or SLAM to prevent drift in the local pose esti-
mates.

Structure-based approaches rely on underlying 3D mod-
els, which are expensive to build at scale and costly to
maintain (Sattler et al. 2017). Alternatively, the absolute pose
of a query image can be estimated from the relative poses
to database images with known poses (Zhang and Kosecka
2006; Zhou 2019) or 2D–2Dmatches with multiple database
images (Zheng and Changchang 2015). It can also be esti-
mated using local SfM models computed on the fly (Sattler
et al. 2017).

Instead of explicitly using an underlying 3Dmodel, abso-
lute pose regression train a CNN to directly regress the
camera pose from an input image (Brahmbhatt et al. 2018;
Clark et al. 2017; Huang et al. 2019; Kendall et al. 2015;
Kendall and Cipolla 2017; Melekhov et al. 2017; Naseer
2017; Radwan et al. 2018; Valada et al. 2018; Walch et al.
2017; Xue et al. 2019). However, they are not consis-
tently more accurate than simple image retrieval baselines
(Arandjelović et al. 2016; Torii et al. 2018, 2011) that
approximate the pose of a query imageby the poses of the top-
retrieved database images (Sattler 2019). Furthermore, these
approaches need to be trained specifically per scene. The
latter problem can be overcome by relative pose regression
techniques (Balntas et al. 2018; Ding et al. 2019; Laskar et al.
2017; Zhou 2019; Saha and Varma 2018), which train CNNs
to predict relative poses. In combination with image retrieval
against a database of images with known poses, these relative
poses can be used for visual localization. While recent work
shows promising results (Ding et al. 2019; Saha and Varma
2018; Zhou 2019), relative pose regression techniques do
not yet achieve the same level of pose accuracy as methods
explicitly based on 2D–3D matches.
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Fig. 2 Multi-View Stereo reconstructions obtained from SfM models
of the Aachen dataset using SIFT (left) and D2-Net (right) features
(top-down view). D2-Net features are more robust to changes in condi-
tions, e.g., day–night and seasonal changes, than classic SIFT features,

but also produce more false positive matches. This leads to connect-
ing unrelated scene parts during the SfM process and ultimately in an
incorrect 3D model. In contrast, SIFT correctly reconstructs the scene.
Some wrong placements are illustrated through colored ellipses

Rather than learning the full localization pipeline, scene
coordinate regression algorithms only replace the 2D–3D
matching stage through a machine learning algorithm, typ-
ically either a random forest (Shotton et al. 2013; Cavallari
et al. 2017, 2019a, b; Meng et al. 2017, 2018; Massiceti
et al. 2017; Valentin et al. 2015, 2016) or a CNN (Brach-
mann et al. 2017; Brachmann and Rother 2018, 2019, 2020;
Massiceti et al. 2017; Yang et al. 2019; Zhou et al. 2020).
For a given patch from an image, these methods predict the
corresponding 3D point in the scene. The resulting set of 2D–
3D matches can then be used for camera pose estimation.
Scene coordinate regression techniques constitute the state-
of-the-art in termsof pose accuracy in small scenes.However,
they currently do not scale well to larger scenes. For exam-
ple, ESAC (Brachmann and Rother 2019), a state-of-the-art
scene coordinate regression technique, localizes 42.6% of
all daytime query images of the Aachen Day–Night dataset
(Sattler et al. 2012, 2018) within errors of 25 cm and 5◦. In
contrast, SIFT-based Active Search (Sattler et al. 2017), a
classical structure-based method, localizes 85.3% within the
same error thresholds.

Learned Local Features State-of-the-art approaches for
long-term localization (Dusmanu et al. 2019; Sarlin et al.
2019; Germain et al. 2019; Larsson et al. 2019; Stenborg
et al. 2018; Yang et al. 2020; Benbihi et al. 2019; Taira
et al. 2018, 2019) are based on local features and explicit
3D scene models.1 Classical handcrafted features such as
ORB (Rublee et al. 2011), SIFT (Lowe 2004), and SURF
(Bay et al. 2008) struggle to match features between images
taken under strongly differing viewing conditions, e.g., day
and night or seasonal changes. Thus, long-term localization
approaches typically use machine learning, both for image

1 See also visuallocalization.net/benchmark/.

retrieval (Arandjelović et al. 2016; Noh et al. 2017; Rade-
nović et al. 2019) and for local features (Ono et al. 2018;
DeTone et al. 2018; Benbihi et al. 2019; Noh et al. 2017;
Yang et al. 2020; Dusmanu et al. 2019).

Traditionally, local feature learning has focused on learn-
ing feature descriptors (Balntas et al. 2016; Brown et al.
2011; Ebel et al. 2019; Mishchuk et al. 2017; Simonyan
et al. 2014; Simo-Serra et al. 2015; Tian et al. 2017, 2019).
However, it has been shown that the local feature detector
often is the limiting factor (Taira et al. 2018; Torii et al.
2018; Sattler et al. 2018; Germain et al. 2019). Thus, recent
work trains feature detectors and descriptors jointly (Ben-
bihi et al. 2019; DeTone et al. 2018; Ono et al. 2018; Yang
et al. 2020; Wang et al. 2020; Noh et al. 2017), leading
to state-of-the-art feature matching performance for images
taken under strongly differing conditions. Interestingly, using
deeper layers of neural networks pre-trained on ImageNet
(Deng et al. 2009) to define both feature detector and descrip-
tor leads to very competitive performance (Benbihi et al.
2019; Dusmanu et al. 2019). Equally important, such fea-
tures are very robust to changes in different conditions, even
though this might come at a price of more false positives
(cf. Fig. 2). We use this robustness to establish correspon-
dences between real images and renderings of 3D models
and the resulting 2D–3Dmatches to compute reference poses
for benchmarking long-term visual localization. In addi-
tion, we benchmark state-of-the-art long-term localization
approaches (Sarlin et al. 2019; Germain et al. 2019; Revaud
et al. 2019; Dusmanu et al. 2019) based on local features
using our reference poses.

Semantic Visual Localization Besides using learned fea-
tures that are more robust to changes in viewing condi-
tions, long-term localization approaches also use semantic
image segmentation (Budvytis et al. 2019; Garg et al. 2019;
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Larsson et al. 2019; Stenborg et al. 2018; Schönberger et al.
2018; Seymour et al. 2019; Shi et al. 2019; Taira et al. 2019;
Toft et al. 2017, 2018; Wang et al. 2019; Yu et al. 2018).
Thesemethods are based on the observation that the semantic
meaning of scene elements, in contrast to their appearance,
is invariant to changes. Semantic image segmentations are
thus used as an invariant representation for image retrieval
(Arandjelović and Zisserman 2014; Toft et al. 2017; Yu et al.
2018), to verify 2D–3D matches (Budvytis et al. 2019; Lars-
son et al. 2019; Stenborg et al. 2018; Toft et al. 2018) and
camera pose estimates (Shi et al. 2019; Stenborg et al. 2018;
Taira et al. 2019; Toft et al. 2018), for learning local fea-
tures (Garg et al. 2019; Schönberger et al. 2018), and as an
additional input to learning-based localization approaches
(Budvytis et al. 2019; Seymour et al. 2019;Wang et al. 2019).

View Synthesis As shown in Fig. 1, our approach iteratively
renders a 3D model from a camera pose estimate and uses
matches between the rendering and the actual image to refine
the pose. Our approach takes inspiration from previous work
on using view synthesis for pose estimation and verification.
(Sibbing et al. 2013; Shan et al. 2014) render detailed laser
scans (Sibbing et al. 2013) respectively dense Multi-View
Stereo point clouds (Shan et al. 2014) from new perspec-
tives. They show that SIFT feature matching between the
renderings and actual images is possible if both were taken
from very similar poses. Torii et al. (2018) shows that view
synthesis from very similar viewpoints (obtained from depth
maps) improves SIFT feature matching between day and
night images. Aubry et al. (2014) learns features that can be
matched between paintings and renderings of a 3D model.
Valentin et al. (2016) first learns a randomized decision forest
(RDF) and a hierarchical navigation graph using synthesized
images (rendered from reconstructed scene models) and then
uses the RDF and the graph for efficient and gradient-free
localization of new query images. In these works, view syn-
thesis is used to create novel viewpoints in a given scene in
order to enable camera pose estimation at all. In contrast,
this paper focuses on using view synthesis to refine an initial
pose estimate and to use it for generating reference poses for
a long-term localization benchmark. Thus, the contributions
of this paper center around a detailed experimental evalua-
tion of the use of view synthesis to improve pose accuracy
rather than on proposing a new method.

Taira et al. (2018, 2019) use view synthesis for automated
pose verification. To this end, they render a dense laser scan
point cloud from a set of given poses. They densely extract
descriptors from each rendering and compare each descriptor
against a descriptor extracted at the same pixel in the origi-
nal image to compute an image-level similarity score. This
score is then used to select the pose that best explains the input
image. In contrast, this paper uses view synthesis to refine
the camera pose estimates. While Taira et al. (2018, 2019)

automate pose estimation, their approach still has room for
improvement, even if additional information such as seman-
tics is used (Taira et al. 2019). Thus, we use the rendering
for visual inspection of the poses rather than automating the
verification process.

Armagan et al. (2017) utilizes synthesized views for
improving an initial pose estimate with respect to a 2.5D
street map (containing only the outline of the buildings).
Given a rendered view of the 2.5D map and a semantic seg-
mentation of the image, they combine two networks and
a line search strategy to compute a 3DoF pose correction
(horizontal translation and yaw) to the initial pose. Then
the improved pose is used as the new input, and the cor-
rection procedure is applied iteratively. This paper uses a
similar strategy of iterative synthesis and correction but dif-
fers in several aspects. Armagan et al. (2017) focuses on the
geolocalization in urban environment, while we aim at pro-
viding a general tool for creating accurate visual localization
benchmarks. This also results in the different choices of the
inputmodality: we choose to use SfMmodels instead of 2.5D
maps, which are specific to urban environments. Moreover,
our method is more generic in that it is able to correct the
poses in 6DoF instead of 3DoF.

Visual Localization Benchmarks This paper considers the
visual localization problem, i.e., the task of computing the
full camera pose for a given image. Closely related is the
visual place recognition problem of determining which place
is visible in a given image, without necessarily estimating
its camera pose. However, we will not discuss pure place
recognition datasets that do not provide full 6DoF camera
poses such as Chen et al. (2017); Sünderhauf et al. (2015),
Torii et al. (2018, 2015) and Milford and Wyeth (2012).

