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Abstract
When designing a semantic segmentation model for a real-world application, such as autonomous driving, it is crucial to
understand the robustness of the network with respect to a wide range of image corruptions. While there are recent robustness
studies for full-image classification, we are the first to present an exhaustive study for semantic segmentation, based on
many established neural network architectures. We utilize almost 400,000 images generated from the Cityscapes dataset,
PASCAL VOC 2012, and ADE20K. Based on the benchmark study, we gain several new insights. Firstly, many networks
performwell with respect to real-world image corruptions, such as a realistic PSF blur. Secondly, some architecture properties
significantly affect robustness, such as a Dense Prediction Cell, designed tomaximize performance on clean data only. Thirdly,
the generalization capability of semantic segmentation models depends strongly on the type of image corruption. Models
generalize well for image noise and image blur, however, not with respect to digitally corrupted data or weather corruptions.

Keywords Semantic segmentation · Corruption robustness · Common image corruptions · Realistic image corruptions

1 Introduction

In recent years, deep convolutional neural networks
(DCNNs) have set the state-of-the-art on a broad range of
computer vision tasks (Krizhevsky et al. 2012; He et al.
2016; Simonyan and Zisserman 2015; Szegedy et al. 2015;
LeCun et al. 1998; Redmon et al. 2016; Chen et al. 2015;
Goodfellow et al. 2016). The performance of CNN models
is generally measured using benchmarks of publicly avail-
able datasets,which often consist of clean and post-processed
images (Cordts et al. 2016; Everingham et al. 2010). How-
ever, it has been shown that model performance is prone to
image corruptions (Zhou et al. 2017; Vasiljevic et al. 2016;
Hendrycks and Dietterich 2019; Geirhos et al. 2018; Dodge
andKaram 2016; Gilmer et al. 2019; Azulay andWeiss 2019;
Kamann and Rother 2020), especially image noise decreases
the performance significantly.
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Image quality depends on environmental factors such as
illumination and weather conditions, ambient temperature,
and camera motion since they directly affect the optical
and electrical properties of a camera. Image quality is also
affected by optical aberrations of the camera lenses, causing,
e.g., image blur. Thus, in safety-critical applications, such
as autonomous driving, models must be robust towards such
inherently present image corruptions (Hasirlioglu et al. 2016;
Kamann et al. 2017; Janai et al. 2020).

In this work, we present an extensive evaluation of the
robustness of semantic segmentationmodels towards a broad
range of real-world image corruptions. Here, the term robust-
ness refers to training a model on clean data and then
validating it on corrupted data. We choose the task of
semantic image segmentation for two reasons. Firstly, image
segmentation is often applied in safety-critical applications,
where robustness is essential. Secondly, a rigorous evaluation
for real-world image corruptions has, in recent years, only
been conducted for full-image classification andobject detec-
tion, e.g., most recently Geirhos et al. (2018), Hendrycks and
Dietterich (2019), and Michaelis et al. (2019).

Whenbenchmarking semantic segmentationmodels, there
are, in general, different choices such as: (i) comparing differ-
ent architectures, or (ii) conducting a detailed ablation study
of a state-of-the-art architecture. In contrast to Geirhos et al.
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(a) Corrupted validation image (left: noise, right: blur) (b) Prediction of best-performing architecture on clean image

(c) Prediction of best-performing architecture on corrupted im-
age

(d) Prediction of ablated architecture on the corrupted im-
age

Fig. 1 Results of our ablation study. Here we train the state-of-the-art
semantic segmentation model DeepLabv3+ on clean Cityscapes data
and test it on corrupted data. a A validation image from Cityscapes,
where the left-hand side is corrupted by shot noise and the right-hand
side by defocus blur. b Prediction of the best-performing model-variant
on the corresponding clean image. c Prediction of the same architecture
on the corrupted image (a). d Prediction of an ablated architecture on

the corrupted image (a). We clearly see that prediction (d) is superior
to (c), hence the corresponding model is more robust with respect to
this image corruption, although it performs worse on the clean image.
We present a study of various architectural choices and various image
corruptions for three datasets: Cityscapes, PASCAL VOC 2012, and
ADE20K