Early localization benchmarks used SfM to reconstruct
scenes from internet photo community collections such as
Flickr. Query images were then obtained by removing some
images from the reconstruction, together with all 3D points
visible in only one of the remaining images (Li et al. 2010).
Examples for this approach to benchmark creation are the
Dubrovnik, depicting the old city of Dubrovnik (Croatia),
Rome (Li et al. 2010) and Landmarks 1k (Li et al. 2012)
datasets. The latter two datasets consists of individual land-
marks in Rome respectively around the world. The same
approach was later also used for images taken under more
controlled conditions, e.g., the crowd-sourced Arts Quad
(Crandall et al. 2011; Li et al. 2012) dataset, the scenes from
the Cambridge Landmarks (Kendall et al. 2015) benchmark,
and the San Francisco SF-0 (Chen et al. 2011; Li et al. 2012;
Sattler et al. 2017) dataset. Similarly, RGB-D SLAM algo-
rithms (Newcombe et al. 2011; Dai et al. 2017) were used to
obtain reference poses for the 7Scenes (Shotton et al. 2013)
and 12Scenes (Valentin et al. 2016) datasets. Both depict
small indoor scenes captured with RGB-D sensors.
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Long-term localization benchmarks (Sattler et al. 2018;
Carlevaris-Bianco et al. 2016; Balntas et al. 2019) typically
use images captured under a reference condition to repre-
sent the scene while images taken under different conditions
are used as query. SLAM and SfM algorithms depend on
data association between images. Thus, they tend to fail if
images were taken under too dissimilar conditions. Using
image sequences and/or multi-camera systems can allow
using SLAM and SfM algorithms under stronger viewing
condition changes. The former exploits the fact that it is
not necessary to find matches between each query image
and a reference image. Rather, finding enough matches for
some query images is sufficient to register an entire sequence.
The latter exploit the fact that a larger field-of-view typically
leads to more matches. Both the SILDa (Balntas et al. 2019)
and (extended) CMU Seasons (Badino et al. 2011; Sattler
et al. 2018) use sequences and multi-camera systems. SILDa
depicts a single building block in London, UK under diferent
conditions. The (extended) CMU Seasons dataset was con-
structed from images collected in and around Pittsburgh, US
over the span of a year. For the (extended) CMU Seasons,
additional humanly annotated matches were used in areas
where cross-seasonal matching failed (Sattler et al. 2018).
Human annotations were also used for the Mall (Sun et al.
2017) dataset to obtain initial pose estimates of test images
with respect to a laser scan.

Manually annotated matches are often not very precise
(Sattler et al. 2017). If available, additional sensors such
as Lidar can be used to avoid the need for human annota-
tions. The RobotCar Seasons (Maddern et al. 2017; Sattler
et al. 2018), depicting the city of Oxford, UK under various
seasonal conditions, and the University of Michigan North
Campus Long-Term Vision and LIDAR (Carlevaris-Bianco
et al. 2016) datasets use Lidar data to obtain reference poses.
However, human intervention might still be necessary if the
scene geometry changes (Sattler et al. 2018).

The Aachen Day–Night (Sattler et al. 2012, 2018) depicts
the old inner city of Aachen, Germany. The 3D model of the
scene was reconstructed from daytime images using SfM.
Similarly, reference poses for daytime query images were
also obtained using SfM. Since additional sensor data is not
available and since SfM failed to provide reference poses
(Sattler et al. 2018),manual annotationswere used for a set of
nighttime query images. To this end, a daytime image taken
from a similar viewpoint was selected for each nighttime
query. The pixel positions corresponding to 10–30 3D points
visible in the daytime image were then annotated manually.
Sattler et al. (2018) estimated that the median mean posi-
tion accuracy for the nighttime images is between 30 and
40 cm. However, in this paper, we show that the pose esti-
mates are actually often worse. This observation motivates
our approach for refining the original reference poses. We
show that the refined poses are more accurate and are thus

more suitable to measure the performance of state-of-the-
art localization techniques. While this paper focuses on the
Aachen Day–Night dataset, our approach is not specific to it
and can be applied on other datasets as well. As described
in Sect. 5.1, it uses the same information as required for
buildingSfMmodels,which is available inmanyvisual local-
ization benchmarks. The scene models used in our approach,
namely a SfM model and a dense mesh, can be generated
using publicly available software packages (e.g., COLMAP
in our setup).

3 Reference Pose Generation

Typically, a visual localization dataset provides a set of
images I : {Ii }Ni=1 and the corresponding reference poses
T : {Ti }Ni=1 in a 3D model M. Our goal is to know whether
the poses T are accurate (verification) and get more accu-
rate reference poses if necessary (refinement). Since each
image in a visual localization dataset is usually treated indi-
vidually, we consider a single image I and its (potentially
inaccurate) pose T in this section. T represents the camera
pose with respect to the model M. More specifically, T is a
4 × 4 transformation matrix:

T =
[

R c
01×3 1

]
, (1)

and p = R · cp + c converts point coordinates in the camera
frame cp to the coordinates in the model.

Given the 3D model M, we first render a synthesized
view I r (or multiple rendered images) at pose T (Sect. 3.1).
Then learned features are extracted andmatched between the
actual image I and the synthesized image I r . By analyzing

the matched features, denoted as {ul}N f
l=1 and {url }

N f
l=1 for the

actual and rendered images respectively, we can determine
whether the pose T is accurate (Sect. 3.2). Finally, we can

back-project the 2D features from the rendered view {url }
N f
l=1

to the 3DmodelM to get a set of 3D points {prl }
N f
l=1. From the

2D–3D correspondences {ul}N f
l=1 and {prl }

N f
l=1, we can calcu-

late a more accurate pose Tr for the actual image (Sect. 3.3).
The aforementioned process is repeated several times to get
more accurate poses (cf. Fig. 1). We also discuss different
methods to quantify the uncertainties of the resulting poses
(Sect. 3.4), which are useful for defining localization accu-
racy metrics (cf. Sect. 4.1).

For simplicity of presentation, we assume that all the 2D

features {url }
N f
l=1 have a valid back-projection in M and all

the 3D points {prl }
N f
l=1 are inliers in the refinement process. In

practice, we remove 2D features with invalid depth (e.g., due
to an incomplete the modelM) and reject outliers using LO-
RANSAC (Lebeda et al. 2012). For simplicity, we assume
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that the features are ordered based on matches: for a feature
ul in the real image, the corresponding matching feature in a
rendering is url .

3.1 Rendering SynthesizedViews

There are differentmethods to render synthesized views from
a pose T with respect to a scene model M. In this work, we
investigate view synthesis from two different scene models:
a 3D point cloud with SIFT descriptors and a 3Dmesh. In the
process of generating reference poses using SfM, the scene is
typically reconstructed as a 3D point cloud, where each point
is associated with a descriptor, e.g., SIFT. A 3D mesh can be
further generated using Multi-View Stereo. Therefore, these
two models are readily available from the standard process
for generating reference poses.

To render images from a 3D mesh, there are various off-
the-shelf renderers that can be used. As for a point cloud with
descriptors, we follow Pittaluga et al. (2019) and train a CNN
to reconstruct the images from such a scene representation.
The network uses a U-Net architecture (Ronneberger et al.
2015). The input to the network is a 3D tensor of size h ×
w × 129, where h and w are the height and width of the
image to be synthesized. The 129 channels consists of a depth
channel and one channel per byte in the SIFT descriptor (128
bytes). The input is constructed by finding and projecting the
visible points in the point cloud to the pose to render and
then filling the input tensor at the pixel coordinates where
there is a projected 3D point. The output of the network is
the synthesized image at a given pose. For details of the
method (e.g., training and evaluation), we refer the reader to
Pittaluga et al. (2019). While each rendering technique alone
is sufficient in certain cases, combining the two rendering
methods utilizes the information from different scenemodels
and results in the best performance in our experiment (cf.
Sect. 5.4).

3.2 Matching Features with SynthesizedViews

To extract and match features between the real images I
and the rendered images I r , we choose to use learning-based
local features. This is due to the fact that the rendered images
usually have large appearance change compared with the
real night images. Traditional features, such as SIFT, rely
on low level image statistics and are not robust to day–night
condition change and rendering artifacts. In particular, we
choose to use the D2-Net feature (Dusmanu et al. 2019) in
our pipeline, which uses a single CNN for joint feature detec-
tion and description and achieves state-of-the-art matching
performance in challenging conditions.

For the images rendered using the two rendering tech-
niques, we extract andmatch features between each rendered
image and the real image individually. We then directly

aggregate the feature matches obtained from both rendered
images for the next step. Note that after obtaining the 2D
feature matches, we can already verify whether there exists
pose errors in the reference poses by checking the matching
locations in the rendered and real images (cf. Figs. 3 and 8
for large and small pose errors respectively): if the real and
rendered images are taken from the same pose, the two fea-
tures ul and url should be found at identical 2D positions (up
to noise in the feature detection stage). Similarly, a large 2D
distance ||ul − url ||2 is indicative for a significant difference
in pose.

3.3 Refining Reference Poses

Given N f matched features {ul}N f
l=1 and {url }

N f
l=1 between the

real and rendered images, we first back-project the features
in the rendered images to M to get the corresponding 3D

points as {prl }
N f
l=1

prl = π−1(url ,T, K , D,M), (2)

where π : p → u is the camera projection function and
π−1 the inverse. K and D are the intrinsics and distortion
parameters respectively. In practice, we get the depth map at
T in the process of rendering images from the 3D mesh, and
the depth at ul can be directly read from the depth map. After
finding the 3D points, the refined reference pose Tr can be
computed by solving a nonlinear least-squares problem

Tr = argmin
T

N f∑
l=1

‖π(prl ,T, K , D) − ul‖2. (3)

We minimize (3) over the inliers of a pose obtained by LO-
RANSAC. Note that it is possible to additionally refine K and
D in the above optimization. This could help correct errors in
the intrinsics and distortion parameters but potentially make
the optimization problem less stable (e.g., when there are
few feature matches). In addition, relatively accurate K and
D values are required for rendering reasonable synthesized
views for successful feature matching, regardless of whether
they are refined in the optimization.

3.4 Uncertainty Quantification

To use the refined pose Tr for evaluating localization accu-
racy, it is also important to quantify the uncertainty of the
refined pose for meaningful interpretation of the difference
between the pose to evaluate and the reference pose. For
example, if two poses to be evaluated are both within the
uncertainty range of the reference pose, they should be
considered equally accurate, regardless of their absolute dif-
ferences with respect to the reference pose. It is thus a typical

123



828 International Journal of Computer Vision (2021) 129:821–844

Fig. 3 Comparison of images rendered from the original and refined
(ours) reference poses of the nighttime images in Aachen Day–Night
dataset. First column: nighttime images; Second column: images ren-
dered from the existing reference poses, overlay of the rendering and the
image together with D2-Net matches between the two; Third column:
images rendered from our refined poses and the corresponding overlays

with D2-Net matches. The top two rows render a Multi-View Stereo
(MVS) mesh and the bottom two use Structure-from-Motion inversion
(Pittaluga et al. 2019) (invSfM). The colored lines visualize D2-Net fea-
ture matches. Green is used to indicate that the 2D location difference
between a feature in the real image and its match in the rendered image
is below 20 pixel

practice to consider the uncertainty of the reference poses in
the accuracy evaluation of visual localization methods (cf.
Sect. 4.1). Next, we introduce two commonly used meth-
ods for covariance estimation (Hartley and Zisserman 2003,
Ch. 5) and a sampling strategy explored in this paper.

First Order Approximation For the nonlinear least squares
problem (3), the covariance of Tr can be computed by�Tr =

(
∑N f

l=1 J
�
l �−1

u Jl)−1, where Jl = ∂ul/∂T is the Jacobian
(evaluated atTr ) of the lth landmark observationwith respect
to the camera pose,2 and�u is the covariance of the landmark
observation u.�u is usually assumed to be a diagonal matrix
and the same for each observation. Then the uncertainty of

2 In solving (3), iterative methods (e.g., Gauss–Newton) are usually
used, where Jl is actually the Jacobian with respect to a small pertur-
bation around the current estimate.
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the camera position and rotation, denoted as δc and δr , can
be calculated from positions and rotations sampled from a
multivariate Gaussian distribution N (0,�Tr ):

δc = median
(
{|δcn|}Ns

n=1

)
δr = median

(
{|δrn|}Ns

n=1

)
, (4)

where | · | denotes 2-norm. δcn and δrn are the sampled posi-
tion and rotation respectively. We slightly abuse the notation
and denote the number of samples as Ns in this Section.

Monte Carlo Estimation An alternative method is to use
Monte Carlo method. In particular, from the 3D points

{prl }
N f
l=1 and refined pose T

r , we first calculate the ideal (i.e.,

no noise) observations {ūl}N f
l=1, where ūl = π(prl ,T

r , K , D).

A set of noisy measurements {ũl}N f
l=1 can be simulated by

ũl = ūl + nu, where nu ∈ N (0,�u). We then can compute
a camera pose estimate Tm using themethod in Sect. 3.3 with

the simulated feature locations {ũl}N f
l=1 instead of the actual

ones {ul}N f
l=1. After repeating the above process Ns times, the

uncertainty of camera position σ c
m and rotation σ r

m can be
computed as

δcm = median
({εcn}Ns

n=1

)
δrm = median

({εrn}Ns
n=1

)
, (5)

where εcn, ε
r
n = Tr � Tmn [cf. (7)].

Sampling Uncertainty We also explore a sampling strategy
for uncertainty estimation in this paper. In particular, for a
sampling ratio k (e.g., 50%), we first randomly sample from
all the 2D–3D matches (i.e., all the inliers used in (3)). We
then apply LO-RANSAC to the sampled subset and solve the
nonlinear optimization problem (3) using the inliers returned
by LO-RANSAC to get a pose Ts . The sampling and solving
process is repeated multiple times (typically 50 times in our
experiment), resulting in multiple pose estimates {Tsn}Ns

n=1.
The sampling uncertainty for the camera position sck and rota-
tion srk are calculated as

sck = median({εtn}Ns
n=1) srk = median({εrn}Ns

n=1), (6)

where εcn, ε
r
n = Tr � Tsn [cf. (7)]. We calculate the sampling

uncertainties for different sampling ratios.
We would like to highlight the difference between the

uncertainties computed from the above methods and the
absolute uncertainties. The absolute uncertainties reflect
the differences between the refined poses and the unknown
ground truth, which cannot be calculated directly. The above
uncertainties, on the other hand, evaluate the variance (by
approximation or computing statistics from randomized sam-
pling) with respect to the refined poses, which are essentially
the local minima in the optimization problem (3). There-
fore, these uncertainties tend to be smaller than the actual

uncertainties, since the local minima can hardly be the actual
ground truth poses. We will further discuss how to consider
these uncertainties in the context of evaluation in Sect. 4.1.

3.5 Discussion

The method proposed in this section essentially estimates
more accurate poses from some potentially inaccurate initial
estimates. Yet, it can not only be used to verify and refine
existing reference poses, but also to easily extend existing
visual localization datasets. For example, to addmore images
to an existing localization dataset, one only needs to provide
coarse initial poses for these images, which can be obtained
by, for example, manually selecting the most similar images.
This is useful especially for imageswith large appearance dif-
ference comparedwith the localization database (e.g., adding
nighttime images to a localization database constructed from
daytime images), where accurate poses cannot be reliably
estimated using SfM directly.

4 Metrics for Localization Accuracy

The reference poses generated using SfM or our method
are inherently subject to inaccuracies, which complicates the
evaluation process. For example, the difference between the
reference pose and a pose to evaluate is no longer a meaning-
ful metric if the actual error (i.e., the difference between the
pose to evaluate and the unknown ground truth) is compara-
ble to the uncertainty in the reference pose. Therefore, it is
a common practice to set certain thresholds for the reference
poses based on their uncertainties, and measure whether the
poses to evaluate lie within those thresholds. Unfortunately,
quantifying the uncertainties in the reference poses is a highly
non-trivial task in itself. The actual uncertainties depend on
various factors, such as the depth of the scene and the accu-
racy of the local features. In this section, we first discuss
several performance metrics based on directly considering
the uncertainties in pose space. We then discuss a perfor-
mance metric based on the re-projection of the scene points,
which removes the necessity of directly quantifying the pose
uncertainty.

4.1 Direct Pose Uncertainty-BasedMeasures

Direct pose uncertainty-based measures analyze the position
and rotation error between the reference and estimated poses.
Typically, given a reference pose T and a pose to evaluate T̂,
the position and rotation error εc, εr = T � T̂ are computed
as Sattler et al. (2018):

εc = ‖c − ĉ‖2, εr = arccos

(
1

2
(trace(R−1R̂) − 1)

)
. (7)
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To account for the uncertainties in the reference poses, we
can either use a set of fixed thresholds for all the images in a
dataset or define thresholds for each image individually.

Fixed Error Thresholds We can define a set of Ne increasing
error thresholds Efixed = {eposej }Ne

j=1, where e j = (c j , r j )
contains both position and orientation thresholds. These
thresholds apply to all the images in a dataset. A pose is
said to be below a threshold e j if εc < c j and εr < r j . The
overall localization accuracy is the percentages of images
that are localized within these thresholds, and higher values
indicate better performance. For example, the error thresh-
olds for Aachen night time images on visuallocalization.net
are 0.5/1.0/5.0m and 2.0/5.0/10.0 deg, and the localization
accuracy is reported as three percentages corresponding to
the these categories.

Per Image Error Thresholds Using the same thresholds for
all the images in a dataset, however, has limitations. The
uncertainties are image-dependent if, as in our case, the poses
are calculated by minimizing the reprojection errors of 2D–
3D correspondences. The position uncertainty is lower for
images observing landmarks that are closer to the camera.
Ideally, these uncertainties should be taken into considera-
tion to choose the error thresholds per image. As shown in
Sect. 3.4, there are different ways of computing the pose
uncertainty for each image, which can be used as per image
error thresholds. For the first order and Monte Carlo uncer-
tainties, we can simply use (4) and (5) as thresholds. In terms
of sampling uncertainties, we can choose a set of sampling
uncertainties E sample

i = {sk}k=k1,k2,... as error thresholds,
where sk = {sck , srk } is the sampling uncertainty with sam-
pling ratio k. For example, in our experiment, we use a set of
thresholds calculated from sampling ratios of 50%, 30% and
10% respectively. However, as discussed before, the uncer-
tainties in Sect. 3.4 tend to be lower than the (unknown)
absolute uncertainties. Therefore, using these uncertainties
as error thresholds tends to under-estimate the accuracy of
localization algorithms (cf. Sect. 5.5).

4.2 Indirect Pose Uncertainty-BasedMeasures

To avoid the need to consider the uncertainties in 6DoF poses
(which is non-trivial as seen before), we follow the literature
on object pose estimation and measure pose accuracy based
on reprojections (Hinterstoisser et al. 2012). More precisely,
we measure the difference between the reprojection of a set
of 3D points in the reference and estimated poses. Intuitively,
perturbations to the camera pose will result in the changes
of the reprojected 2D locations of 3D points. Therefore, we
can define certain thresholds around the reprojection of the
3D points as an indirect measure of the pose uncertainty.

A key advantage of this approach is that the error thresh-
olds can be defined on the image plane. While we use the
same thresholds for all the images, this actually results in
per-image uncertainty thresholds in pose space: the same
change in reprojection error will typically result in a position
error that increases with increasing distance of the camera to
the scene. Formally, we define the following metric:

Maximum Reprojection Difference The maximum distance
between the projected points in the reference pose Tri and the
estimated pose T̂i is used to measure the localization error:

r∞
i = max

l∈[1,Ni
f ]
‖π(prl ,T

r
i ) − π(prl , T̂i )‖2, (8)

where the intrinsics and distortion parameters are omitted
for simplicity. Similar to the pose error, a set of reprojection
thresholds E rep = {erepj }Ne

j=1 are selected, and the percentages
of the images with r∞

i lower than these thresholds are used
to indicate the overall accuracy on the dataset. We slightly
abuse Ne here to denote the number of error thresholds in
general.

5 Experimental Evaluation

To demonstrate the value of the proposedmethod,we first use
our method to analyze the reference poses of the nighttime
query images in the Aachen Day–Night dataset (Sect. 5.2).
Then,we extend the datasetwith newnighttime query images
and generate the corresponding reference poses using our
method (Sect. 5.3). We also compare our method against
baseline methods of directly matching features (SIFT and
D2-Net) and computing poses via SfM models. To under-
stand the impact of the different parameters in our method,
we perform an extensive ablation study regarding different
learned features, different rendering techniques, and the sta-
bility of our reference poses (Sect. 5.4). Finally, we evaluate
state-of-the-art localization methods on both the original and
the extended Aachen Day–Night datasets based on the per-
formance metrics discussed in Sect. 4 (Sect. 5.5).