(2018) and Hendrycks and Dietterich (2019), which focused
on aspect (i), we perform both options. We believe that an
ablation study (option ii) is important since knowledge about
architectural choices are likely helpful when designing a
practical system,where types of image corruptions are known
beforehand. For example, Geirhos et al. (2018) showed that
ResNet-152 (He et al. 2016) is more robust to image noise
than GoogLeNet (Szegedy et al. 2015). Is the latter archi-
tecture more prone to noise due to missing skip-connections,
shallower architecture, or other architectural design choices?
When the overarching goal is to develop robust convolutional
neural networks, we believe that it is important to learn about
the robustness capabilities of architectural properties.

We use the state-of-the-art DeepLabv3+ architecture
(Chen et al. 2018b) with multiple network backbones as
reference and consider many ablations of it. Based on our
evaluation, we are able to conclude three main findings:
(1) Many networks perform well with respect to real-world
image corruptions, such as a realistic PSF blur. (2) Archi-
tectural properties can affect the robustness of a model
significantly. Our results show that atrous (i.e., dilated) con-
volutions and long-range link naturally aid the robustness
against many types of image corruptions. However, an archi-

tecture with a Dense Prediction Cell (Chen et al. 2018a),
which was designed to maximize performance on clean
data, hampers the performance for corrupted images sig-
nificantly (see Fig. 1). (3) The generalization capability of
DeepLabv3+ model, using a ResNet-backbone, depends
strongly on the type of image corruption.

In summary, we give the following contributions:

– Webenchmark the robustness ofmany architectural prop-
erties of the state-of-the-art semantic segmentationmodel
DeepLabv3+ for a wide range of real-world image cor-
ruptions. We utilize almost 4,00,000 images generated
from the Cityscapes dataset, PASCAL VOC 2012, and
ADE20K.

– Besides DeepLabv3+, we have also benchmarked a
wealth of other semantic segmentation models.

– We develop a more realistic noise model than previous
approaches.

– Based on the benchmark study, we have several new
insights: (1) Models are robust to real-world corrup-
tions, such as a realistic PSF blur. (2) Some architecture
properties affect robustness significantly. (3) Semantic
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segmentation models generalize well to severe image
noise and blur but struggle for other corruption types.

– We propose robust model design rules for semantic seg-
mentation.

This article is an extended version of our recent publication
(Kamann and Rother 2020). The additional content of this
submission is:

– We provide a model generalization study, where we train
models on corrupted data (Sect. 6, Figs. 18–20).

– We provide extensive evaluation for the degradations
across severity levels formany image corruptions on each
dataset for each ablated variant (Fig. 17)

– We provide more extensive robust model design rules
(Sect. 5.7).

– We discuss possible causes of the effects of architectural
properties in more detail (Sect. 5.3)

– We provide a detailed evaluation for CD/rCD of non-
Deeplab based models, and for the ablation study on
ADE20K and PASCAL VOC 2012 (Fig. 11, 15, 16 of
Sects. 5.2, 5.4, 5.5).

– We provide much more details of utilized image corrup-
tions in both text and visually (Figs. 2, 3, 5, 6).

– We provide qualitative results for the influence of image
properties (Figs. 8, 9, 13, 14).

2 RelatedWork

Several recent work deals with the robustness towards real-
world, common image corruptions. We discuss it in the
following and separate the discussion into benchmarking and
increasing robustness with respect to common corruptions,
respectively.

Benchmarking model robustness w.r.t common image cor-
ruptions Michaelis et al. (2019) focus on the task of object
detection. The authors benchmarked network robustness and
found a significant performance drop when the input data is
corrupted.

Dodge and Karam (2016) demonstrate the vulnerability
of CNNs against image blur, noise, and contrast variations
for image classification, and they demonstrate in Dodge and
Karam (2017) further that humans perform better than classi-
fication CNNs for corrupted input data (similar to Zhou et al.
2017). Azulay and Weiss (2019) and Engstrom et al. (2019)
demonstrate that variations in pixel space may change the
CNN prediction significantly.