In this paper, we focus on the Aachen Day–Night dataset
(Sattler et al. 2018, 2012). This is motivated by our observa-
tion that the reference poses for the nighttime images are the
least accurate reference poses among the three datasets from
Sattler et al. (2018). At the same time, the dataset is becom-
ing increasingly popular in the community, e.g., (Sarlin et al.
2019; Yang et al. 2020; Wang et al. 2020; Benbihi et al.
2019; Dusmanu et al. 2019; Brachmann and Rother 2019;
Mishchuk et al. 2017; Shi et al. 2019; Cheng et al. 2019;
Revaud et al. 2019; Germain et al. 2019; Sarlin et al. 2020;
Zhang et al. 2019) have already been evaluated on the dataset.
However, our approach is generally applicable and can be
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applied to other datasets as well. Note that we only consider
the nighttime query images in this paper as SfM already pro-
vides accurate reference poses for the daytime queries of
the Aachen Day–Night dataset. In contrast, the authors of
the dataset reported in Sattler et al. (2018) that localizing
the nighttime images directly against the SfM model built
from daytime images resulted in highly inaccurate poses
due to a lack of sufficiently many SIFT feature matches.
This is due to the strong illumination changes between the
nighttime and daytime images and the limited repeatability
of the SIFT descriptor to such strong changes (Zhou et al.
2016). With insufficient feature matches, pose estimation
using SIFT would either fail or have erroneous results due
to ill-conditioned configurations (e.g., the feature matches
may concentrate in a small, well illuminated region in the
image, resulting in an inaccurate pose estimate). We observe
similar failure cases when using SIFT to add new nighttime
images to the Aachen Day–Night dataset (see Fig. 6 and the
discussion in Sect. 5.3 for examples).

5.1 Experimental Setup and Data Acquisition

Additional Data Capture To extend the Aachen Day–Night
dataset, we captured another 119 nighttime images and 119
daytime images with the camera of a Nexus 5X smart phone
in July 2017. The nighttime and daytime images formpairs of
photos taken from very similar poses. Registering the day-
time images against the reference SfM model provided by
the Aachen Day–Night dataset then yields initial pose esti-
mates for the new nighttime queries. Both the original and
the newly captured nighttime images have a resolution of
1600 × 1200 pixels (the diagonal is thus of 2000 pixels).

Scene Model Generation Our approach to refine cam-
era poses requires an underlying 3D scene model. The
Aachen Day–Night dataset provides a reference SfM model
consisting of 4328 database images and 1.65M 3D points tri-
angulated from 10.55M SIFT features (Sattler et al. 2018).
This publicly available reference model is a sub-model
of a larger base SfM model that was reconstructed using
COLMAP (Schönberger et al. 2016). This base model also
contains images from a set of videos as well as the day-
time queries, resulting in a SfM model with 7604 images
and 2.43M 3D points triangulated from 17.75M features.
This model was registered against the original Aachen SfM
model from Sattler et al. (2012) to recover the scale of the
scene. The reference model was obtained by removing the
sequences and query images from the base model.

We started from the base model and created an extended
SfM model. We registered the additional daytime images

and an additional image sequence3 against the base model
while keeping the poses of the base model images fixed.
The resulting model contains 12,916 images and 3,90M 3D
points triangulated from 32.19M SIFT features. We used this
extended base model when creating our new reference poses.

We removed all query images and the newly added
sequence images from the extended base model to create
an extended reference SfM model consisting of 6697 images
and 2.32M points triangulated from 15.93M SIFT features.
Thismodelwill be used to benchmark localization algorithms
on our extended Aachen Day–Night dataset. We will make
this new reference model publicly available, but will with-
hold the base models and the reference poses for the query
images. Instead, we will provide an evaluation service on
visuallocalization.net. Themotivation behind publishing this
smaller dataset is to make sure that the reference poses were
computed from additional data not available to localization
algorithms. The inclusion of the original sequences is nec-
essary as some of the newly added nighttime queries depict
places not covered in the original reference model.

In addition to the extended models, we also created a col-
ored 3Dmesh of the scene.We used COLMAP’sMulti-View
Stereo pipeline (Schönberger et al. 2016) to obtain a dense
point cloud. Screened Poisson surface reconstruction (Kazh-
dan and Hoppe 2013) of the point cloud then yields a colored
mesh.

Rendering Our method requires rendering the scene from
estimated poses. For each pose, we generate two renderings:
(1) we render the MVS mesh, (2) we use the SfM inversion
approach (invSfM) from Pittaluga et al. (2019) to recover an
image directly from a rendering of the extended base model.
Weuse our own implementation of invSfM.Note thatweonly
use theCoarseNet stage and skip theVisibNet andRefineNet.
We use the MVS mesh to determine which points are visi-
ble instead of VisibNet. While skipping RefineNet reduces
image quality, we found the results to be of sufficient qual-
ity. Moreover, as shown in Pittaluga et al. (2019), RefineNet
mostly improves the color of the rendered imagewith respect
to the CoarseNet. Since D2-Net feature used in our method
is quite robust to such changes in the view condition, we do
not expect skipping RefineNet would have a large impact
on the performance of our method. Figure 3 shows example
renderings obtained from the mesh and invSfM.

Implementation Details If not mentioned otherwise, we
extract D2-Net features (Dusmanu et al. 2019) from both
rendered images. The refinement process is repeated for
5 iterations. We use single scale features since the initial
pose estimates are accurate enough such that multi-scale

3 Using one of the original videos and extracting images at a higher
frame rate.
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Fig. 4 Differences between the original reference poses and the refined
reference poses (our method). Left Cumulative distribution of position
and rotation differences.RightDistribution of the position and rotational
differences. The position and rotation thresholds (0.5/1.0/5.0m, 2/5/10
deg) used in Sattler et al. (2018) and visuallocalization.net (VL) are
also shown for reference

processing is not required. To determine whether our refine-
ment succeeded, we only accept the refined pose when there
are more than 10 effective inliers4 found by LO-RANSAC
(Lebeda et al. 2012; Sattler 2019) from the input 2D–3D
matches, using the P3P solver fromKneip et al. (2011).More
precisely, we subdivide each image into a 50 × 50 grid and
count at most one inlier per cell. The cell size and the inlier
threshold are determined experimentally.

5.2 Refining the Original Aachen Nighttime Poses

In a first experiment, we analyze the accuracy of the reference
poses for the 98 original nighttime queries of the Aachen
Day–Night dataset.We show that the original reference poses
are inaccurate and that our refinement approach considerably
improves the pose accuracy.

Our approach used the original poses for initialization.
For 3 out of the 98 images, our method failed to find suffi-
ciently many 2D–3D matches, mostly due to an incomplete
mesh (see Sect. 5.4). For the failure cases, we simply kept
the existing reference poses.

Qualitative Evaluation Figure 3 visually compares the orig-
inal reference poses with our refined poses. As can be seen,
the existing reference poses, obtained from manual anno-
tated 2D–3D matches, can be rather inaccurate. In contrast,
our method generates reference poses such that the rendering
from the refined pose is visually consistent with the actual
image. Thus, features matching between the real and ren-
dered images are found at the same positions (up to noise),
as can be see from the (short) green lines. Figure 3 shows
selected examples where the original reference poses were
rather inaccurate. Visual comparison between the original

4 The effective inlier count takes the spatial distribution of the matches
in the image into account. It has been shown to be a better measure than
the raw inlier count (Irschara et al. 2009).

and our refined poses showed that our approach consistently
produced more accurate poses for all nighttime queries.

It is also worth noting that D2-Net features can provide
robust matches even though the rendered images (using a
model reconstructed fromdaytime imagery) are visually very
different from the actual images and contain non-trivial ren-
dering artifacts.

Quantitative Evaluation Toquantify thedifferences between
the original and our reference poses, we computed the differ-
ences in camera position and orientation [see (7)]. Figure 4
shows the results of this comparison. It can be seen that
there exists a non-trivial discrepancy between the original
and refined reference poses.

Sattler et al. (2018) measures localization accuracy by
the percentage of nighttime query poses estimated within
(0.5m, 2 deg), (1m, 5 deg), and (5m, 10 deg) of the reference
poses. These thresholds are also shown in Fig. 4. As can be
seen, the differences between the original and refined poses
fall outside of the largest error threshold for 11 images (∼
11.2% of all the nighttime queries). Interestingly, the best
results reported on visuallocalization.net register 88.8% of
the nighttime queries within 5m and 10 deg. Thus, state-
of-the-art methods might actually be more accurate than the
reference poses.

Finally, Table 1 evaluates several state-of-the-art localiza-
tion methods using the existing and refined reference poses.
As can be seen, the accuracy of the localization methods is
indeed (significantly) under-estimated by the existing refer-
ence poses of the nighttime images in the Aachen Day–Night
dataset. In contrast, our reference poses allow us to measure
localization performance more accurately. Table 1 also pro-
vides results for additional evaluation measures for our new
reference poses, which will be discussed in Sect. 5.5. Note
that the improvement reported here is particular to the night-
time images in the Aachen Day–Night dataset. The result on
a different dataset will depend on the quality of the existing
reference poses in the dataset.

Summary Our results clearly show that our new reference
poses are more accurate than the original poses. We will
integrate our new poses in the visuallocalization.net online
benchmark, allowing us to easily update all results on the
website.

5.3 Extending the Aachen Day–Night Dataset

Our approach is capable of estimating an accurate pose from
a coarse initialization. Besides verifying and refining existing
reference poses, our approach can also be used for generat-
ing reference poses for new images. In the next experiment,
we thus extend the Aachen Day–Night dataset by additional
nighttime queries. We compare our reference poses with
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Table 1 Evaluation of state-of-the-art localization methods in the original Aachen nighttime images

Original poses Refined poses
Pose error
0.5m,
2◦/1m,5◦/5m,10◦

Pose error
0.5 m, 2◦/1m,
5◦/5m,10◦

Sampling
(50%/30%/10%)

Reprojection diff.
(10/20/50/100
px)

Active Search v1.1
(Sattler et al. 2018)

27.6/38.8/56.1 48.0/57.1/64.3 2.0/4.1/11.2 28.6/39.8/52.0/62.2

D2-Net (Dusmanu et al. 2019) 45.9/68.4/88.8 86.7/96.9/100.0 7.1/13.3/35.7 46.9/68.4/89.8/98.0

DELF (Noh et al. 2017) 39.8/61.2/85.7 75.5/89.8/96.9 4.1/5.1/14.3 28.6/56.1/78.6/88.8

DenseVLAD (Torii et al. 2018)
+ D2-Net (Dusmanu et al. 2019)

39.8/55.1/74.5 75.5/81.6/84.7 7.1/8.2/24.5 45.9/65.3/77.6/82.7

Hierarchical Localization
(Sarlin et al. 2019)

42.9/62.2/76.5 77.6/87.8/88.8 7.1/9.2/24.5 41.8/65.3/78.6/85.7

NetVLAD (Arandjelović et al. 2016) +
D2-Net (Dusmanu et al. 2019)

43.9/66.3/85.7 90.8/96.9/96.9 8.2/11.2/40.8 51.0/75.5/92.9/95.9

R2D2 V2 20K (Revaud et al. 2019) 46.9/66.3/88.8 90.8/99.0/100.0 8.2/14.3/36.7 51.0/70.4/92.9/95.9

We evaluate results submitted by the authors to visuallocalization.net on both the original and our refined poses.We compare themethods based on the
Pose Error, i.e., the percentage of queries localized within fixed error thresholds of the reference poses. As can be seen, our more accurate reference
poses yield a better measure of pose accuracy. For our poses, we also report results for two additional metric: the percentage of queries localized
within sampling-based thresholds (Sampling) of the reference poses (cf. Sect. 4.1) and the percentage of queries with maximum reprojection errors
within given error thresholds in pixels (Reprojection Diff.) (cf. Sect. 4.2)

Fig. 5 Pairs of day–night images taken from similar poses. We obtain
reference poses for the daytime images via SfM. The resulting poses are
used to initialize our approach for generating poses for the nighttime

images. For the SIFT and D2-Net registration baselines, an additional
20 daytime images that overlap with these images are selected from the
base model for the daytime image in each pair

two registration baselines using SIFT and D2-Net features,
respectively.

Reference Pose Generation As shown in Fig. 5, we cap-
tured a daytime photo from a similar pose for each the 119
new nighttime images. The poses of these daytime images
in the extended base model, obtained via SfM, then provide
initial pose estimates for the nighttime queries that are sub-
sequently refined by our approach. We excluded images for
which our method resulted in less than 10 effective inliers

to avoid unreliable reference poses. This results in reference
poses for 93 out of the 119 images.

We compare our method with two baselines using SIFT
and D2-Net features, respectively. Both baselines match fea-
tures between the 93 new nighttime queries and a small set
of images in the extended base SfM model. For a nighttime
query, this set includes the corresponding daytime image ID

aswell as the 20 images in the extended basemodel that share
the most 3D points with ID . 2D–2D matches between the
nighttime image and the daytime photos in the set then yield a
set of 2D–3D correspondences based on the 3D points visible
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Fig. 6 Typical failure cases of the SIFT registration baseline. Top
nighttime images where SIFT registration failed and the correspond-
ing daytime images; Bottom Visualization of the first iteration of our
method (left: initial pose; right: refined pose). The differences between
D2-Net features and the projection of the matching 3D points are color
coded according to the direction in the image plane (cf. legend in the
top-right)

in the latter. COLMAP’s image registration pipelinewas then
used to obtain the camera pose based on these matches. Note
that forD2-Net features,we re-triangulated the extendedbase
3D model before day–night feature matching.

Robustness Both the D2-Net baseline and our method are
able to consistently estimate poses for challenging images
for which the SIFT baseline fails. Figure 6 shows such fail-
ure cases of SIFT. In each of the shown cases, there is a
strong light source in the scene, causing significant appear-
ance differences between the day and nighttime images. SIFT
is not able to deal with these strong changes. In contrast,
our method, as well as the D2-Net baseline, which relies on
high level learned features, are able to handle these cases (cf.
Fig. 6b).

Sattler et al. (2018) reported that the reference poses
obtained via SfM and SIFTwere unreliable. Interestingly, we
observe the opposite formany images in our experiments.We
attribute this to the inclusion of the corresponding daytime

Fig. 7 Distribution of the pose difference between our method and the
two registration baselines

images: as shown in Torii et al. (2018), SIFT features better
handle day–night changes under small viewpoint changes.
Note that daytime images taken from very similar poses are
not available for the original nighttime queries.

Quantitative Evaluation Excluding the failure cases, we
computed the pose differences between our method and two
baselines. The results of this comparison are shown in Fig. 7.
Interestingly, the poses from our method and the SIFT reg-
istration are very consistent. For the majority of the images,
the pose difference is below 0.2m and 0.5 deg. In contrast,
we observe much larger difference between our poses and
the D2-Net registration baseline. As there is no external ref-
erence poses that can be used to calculate the absolute pose
accuracy, we resort to visual inspection based on the render-
ings.

Visual Inspection Figure 8 analyses example poses obtained
by the D2-Net baseline. Besides overlaying the real and
rendered images, we also show D2-Net features matches
between the two. For each match, we compute the 2D offset
between the feature positions in the real and the rendered
view. Following Schops et al. (2019), we color-code the fea-
tures based on the directions of these 2D offsets. As argued
in Schops et al. (2019), these directions should be randomly
distributed for accurate pose estimates. Patterns of similar
direction in the same region of an image indicate a shift
between the two images and thus pose errors.

TheD2-Net poses in Fig. 8 are visuallymore accurate than
those in Figures 3 and 6b. Still, we observe clear patterns
in the distribution of the directions (e.g., the concentration
of green color on one side and purple on the other), which
indicates inaccuracies in the poses of theD2-Net baseline.We
further used one iteration of our method to refine the D2-Net
poses. As can be seen in Fig. 8, the refinement improves the
distribution of directions. We conclude that our approach is
able to providemore accurate poses than theD2-Net baseline.

As can be seen from Fig. 7, the pose differences between
our approach and the SIFT baseline are significantly smaller
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Fig. 8 Comparing the D2-Net baseline against our refinement. Left
overlay of real photos and images rendered with D2-Net poses. D2-Net
features in the rendered images are connected to the matching locations
in the real images (circles), and the color indicates the direction of the
feature location differences in the two images (see legend in the top-
left). Right corresponding visualization using poses obtained by one
iteration of our method (initialized with D2-Net poses). The patterns of
the feature directions in the left images indicate the inaccuracy in the
poses from D2-Net registration, which are corrected with our method
(right images)

than the differences between our approach and D2-Net.
Unlike for D2-Net poses, we did not see strong feature
direction patterns for the SIFT poses. We therefore omit the
corresponding visualizations. We observe that if the SIFT
baseline is able to estimate a pose it is usually visually simi-
lar to the pose obtained with our approach (cf. Fig. 9a). There
are images where the poses from ourmethod seem to be visu-
ally more accurate than the SIFT registration and vice versa
(shown in Fig. 9b, c, respectively). Yet, overall there are only
7 out of the 93 new nighttime queries for which we consider
the SIFT poses to be visually more accurate than the poses
provided by our method. For these images, we use the SIFT
poses as reference poses. At the same time, SIFT failed to
provide poses for 5 of the nighttime images due to a lack of
sufficient matches.

Discussion and Summary It is interesting to see that SIFT
poses are not necessarily more accurate than our poses. SIFT
features are much more accurately localized in images than
D2-Net features (Dusmanu et al. 2019). Thus, onemight have

(a) Typical visual difference between poses the SIFT base-
line and our method. Left and Middle: overlay of the rendered
and real images for SIFT respectively our poses. Right: the
intensity difference of the rendered images. The images are
converted to 8-bit gray-scale images, and the pixels with in-
tensity difference larger than 10 are shown in gray.

(b) Example where the pose from our method (right) is more
accurate than the SIFT pose (left), as can be seen from the
sign in the middle of the cutouts.

(c) Example where the SIFT pose (left) is more accurate
than our method (right), as can be seen from the windows
and the edge of the roof in the cutouts.

Fig. 9 Visual comparison of images rendered from the poses obtained
by our method and the SIFT baseline

expected that a few accurately localized SIFT matches are
better than many less accurately localized D2-Net matches.
Yet, finding more matches with D2-Net between the ren-
derings and the real images seems to compensate for the
inaccuracy of the D2-Net feature detections.

For the newly acquired nighttime images, we observe that
our approach performs similar to SIFT in terms of accuracy.
In this case, SIFT benefits from daytime images taken from
similar viewpoints. As evident from the failure cases of SIFT
on both the original and new queries, our approach is more
robust than the SIFT baseline. As a result, our approach is

123



836 International Journal of Computer Vision (2021) 129:821–844

better suited to for reference pose generation for datasets that
benchmark long-term visual localization algorithms.

Compared with the D2-Net baseline, the poses resulting
from our method are more accurate. The main difference
between the D2-Net baseline and our approach is the use
of rendered images. The results thus validate our choice to
iteratively render the scene from the current pose estimate
and match features against the rendering. Moreover, as seen
from the analysis of the D2-Net baseline, the ability of our
method to verify and refine existing poses is also valuable
when it is combined with other approaches.

5.4 Ablation Study

Next, we present ablation studies to analyze our proposed
approach. We first obtain an estimate for the stability of our
reference poses. Next, we determine the impact of using dif-
ferent features and rendering techniques, which are the two
key ingredients in our method. Finally, we show failure cases
of our method.

Pose Stability To provide a quantitative measure of the
uncertainties/stability of the reference poses obtained with
our method, we compute the sampling uncertainties as
described in Sect. 3.4 for both the original and additional
nighttime images: we randomly sample a percentage of 2D–
3D matches from the inliers used to estimate the reference
poses. This sample is then used to obtain another pose esti-
mate. The differences between these new and our poses
provide a measure for the stability of the minima found by
our approach.

We used three sampling rates that use 90%, 50%, and 10%
of the inliers, respectively. For each rate, we drew 50 random
samples and report themedian position andorientation differ-
ences. In addition, since our method uses different rendering
techniques and is an iterative process, we also computed the
following for comparison:

– Compare-InvSfM the differences between the refined
poses using both types of rendered images and using
InvSfM only;

– Compare-Mesh the differences between the refined poses
using both types of rendered images and mesh rendering
only;

– Compare-Prev-Iter the pose differences between the two
last iterations of our refinement process.

The results of our comparisons are shown in Fig. 10. For
the original images, more than 90% of the images are below
the finest error threshold (0.5m, 2 deg) of the visual local-
ization benchmark, independently of which sampling rate
and rendering is used. For the additional images, the uncer-
tainties are higher. Still, more than 80% of the images fall

Fig. 10 Different uncertainties for the original (top) and additional
(bottom) Aachen Night images. The vertical dash lines corresponds to
the error thresholds proposed in Sattler et al. (2018) and used by the
online benchmark

in that threshold as well. The fact that the uncertainties of
the additional images are overall higher than the original
images indicates that the newly added images might be more
challenging. Regarding the different rendering techniques,
images rendered using the MVS mesh seem to provide more
information for the final refined poses, as Compare-Mesh
shows less uncertainty than Compare-InvSfM.