Vasiljevic et al. (2016) examined the impact of blur on
full-image classification and semantic segmentation using
VGG-16 (Simonyan and Zisserman 2015). Model perfor-
mance decreases with an increased degree of blur for both
tasks. We also focus in this work on semantic segmentation

but evaluate on a much wider range of real-world image cor-
ruptions.

Geirhos et al. (2018) compared the generalization capa-
bilities of humans and Deep Neural Networks (DNNs). The
ImageNet dataset (Deng et al. 2009) is modified in terms of
color variations, noise, blur, and rotation. Models that were
trained directly on image noise did not perform well w.r.t
other types of more severe noise.

Hendrycks andDietterich (2019) introduce the “ImageNet-
C dataset”. The authors corrupted the ImageNet dataset by
common image corruptions. Although the absolute perfor-
mance scores increase fromAlexNet (Krizhevsky et al. 2012)
to ResNet (He et al. 2016), the relative robustness of the
respectivemodels does barely change. They further show that
Multigrid and DenseNet architectures (Ke et al. 2017; Huang
et al. 2017) are less prone to noise corruption than ResNet
architectures. In this work, we use most of the proposed
image transformations and apply them to the Cityscapes
dataset, PASCAL VOC 2012, and ADE20K (Cordts et al.
2016; Everingham et al. 2010; Zhou et al. 2017, 2016).
Recent work deals further with model robustness against
night images (Dai and Van Gool 2018), weather conditions
(Sakaridis et al. 2019, 2018; Volk et al. 2019), and spatial
transformations (Fawzi and Frossard 2015; Ruderman et al.
2018).

Zendel et al. (2017) create a CV model for enabling to
apply the hazard and operability analysis (HAZOP) to the
computer vision domain and further provides an extensive
checklist for image corruptions and visual hazards. This
study demonstrates that most forms of image corruptions
do also negatively influence stereo vision algorithms. Zen-
del et al. (2018) propose a fruitful segmentation test-dataset
(“WildDash”) containing challenging visual hazards such as
overexposure, lens distortion, or occlusions.

Robustness ofmodelswith respect to adversarial examples
is an active field of research (Huang et al. 2017; Boopathy
et al. 2019; Cisse et al. 2017; Gu and Rigazio 2014; Carlini
and Wagner 2017b; Metzen et al. 2017; Carlini and Wag-
ner 2017a). Arnab et al. (2018) evaluate the robustness of
semantic segmentation models for adversarial attacks of a
wide variety of network architectures (e.g. Zhao et al. 2017;
Badrinarayanan et al. 2017; Paszke et al. 2016; Zhao et al.
2018; Yu and Koltun 2016). In this work, we adopt a similar
evaluation procedure, but we do not focus on the robustness
with respect to adversarial attacks, which are typically not
realistic, but rather on physically realistic image corruptions.
We further rate robustness with respect to many architectural
properties instead of solely comparing CNN architectures.
Our approach modifies a single property per model at a time,
which allows for an accurate evaluation.

Gilmer et al. (2019) connect adversarial robustness and
robustness with respect to image corruption of Gaussian
noise. The authors showed that training procedures that
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increase adversarial robustness also improve robustness with
respect tomany image corruptions. A parallel work of Rusak
et al. (2020) shows, however, that adversarial training reduces
corruption robustness.

Increasing model robustness w.r.t common image cor-
ruptions The majority of methods have been proposed for
full-image classification. Geirhos et al. (2019) showed that
humans and DNNs classify images with different strategies.
Unlike humans, DNNs trained on ImageNet seem to rely
more on local texture instead of global object shape. The
authors then show that model robustness with respect to
image corruptions increases when CNNs rely more on object
shape than on object texture.

Hendrycks and Dietterich (2019) demonstrate that adver-
sarial logit pairing (Kannan et al. 2018) enhances model
robustness against adversarial perturbations and common
perturbations. Xie et al. (2019) and Mahajan et al. (2018)
increase model robustness through increasing the amount of
training data. find a similar result for object detection when
more complex network backbones are applied. In this work,
we find a similar result for the task of semantic segmenta-
tion. Zhang (2019) increased the robustness against shifted
input. Zheng et al. (2016) and Laermann et al. (2019) applied
stability training to increase CNN robustness.