While it is difficult to quantify the absolute uncertainties,
the uncertainties shown in Fig. 10 indicate that the reference
poses generated using ourmethod are at least stable solutions
considering the available 2D–3D matches. This can be seen
from the fact that even using as little as 10% of the available
inlier matches leads to very similar pose estimates for nearly
all images.

Different Features Instead of usingD2-Net features,we also
used SIFT and R2D2 (Revaud et al. 2019) features to obtain
matches between the rendered and real images.

Figure 11 compares the results obtained with different
types of features. As can be seen, SIFT failed to find enough
matches in most cases for both the original and additional
night images. This is not surprising considering SIFT relies
on low-level image statistics, which are strongly impacted by
imperfections in the MVS model and the invSfM rendering
process. In contrast, both D2-Net and R2D2 features were
able to find enough matches for most of the original Aachen
night images. The success rate for both features drops on the
additional Aachen night images, where the D2-Net feature
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Fig. 11 Effect of using different features in our method. Left the num-
ber of effective inliers for each image. Each block along the horizontal
axis corresponds to one image. A black cross indicates there are less
than 10 effective inliers, i.e., the pose is likely not reliable. Right the
number of effective inliers and the mean reprojection error (after non-

linear optimization) for different features. Failure cases (i.e., the black
crosses) are excluded. The normalized reprojection error is normalized
by the image diagonal length. The top row shows the result for the orig-
inal Aachen nighttime images, and the bottom for additional images

performed better. Plotting the reprojection error (after non-
linear optimization) against the number of effective inliers,
we observe a clear trend across different features: D2-Net
recovers the most matches, followed by R2D2 and SIFT;
while SIFT features were most accurately localized in the
images, D2-Net has the largest reprojection errors.

To see how the number of effective inliers and reprojection
error translates to the quality of the refined poses, we further
computed the sampling uncertainties for D2-Net and R2D2,
shown in Fig. 12. We excluded SIFT since it failed for most
of the images. It can be seen that the refined poses from D2-
Net features are more stable than the R2D2 poses for both
the original and additional images.

The results validate our choice of using D2-Net features
to match between real and rendered images as they better
handle imperfections in the renderings.

Different Rendering Techniques The experiments presented
so far used both rendering types (using MVS mesh and the
invSfM process). Next, we compare using both types against
using only one of the two using the number of effective
inliers.

As can be seen in Fig. 13, using renderings based on the
MVS mesh in general resulted in more effective inliers com-
pared to using invSfM for rendering. Accordingly, there are
more images where our method could find sufficient effec-
tive inliers in the images rendered from mesh. This is also
consistent with our results in Fig. 10, which show that the

Fig. 12 Sampling uncertainties of the D2-Net and R2D2 poses for the
original (top) and additional (bottom) Aachen night images. Median
position and orientation errors over 50 random samples are shown

poses based only on mesh rendering are more accurate than
those obtained using only invSfM. Yet, there are a few cases
wheremesh rendering failswhile invSfm rendering succeeds.
The corresponding nighttime images show parts of themodel
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Fig. 13 The number of effective inliers for D2-Net features when dif-
ferent rendering techniques are used. The visualization is the same as
Fig. 11

Fig. 14 Success rates of our method in the presence of different ini-
tial error levels on the original Aachen nighttime images using D2-Net
features. Each cell corresponds to the success rate of 50 trials of pose
refinement using perturbed poses as input. A perturbed pose was gen-
erated by adding both random rotation and position offsets of certain
magnitudes, as indicated on the x and y axes respectively, to a refined
pose. The refinement of a pose is considered successful if the pose error
after refinement is within 0.25 m and 1.0 deg

that are only sparsely covered by images and where theMVS
reconstruction is thus incomplete. The invSfMprocess seems
to be more stable for such cases.

Combining the 2D–3D matches obtained from both types
of renderings increases the number of effective inliers. Note
that the effective inlier count selects at most one inlier for
each 50pixels by 50pixels region in an image.Ahigher effec-
tive inlier count thus indicates that the matches found by the
two rendering types are somewhat complimentary asmatches
are found in different image regions. Moreover, there are a
few cases (right part of Fig. 13b) for which using both ren-
dering types is necessary to obtain sufficiently many inliers.

The results validate our choice of using both rendering
techniques as they are (partially) complimentary.

Fig. 15 Typical failure cases of ourmethod.Left: real nighttime images;
Right: MVS mesh renderings from the initial pose

Sensitivity to Initialization Our approach requires an initial
pose estimate as input to the iterative refinement. Naturally,
our approach will fail if the initial pose estimate is not accu-
rate enough. To determine the sensitivity of our approach
to the initial pose error, we randomly perturbed the refined
poses by translations and rotations of different magnitudes
and used the perturbed poses as input to our method.We then
measured the sensitivity of ourmethod to the initial pose error
by the success rates at different perturbation levels, and the
refinement is considered successful if the manually added
error can be reduced to under 0.25 m and 1.0 deg, which is
half of the smallest fixed error threshold used in our evalu-
ation (cf. Sect. 5.5). The experiment was performed on the
originalAachen nighttime images usingD2-Net features. As
can be seen in Fig. 14b, the success rate of ourmethod ismore
than 50% for initial pose errors up to 30 deg and 10 m. The
success rate is more than 90% for disturbances within 10 deg
and 5 m. Moreover, the increase of the success rates from the
1st iteration (Fig. 14a) to the 5th iteration (Fig. 14b) indicates
the necessity of performing the refinement iteratively multi-
ple times. Therefore, our method is quite robust to the errors
in initial poses and can be potentially used with systems that
provide less accurate localization information (e.g., GPS) to
get more accurate poses automatically.

Failure Cases Figure 15 shows examples of two typical fail-
ure cases of our method. The first failure mode is when the
nighttime image was taken in a part of the scene where the
MVS mesh is of low quality, e.g., parts of the surface have
not been reconstructed (cf. Fig. 15a). This could be overcome
by using a more complete/higher quality mesh of the scene,
but might require additional data capture. The second fail-
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ure mode is caused by weakly textured scenes (cf. Fig. 15b).
In the shown example, the rendered image is of reasonable
quality visually. However, due to the lack of texture, our
method failed to find enough matches between the rendered
image and the real night image. Using contour edges as an
additional feature type could help avoid this failure mode.
However, edges are also typically harder to match than local
features. Furthermore, care would need to be taken to handle
protruding regions in the MVS model.

5.5 Evaluation of State-of-the-Art Methods

Table 1 evaluates published state-of-the-art localization
methods using our new reference poses for the original night-
time images. The results were obtained by re-evaluating
poses submitted to visuallocalization.net.5 In the following,
we present results for state-of-the-art methods on our new
extended Aachen Day–Night dataset. Note that the extended
dataset uses a larger reference SfM model than the origi-
nal one and we thus cannot use results from the benchmark
website.

Given that D2-Net and R2D2 features achieve state-of-
the-art results in Table 1, we use two image retrieval-based
approaches based on these features in our evaluation. Both
approaches first re-triangulate the reference SfMmodel with
feature matches between the reference images found by D2-
Net respectively R2D2. Next, NetVLAD (Arandjelović et al.
2016) is used to retrieve the 20 most similar reference image
for each nighttime query. Feature matches between each
query and its retrieved image yield a set of 2D–3D matches
via the 3D points visible in the reference images. These
2D–3D matches are used for pose estimation against the
reference model inside COLMAP.6 For R2D2, we provide
results for two variants that use at most 20k (R2D2-20k) and
40k (R2D2-40k) features per image respectively.

Table 2 shows the results of our experiments using the
evaluation measures discussed in Sect. 4. Similarly, Table 1
also shows results for all metrics for our new reference poses.
Overall, the accuracy is lower when considering all night-
time queries compared to only focusing on the original night
images, independent of the metric used. This indicates the
newly added images might be more challenging. In the fol-
lowing, we discuss the results per evaluation metric.

Pose Error with Fixed Thresholds We consider the three
fixed error thresholds used in Sattler et al. (2018) and on

5 There results available at visuallocalization.net for methods that out-
perform the approaches used in Table 1. For our experiments, we limited
ourselves to methods that have been published in peer reviewed con-
ferences and journals. Updated results for the other methods will be
available on the benchmarkwebsite oncewe update the reference poses.
6 Based on code available at https://github.com/tsattler/
visuallocalizationbenchmark.

(a) Cumulative histograms of the position and rotation un-
certainties computed using different methods. Curves on top
indicate lower uncertainty estimates.

(b)Correlation between different position uncertainties. Left:
30% Sampling uncertainty with respect to the first order un-
certainty. Right: 30% Sampling uncertainty with respect to
the Monte Carlo uncertainty.

Fig. 16 Comparison of the different uncertainty definitions provided
in Sect. 3.4 on the original Aachen nighttime images using the refined
poses

the benchmark website, i.e., (0.5m, 2 deg), (1m, 5 deg), and
(5m, 10 deg). Based on the this metric, the performance on
the original and extended Aachen dataset seems saturated for
certain algorithms (e.g., D2-Net and R2D2). However, these
thresholds were originally chosen to take the uncertainties
in the original nighttime reference poses into account. As
shown in our previous experiments, our new reference poses
are significantly more accurate. As such, using rather loose
thresholds could lead to an overestimate in the localization
accuracy. Furthermore, as discussed inSect. 4, using the same
thresholds for all images does not take into account that the
uncertainty in the pose depends on the distance of the camera
to the scene.

Per Image Error Thresholds The secondmetric aims at com-
puting error thresholds on the camera pose per image. We
first show the results using the sampling uncertainties (6) as
error thresholds and then discuss the first order and Monte
Carlo uncertainties (4) and (5). For each reference pose, we
randomly sampled set containing 10%, 30% and 50% of the
inliers of ourmethod. For each sampling percentage,we drew
50 samples and computed the median position and orienta-
tion difference between the poses obtained from the samples
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Table 2 Localization accuracy using different metrics on the extended Aachen Day–Night dataset

Original night images All night images

Pose error
0.5m,
2◦/1m, 5◦/5m, 10◦

Sampling
(50%/30%/10%)

Reprojection diff.
(10/20/50/100
px)

Pose error
0.5m, 2◦/1m,
5◦/5m, 10◦

Sampling
(50%/30%/10%)

Reprojection diff.
(10/20/50/100
px)

D2-Net 90.8/98.0/98.0 11.2/19.4/43.9 56.1/80.6/92.9/95.9 90.6/97.4/97.9 6.3/11.0/30.9 36.1/73.8/91.1/96.9

R2D2-20k 90.8/95.9/95.9 7.1/11.2/38.8 54.1/76.5/89.8/93.9 88.5/94.8/96.3 5.2/7.9/29.8 40.8/72.8/91.6/94.8

R2D2-40k 91.8/98.0/98.0 7.1/13.3/44.9 56.1/76.5/92.9/95.9 88.5/95.3/97.9 5.8/8.9/33.0 41.9/73.3/91.6/95.8

We compare the methods based on the Pose Error, i.e., the percentage of queries localized within fixed error thresholds of the reference poses. As
can be seen, our more accurate reference poses yield a better measure of pose accuracy. For our poses, we also report results for two additional
metric: the percentage of queries localized within sampling-based thresholds (Sampling) of the reference poses (cf. Sect. 4.1) and the percentage
of queries with maximum reprojection errors within given error thresholds in pixels (Reprojection Diff.) (cf. Sect. 4.2)

and the reference poses. These median differences were then
used as the error thresholds. As can be seen from Table 1 and
Table 2, the sampling uncertainties tend to under-estimate
the localization performance of the different methods. This is
due to the fact that our reference poses are rather stable under
using a subset of the inlier matches (cf. Fig. 12). The sam-
pling uncertainties reflect the stability of the local minimum
reached in the refinement process, rather than the absolute
uncertainties. Thus, this metric should not be used to evalu-
ate localization performance.

As for the first order and Monte Carlo uncertainties, we
found that they tend to be lower than the sampling uncertain-
ties. As an example, a comparison of different uncertainties
on the original Aachen nighttime images (using the refined
pose) is shown in Fig. 16. From Fig. 16a, we can see that the
uncertainties estimated by first order and Monte Carlo meth-
ods are in general lower than the sampling uncertainties, even
for the highest sampling ratio of 50%. We also inspected the
correlation between different uncertainties and visualized an
example of the position uncertainties in Fig. 16b. It can be
seen that different uncertainties show similar trend across
images, but the sampling uncertainties tend to be higher than
the uncertainties computed from the first order and Monte
Carlomethods (notice different axis scales). Therefore, using
the first order and Monte Carlo uncertainties as error thresh-
olds will under-estimate the localization performance as well
(even worse than the sampling uncertainties) and thus should
not be used as accuracy metrics.

Maximum Reprojection Difference Our reference poses are
obtained by minimizing a reprojection error in image space,
rather than an error in camera pose space. Thus, evaluating
localization algorithms based on the quality of their reprojec-
tions seems a natural metric, especially if these algorithms
compute poses by minimizing an image space error.

For each 3D point in the inlier 2D–3D matches of the ref-
erence poses, we compute a reprojection difference between
the reference and an estimate pose. For each image, we report

the maximum difference and we compute the percentages of
images that have a maximum reprojection difference below
10, 20, 50 and 100 pixels. Since all nighttime images have a
resolution of 1600×1200 pixels, these thresholds correspond
to 0.5%, 1%, 2.5%, and 5% of the image diagonal.

Comparing the results with the pose error metric using
fixed thresholds, we can see that although the top perform-
ing algorithms achieve approximately 90% in the finest pose
error category, they only have 70–80% of all the images that
were localized within 20 pixel according to the maximum
reprojection difference. Even less images are localizedwithin
10 pixels. Since the accuracy of local features are typically
below 5 pixel [cf. Fig. 11(right)], this indicates that there is
still much room for improvement on our extended version of
the Aachen Day–Night dataset. As such, we believe that the
maximum reprojection error metric should be the metric of
choice for this dataset.

6 Conclusion

In this paper, we have considered the problem of creat-
ing reference camera poses for long-term visual localization
benchmark datasets. In this setting, classical features often
struggle to obtain matches between images taken under
strongly differing conditions. At the same time, human
annotations are both time-consuming to generate and not
necessarily highly accurate. Thus, we have presented an
approach for refining reference poses based view synthe-
sis and learned features that allow robust feature matching
between real and rendered images. In addition, we have
discussed multiple metrics for evaluating localization per-
formance.

The main contribution of this paper is an extensive set
of experiments. We have shown that the original nighttime
reference poses of the Aachen Day–Night dataset are rather
inaccurate. As a result, the localization accuracy of state-of-
the-artmethods is currently drastically under-estimate.Using
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our approach, we have created a more accurate set of ref-
erence poses. We will integrate these poses into the online
evaluation service provided at visuallocalization.net as to
provide better evaluations to the community. We also used
our approach to create an extended version of the Aachen
Day–Night dataset and showed that this dataset offers room
for improvement. We will make the dataset available on the
benchmark website. Furthermore, we will release the code
for our approach as to allow other researchers to more easily
build localization benchmarks.

One disadvantage of our approach is its rather slow run-
time, taking about 10–20s per iteration for a single image,
where most of the time is spend for rendering and especially
for the SfM inversion process. This is not an issue when cre-
ating reference poses for a benchmark, as these calculations
only need to be done once and can be done offline. At the
same time, our approach can be used as a post-processing step
for any visual localization algorithm. An interesting research
question is whether more efficient rendering techniques can
be used to improve its run-time to a degree that enables online
operation.
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Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., & Sivic, J. (2016).
NetVLAD: CNN architecture for weakly supervised place recog-
nition. In CVPR.

Armagan, A., Hirzer, M., Roth, P. M., & Lepetit, V. (2017) Learning to
align semantic segmentation and 2.5Dmaps for geolocalization. In
IEEE conference on computer visual pattern recogintion (CVPR)
(pp. 4590–4597).

Aubry, M., Russell, B. C., & Sivic, J. (2014). Painting-to-3D model
alignment via discriminative visual elements. ACM Transactions
on Graphics (TOG), 33(2), 14.

Badino, H., Huber, D., & Kanade, T. (2011). Visual topometric local-
ization. In Intelligent vehicles symposium (IV) (pp. 794–799).

Balntas, V., Frost, D., Kouskouridas, R., Barroso-Laguna, A., Talattof,
A., Heijnen, H., et al. (2019). SILDa: scape imperial localisation
dataset. https://www.visuallocalization.net/datasets/.

Balntas, V., Li, S., & Prisacariu, V. (2018, September). RelocNet: Con-
tinuous metric learning relocalisation using neural nets. In The
European conference on computer vision (ECCV).

Balntas, V., Riba, E., Ponsa, D., & Mikolajczyk, K. (2016). Learning
local feature descriptors with triplets and shallow convolutional
neural networks. In BMVC.

Bay, H., Ess, A., Tuytelaars, T., & Gool, V. (2008). Speeded-up robust
features (SURF). Comput. Vis. Image Underst., 110(3), 346–359.

Benbihi, A., Geist, M., & Pradalier, C. (2019). ELF: embedded local-
isation of features in pre-trained CNN. In IEEE international
conference on computer vision (ICCV).

Brachmann, E., &Rother, C. (2018). Learning less ismore—6Dcamera
localization via 3D surface regression. In CVPR.

Brachmann, E., & Rother, C. (2019). Expert sample consensus applied
to camera re-localization. In ICCV.

Brachmann, E., Krull, A., Nowozin, S., Shotton, J., Michel, F.,
Gumhold, S., & Rother, C. (2017). DSAC—differentiable
RANSAC for camera localization. In CVPR.

Brachmann, E.,&Rother, C. (2020). Visual camera re-localization from
RGB and RGB-D images using DSAC. arXiv:2002.12324.

Brahmbhatt, S., Gu, J., Kim, K., Hays, J., Kautz, J. (2018). Geometry-
aware learning of maps for camera localization. In CVPR.

Brown, M., Hua, G., & Winder, S. (2011). Discriminative learning of
local image descriptors. In: TPAMI.

Budvytis, I., Teichmann,M., Vojir, T., & Cipolla, R. (2019). Large scale
joint semantic re-localisation and scene understanding via globally
unique instance coordinate regression. In BMVC.

Camposeco, F., Cohen, A., Pollefeys, M., & Sattler, T. (2019). Hybrid
scene compression for visual localization. In The IEEE conference
on computer vision and pattern recognition (CVPR).

Cao, S., & Snavely, N. (2013). Graph-based discriminative learning for
location recognition. In CVPR.

Cao, S., & Snavely, N. (2014). Minimal scene descriptions from struc-
ture from motion models. In CVPR.

Carlevaris-Bianco, N., Ushani, A. K., & Eustice, R. M. (2016). Univer-
sity ofMichigan North Campus long-term vision and lidar dataset.
IJRR, 35(9), 1023–1035.

Castle, R.O.,Klein,G.,&Murray,D.W. (2008).Video-rate localization
in multiple maps for wearable augmented reality. In ISWC.

Cavallari, T., Bertinetto, L., Mukhoti, J., Torr, P., &Golodetz, S. (2019).
Let’s take this online: Adapting scene coordinate regression net-
work predictions for online RGB-D camera relocalisation. In 3DV.

Cavallari, T., Golodetz, S., Lord, N. A., Valentin, J., Di Stefano, L., &
Torr, P. H. S. (2017). On-the-fly adaptation of regression forests
for online camera relocalisation. In CVPR.

123

visuallocalization.net
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.visuallocalization.net/datasets/
http://arxiv.org/abs/2002.12324


842 International Journal of Computer Vision (2021) 129:821–844

Cavallari, T., Golodetz, S., Lord, N., Valentin, J., Prisacariu, V., Di
Stefano, L., & Torr, P. H. S. (2019). Real-time RGB-D camera
pose estimation in novel scenes using a relocalisation cascade. In
TPAMI.

Chen, Z., Jacobson, A., Sünderhauf, N., Upcroft, B., Liu, L., Shen, C.,
Reid, I. D., & Milford., M. (2017). Deep learning features at scale
for visual place recognition. In ICRA.

Chen, D.M., Baatz, G., Köser, K., Tsai, S. S., Vedantham, R., Pylvänäi-
nen, T., Roimela, K., Chen, X., Bach, J., Pollefeys, M., Girod, B.,
& Grzeszczuk, R. (2011). City-scale landmark identification on
mobile devices. In CVPR.

Cheng, W., Lin, W., Chen, K., & Zhang, X. (2019). Cascaded parallel
filtering for memory-efficient image-based localization. In IEEE
international conference on computer vision (ICCV).

Choudhary, S., & Narayanan, P. J. (2012). Visibility probability struc-
ture from SFM datasets and applications. In ECCV.

Chum, O., & Matas, J. (2008). Optimal randomized RANSAC. PAMI,
30(8), 1472–1482.