Data augmentation, such as inserting occlusions, cropping
and combining images, is a popular technique to increase
model robustness (Zhong et al. 2017; DeVries and Taylor
2017; Yun et al. 2019; Zhang et al. 2018; Takahashi et al.
2020). The authors ofGilmer et al. (2019), Lopes et al. (2019)
and Rusak et al. (2020) augment the data with noise to reduce
model vulnerability against common image corruptions. The
work of Hendrycks e al. (2020) and Cubuk e al. (2019), on
the other hand, distort the images with (learned) corruptions.

3 Image CorruptionModels

We evaluate the robustness of semantic segmentation models
towards a broad range of image corruptions. Besides using
image corruptions from the ImageNet-C dataset, we propose
new and more realistic image corruptions that can be treated
as proxy covering the huge diversity of naturally occurring
real-world image corruptions.

3.1 ImageNet-C

We employ many image corruptions from the ImageNet-C
dataset (Hendrycks and Dietterich 2019). These consist of
several types of Blur: motion, defocus, frosted glass and
Gaussian; ImageNoise:Gaussian, impulse, shot and speckle;
Weather: snow, spatter, fog, and frost; and Digital: bright-
ness, contrast, and JPEG compression (illustrated in Fig. 2).

Fig. 2 Illustration of utilized image corruptions of ImageNet-C. First
row (severity level 5 each): Motion blur, defocus blur, frosted glass
blur. Second row (severity level 4 each): Gaussian blur, Gaussian noise,
impulse noise. Third row (severity level 4, 4, 5 respectively): Shot noise,
speckle noise, brightness. Fourth row (severity level 4, 2, 4 respectively):
Contrast, saturate, JPEG. Fifth row (severity level 3, 3, 5 respectively):
Snow, spatter, fog. Sixth row (severity level 5): frost

Fig. 3 Illustration of the first three severity levels of Cityscapes-C for
a candidate of the categories blur, noise, digital, and weather. First row:
Motion blur. Second row: Gaussian noise. Third row: Contrast. Fourth
row: Snow

Each corruption is parameterized with five severity levels
as illustrated for several candidates in Fig. 3.

3.2 Additional Image Corruptions

Intensity-DependentNoiseModelDCNNsare prone to image
noise. Previous noisemodels are often simplistic, e.g., images
are evenly distorted with Gaussian noise. However, real
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(a) Clean (b) Gaussian (c) Shot (d) Proposed

Fig. 4 A crop of a validation image from Cityscapes corrupted by
various noise models. a Clean image. b Gaussian noise (severity level
1). c Shot noise (severity level 1). dOur proposed noise model (severity
level 3). The amount of noise is high in regions with low pixel intensity

image noise significantly differs from the noise generated
by these simple models. Real image noise is a combination
of multiple types of noise [e.g., photon noise, kTC noise,
dark current noise as described in Healey and Kondepudy
(1994), Young et al. (1998), Lukas et al. (2006) and Liu et al.
(2008)].

We propose a noise model that incorporates commonly
observable behavior of cameras. Our noise model consists
of two noise components: (i) a chrominance and luminance
noise component, which are both added to original pixel
intensities in linear color space. (ii) an intensity-level depen-
dent behavior. Here, the term chrominance noisemeans that a
randomnoise component for an image pixel is drawn for each
color channel independently, resulting thus in color noise.
Luminance noise, on the other hand, refers to a random noise
value that is added to each channel of a pixel equally, result-
ing hence in gray-scale noise. In accordancewith image noise
observed from real-world cameras, pixels with low intensi-
ties are noisier than pixels with high intensities. Shot noise is
the dominant noise for dark scenes since the Poisson distri-
bution’s mean is not constant but equal to the root of counted
photons (Jahne 1997). Since the noise is added in linear color
space, that relative amount of noise decreases with increas-
ing intensity in sRGB color gamut. Wemodel the noisy pixel
intensity for a color channel c as a random variable Inoise,c:

Inoise,c(�c, Nluminance, Nchrominance,c;ws)

= log2(2
�c + ws · (Nluminance + Nchrominance,c))

(1)

where�c is the normalized pixel intensity of color channel c,
Nluminance and Nchrominance are random variables following a
Normal distribution withmeanμ = 0 and standard deviation
σ = 1, ws is a weight factor, parameterized by severity level
s.