Clark, R., Wang, S., Markham, A., Trigoni, N., & Wen, H. (2017).
VidLoc: A deep spatio-temporal model for 6-DoF video-clip relo-
calization. In CVPR.

Crandall, D., Owens, A., Snavely, N., & Huttenlocher, D. P. (2011).
Discrete-continuous optimization for large-scale structure from
motion. In CVPR.

Dai, A., Nießner, M., Zollöfer, M., Izadi, S., & Theobalt, C. (2017).
Bundle fusion: Real-time globally consistent 3D reconstruction
using on-the-fly surface re-integration. In ACM transactions on
graphics 2017 (TOG).

Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007).
MonoSLAM: Real-time single camera SLAM. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(6), 1052–1067.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009).
ImageNet: A large-scale hierarchical image database. In CVPR.

DeTone, D., Malisiewicz, T., & Rabinovich, A. (2018). SuperPoint:
Self-supervised interest point detection and description. In The
IEEE conference on computer vision and pattern recognition
(CVPR) workshops.

Ding, M., Wang, Z., Sun, J., & Shi, J. & Luo, P. (2019). CamNet:
Coarse-to-fine retrieval for camera re-localization. In ICCV.

Donoser,M.,&Schmalstieg, D. (2014). Discriminative feature-to-point
matching in image-based locallization. In CVPR.

Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A.,
& Sattler, T. (2019). D2-Net: A trainable CNN for joint detection
and description of local features. In CVPR.

Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., &
Sattler, T. (2019, June). D2-net: A trainable CNN for joint descrip-
tion and detection of local features. In The IEEE conference on
computer vision and pattern recognition (CVPR).

DuToit, R. C., Hesch, J. A., Nerurkar, E. D., & Roumeliotis, S. I.
(2017). Consistent map-based 3D localization on mobile devices.
In 2017 IEEE international conference on robotics and automation
(ICRA).

Dymczyk, M., Lynen, S., Cieslewski, T., Bosse, M., Siegwart, R., &
Furgale, P. (2015). The gist of maps—Summarizing experience
for lifelong localization. In 2015 IEEE international conference
on robotics and automation (ICRA).

Ebel, P., Mishchuk, A., Yi, K. M., Fua, P., & Trulls, E. (2019). Beyond
cartesian representations for local descriptors. In The IEEE inter-
national conference on computer vision (ICCV).

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus:
A paradigm for model fitting with applications to image analysis
and automated cartography. Communications of the ACM, 24(6),
381–395.

Garg, S., Suenderhauf, N., & Milford, M. (2019). Semantic-geometric
visual place recognition: A new perspective for reconciling oppos-

ingviews.The International Journal ofRoboticsResearch,. https://
doi.org/10.1177/0278364919839761.

Germain, H., Bourmaud, G., & Lepetit, V. (2019). Sparse-to-dense
hypercolumn matching for long-term visual localization. In Inter-
national conference on 3D vision (3DV).

Haralick, R. M., Lee, C.-N., Ottenberg, K., & Nölle, M. (1994). Review
and analysis of solutions of the three point perspective pose esti-
mation problem. IJCV, 13(3), 331–356.

Hartley, R., & Zisserman, A. (2003). Multiple view geometry in com-
puter vision (2nd ed.). Cambridge: Cambridge University Press.

Heng, L., Choi, B., Cui, Z., Geppert, M., Hu, S., Kuan, B., et al. (2019).
Project AutoVision: Localization and 3D scene perception for an
autonomous vehicle with a multi-camera system. In 2019 IEEE
international conference on robotics and automation (ICRA).

Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige,
K., & Navab, N. (2012). Model based training, detection and pose
estimation of texture-less 3D objects in heavily cluttered scenes.
In K. M. Lee, Y. Matsushita, J. M. Rehg, & Z. Hu (Eds.) ACCV.

Huang, Z., Xu, Y., Shi, J., Zhou, X., Bao, H., & Zhang, G. (2019). Prior
guided dropout for robust visual localization in dynamic envi-
ronments. In IEEE international conference on computer vision
(ICCV).

Irschara, A., Zach, C., Frahm, J.-M., & Bischof, H. (2009). From
structure-from-motion point clouds to fast location recognition.
In CVPR.

Jones, E. S., & Soatto, S. (2011). Visual-inertial navigation, mapping
and localization: A scalable real-time causal approach. Interna-
tional Journal of Robotics Research, 30(4), 407–430.

Kasyanov, A., Engelmann, F., Stückler, J., & Leibe, B. (2017).
Keyframe-based visual-inertial online slam with relocalization. In
2017 IEEE/RSJ international conference on intelligent robots and
systems (IROS).

Kazhdan, M., & Hoppe, H. (2013). Screened Poisson surface recon-
struction. ACM Transactions on Graphics, 32(3), 61–70.

Kendall, Alex, & Cipolla, Roberto. (2017). Geometric loss functions
for camera pose regression with deep learning. In CVPR.

Kendall, A., Grimes,M.,&Cipolla, R. (2015). Posenet: A convolutional
network for real-time 6-DoF camera relocalization. In Interna-
tional conference on computer vision (ICCV) (pp. 2938–2946).

Kneip, L., Scaramuzza, D.,&Siegwart, R. (2011). A novel parametriza-
tion of the perspective-three-point problem for a direct com-
putation of absolute camera position and orientation. In IEEE
conference on computer vision and pattern recognition (CVPR)
(pp. 2969–2976).

Kukelova, Z., Bujnak, M., & Pajdla, T. (2010). Closed-form solutions
to minimal absolute pose problems with known vertical direction.
In ACCV.

Kukelova, Z., Bujnak,M., & Pajdla, T. (2013). Real-time solution to the
absolute pose problem with unknown radial distortion and focal
length. In ICCV.

Larsson, C. T. V., Fredriksson, J., & Kahl, F. (2016). Outlier rejection
for absolute pose estimation with known orientation. In BMVC.

Larsson, V., Kukelova, Z., & Zheng, Y. (2017). Makingminimal solvers
for absolute pose estimation compact and robust. In ICCV.

Larsson, M. Stenborg, E., Toft, C., Hammarstrand, L., Sattler, T.,
& Kahl, F. (2019). Fine-grained segmentation networks: Self-
supervised segmentation for improved long-term visual localiza-
tion. In IEEE international conference on computer vision (ICCV).

Laskar, Z., Melekhov, I., Kalia, S., & Kannala, J. (2017). Camera
relocalization by computing pairwise relative poses using convo-
lutional neural network. In ICCV workshops.

Lebeda, K., Matas, J. E. S., & Chum, O. (2012). Fixing the locally opti-
mized RANSAC. In British machine vision conference (BMVC).

Li, Y., Snavely, N., Huttenlocher, D., & Fua, P. (2012). Worldwide pose
estimation using 3D point clouds. In ECCV.

123

https://doi.org/10.1177/0278364919839761
https://doi.org/10.1177/0278364919839761


International Journal of Computer Vision (2021) 129:821–844 843

Li, Y., Snavely, N., & Huttenlocher, D. P. (2010). Location recognition
using prioritized feature matching. In ECCV.

Lim, H., Sinha, S. N., Cohen, M. F., & Uyttendaele, M. (2012). Real-
time image-based 6-DOF localization in large-scale environments.
In CVPR.

Liu, L., Li, H., & Dai, Y. (2017). Efficient global 2D–3D matching for
camera localization in a large-scale 3D map. In ICCV.

Lowe, D. G. (2004). Distinctive image features from scale-invariant
keypoints. The International Journal of Computer Vision, 60(2),
91–110.

Lynen, S., Sattler, T., Bosse, M., Hesch, J., Pollefeys, M., & Siegwart,
R. (2015). Get out of my lab: Large-scale real-time visual-inertial
localization. In Robotics: Science and systems (RSS).

Maddern, W., Pascoe, G., Linegar, C., & Newman, P. (2017). 1 year,
1000 km: TheOxfordRobotCar dataset. The International Journal
of Robotics Research, 36(1), 3–15.

Massiceti, D., Krull, A., Brachmann, E., Rother, C., & Torr, P. H. S.
(2017). Random forests versus neural networks—What’s best for
camera relocalization? In ICRA.

Melekhov, I., Ylioinas, J., Kannala, J., &Rahtu, E. (2017). Image-based
Localization using Hourglass Networks. In ICCV workshops.

Meng, L., Chen, J., Tung, F., Little, J. J., Valentin, J., & de Silva, C. W.
(2017). Backtracking regression forests for accurate camera relo-
calization. In IROS.

Meng, L., Tung, F., Little, J. J., Valentin, J., & de Silva, C. W. (2018).
Exploiting points and lines in regression forests forRGB-Dcamera
relocalization. In IROS.

Middelberg, S., Sattler, T., Untzelmann, O., &Kobbelt, L. (2014). Scal-
able 6-DOF localization on mobile devices. In ECCV.

Milford, M. J, & Wyeth, G. F. (2012). SeqSLAM: Visual route-based
navigation for sunny summer days and stormy winter nights. In
ICRA.

Mishchuk, A., Mishkin, D., Radenovic, F., &Matas, J. (2017).Working
hard to know your neighbor’s margins: Local descriptor learning
loss. In Advances in neural information processing systems.

Mur-Artal, R., & Tardós, J. D. (2017). ORB-SLAM2: An open-source
SLAM system for monocular, stereo, and RGB-D cameras. IEEE
Transactions on Robotics, 33(5), 1255–1262.

Mur-Artal, R., & Tardós, J. D. (2017). Visual-inertial monocular SLAM
withmap reuse. IEEERobotics and Automation Letters, 2(2), 796–
803.

Naseer, T., Oliveira, G. L., Brox, T., & Burgard, W. (2017). Semantics-
aware visual localization under challenging perceptual conditions.
In ICRA.

Newcombe, R. A., Izadi, S., Hilliges, O., Kim, D., Davison, A. J., &
Kohli, P., Fitzgibbon, A. (2011). KinectFusion: Real-time dense
surface mapping and tracking. In IEEE ISMAR.

Noh, H., Araujo, A., Sim, J., Weyand, T., &Han, B. (2017). Large-scale
image retrieval with attentive deep local features. In International
conference on computer vision (ICCV) (pp. 3476–3485).

Ono, Y., Trulls, E., Fua, P., & Yi, K. M. (2018). LF-Net: Learning
local features from images. In Advances in neural information
processing systems (Vol. 31).

Pittaluga, F., Koppal, S. J., Kang, S. B., & Sinha, S. N. (2019,
June). Revealing scenes by inverting structure from motion recon-
structions. In IEEE conference on computer vision and pattern
recognition (CVPR).
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