Figure 4 illustrates noisy variants of a Cityscapes image-
crop. In contrast to the other, simpler noise models, the
amount of noise generated by our noise model depends
clearly on pixel intensity.

PSF blur Every optical system of a camera exhibits
aberrations, which mostly result in image blur. A point-
spread-function (PSF) aggregates all optical aberrations that
result in image blur (Joshi et al. 2008).We denote this type of

Angle of
Incidence

Severity
Level 1

Severity
Level 2

Severity
Level 3

0◦

15◦

30◦

45◦

Fig. 5 The intensity distribution of used PSF kernels. The degree of
the spatial distribution of intensity increases with the severity level.
The shape of the PSF kernel depends on the image region, i.e., the
angle of incidence

corruption as PSF blur. Unlike simple blur models, such as
Gaussian blur, real-world PSF functions are spatially vary-
ing. We corrupt the Cityscapes dataset with three different
PSF functions that we have generated with the optical design
program Zemax, for which the amount of blur increases with
a larger distance to the image center. Our PSF models corre-
spond to a customary front video automotive video camera
with a horizontal field-of-view of 90 degrees. We illustrate
the intensity distribution of several PSF kernels for different
angles of incidence in Fig. 5.

Geometric distortion Every camera lens exhibits geomet-
ric distortions (Fitzgibbon 2001). Distortion parameters of an
optical system vary over time, are affected by environmen-
tal influences, differ from calibration stages, and thus, may
never be fully compensated. Additionally, image warping
may introduce re-sampling artifacts, degrading the informa-
tional content of an image. It can hence be preferable to utilize
the original (i.e., geometrically distorted) image (Hartley
and Zisserman 2003, p. 192f). We applied several radially-
symmetric barrel distortions (Willson 1994) as a polynomial
of grade 4 (Shah andAggarwal 1996) to both the RGB-image
and respective ground truth.

Figure 6 shows examples of our proposed common image
corruptions.

4 Models

WeemployDeepLabv3+ (Chen et al. 2018b) as the reference
architecture. We chose DeepLabv3+ for several reasons. It
supports numerous network backbones, ranging from novel
state-of-art models [e.g., modified aligned Xception (Chollet
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Fig. 6 Illustration of our proposed image corruptions. From left to
right: Proposed noise model (severity level 4), PSF blur (severity level
3), and geometric distortion (severity level 1). Best viewed in color
(Color figure online)

2017; Chen et al. 2018b], denoted by Xception) and estab-
lished ones [e.g., ResNets (He et al. 2016)]. DeepLabv3+
exhibits architectural properties, which are established in
the task of semantic segmentation. For semantic segmenta-
tion, DeepLabv3+ utilizes popular architectural properties,
making it a highly suitable candidate for an ablation study.
Please note that the range of network backbones, offered by
DeepLabv3+, represents different execution times since dif-
ferent applications have different demands.

Besides DeepLabv3+, we have also benchmarked a
wealth of other semantic segmentation models, such as
FCN8s (Long et al. 2015), VGG-16 (Simonyan and Zisser-
man 2015), ICNet (Zhao et al. 2018), DilatedNet (Yu and
Koltun 2016), ResNet-38 (Wu et al. 2019), PSPNet (Zhao
et al. 2017), and the recent Gated-ShapeCNN (GSCNN)
(Takikawa et al. 2019). In the following, we summarize prop-
erties of DeepLabv3+.

4.1 DeepLabv3+
Figure 7 illustrates important elements of the DeepLabv3+
architecture. A network backbone (ResNet, Xception or
MobileNet-V2) processes an input image (He et al. 2016;
Sandler et al. 2018; Howard et al. 2017). Its output is sub-
sequently processed by a multi-scale processing module,
extracting dense feature maps. This module is either Dense
Prediction Cell (Chen et al. 2018a) (DPC) or Atrous Spatial
PyramidPooling (ASPP,with orwithout global average pool-
ing (GAP)). We consider the variant with ASPP and without
GAP as reference architecture. A long-range link concate-
nates early features from the network backbone with features
extracted by the respective multi-scale processing module.
Finally, the decoder outputs estimates of the semantic labels.

Atrous convolution Atrous (i.e., dilated) convolution
(Chen et al. 2017; Holschneider et al. 1989; Papandreou et al.
2005) is a type of convolution that integrates spacing between
kernel parameters and thus increases the kernel field of view.
DeepLabv3+ incorporates atrous convolutions in the net-
work backbone.

Atrous spatial pyramid pooling To extract features at dif-
ferent scales, several semantic segmentation architectures
(Chen et al. 2017, 2015; Zhao et al. 2017) perform Spa-
tial Pyramid Pooling (He et al. 2015; Grauman and Darrell
2005; Lazebnik et al. 2006). DeepLabv3+ applies Atrous

DCNN Backbone

Atrous Spatial 
Pyramid 

Pooling (ASPP)

Dense 
Prediction 
Cell (DPC)

Decoder

Long-R
ange Link

Image

Prediction

513 x 513 x 3

1024 x 2048

ASPP +
Global Average 
Pooling (GAP)

33 x 33 x 256

33 x 33 x 2048 33 x 33 x 204833 x 33 x 2048

Fig. 7 Building blocks of DeepLabv3+. Input images are firstly pro-
cessed by a network backbone, containing atrous convolutions. The
backbone output is further processed by a multi-scale processing mod-
ule (ASPP or DPC). A long-range link concatenates early features of
the network backbone with encoder output. Finally, the decoder outputs
estimates of semantic labels. Our reference model is shown by regular
arrows (i.e., without DPC and GAP). The dimension of activation vol-
umes is shown after each block

spatial pyramid pooling (ASPP), where three atrous convo-
lutions with large atrous rates (6, 12 and 18) process the
DCNN output.

Dense prediction cell Chen et al. (2018a) is an effi-
cient multi-scale architecture for dense image prediction,
constituting an alternative to ASPP. It is the result of a
neural-architecture-search with the objective to maximize
the performance for clean images. In this work, we analyze
whether this objective leads to overfitting.

Long-range link A long-range link concatenates early fea-
tures of the encoder with features extracted by the respective
multi-scale processing module (Hariharan et al. 2015). In
more detail, for Xception (MobileNet-V2) based models, the
long-range link connects the output of the second or the third
Xception block (inverted residual block) with ASPP or DPC
output. Regarding ResNet architectures, the long-range link
connects the output of the second residual block with the
ASPP or DPC output.

Global average pooling A global average pooling (GAP)
layer (Lin et al. 2014) averages the feature maps of an activa-
tion volume. DeepLabv3+ incorporates GAP in parallel to
the ASPP.

4.2 Architectural Ablations

In the next section, we evaluate various ablations of the
DeepLabv3+ reference architecture. In detail, we remove
atrous convolutions (AC) from the network backbone by
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transforming them into regular convolutions. We denote this
ablation in the remaining sections as w\ o AC. We fur-
ther removed the long-range link (LRL, i.e., w\ o LRL)
and Atrous Spatial Pyramid Pooling (ASPP) module (w\
o ASPP). The removal of ASPP is additionally replaced by
Dense PredictionCell (DPC) and denoted asw\ oASPP+w\
DPC. We also examined the effect of global average pooling
(w\ GAP).

5 Experiments

We present the experimental setup and report results of
benchmarking numerous network backbones, the effect
of architectural properties on robustness towards common
image corruptions and the generalization behavior of seman-
tic segmentation models.

We firstly benchmark multiple neural network backbone
architectures of DeepLabv3+ and many other semantic seg-
mentation models (Sect. 5.2). While this procedure gives an
overview of the robustness across several architectures, no
conclusions about which architectural properties affect the
robustness can be drawn. Hence, we modify multiple archi-
tectural properties ofDeepLabv3+ (as described in Sect. 4.2)
and evaluate the robustness for the re-trained ablated models
with respect to image corruptions (Sects. 5.3–5.5). Our find-
ings show that architectural properties can have a substantial
impact on the robustness of a semantic segmentation model
with respect to image corruptions. We derive robust model
design rules in Sect. 5.7.

Finally, instead of training a model on clean data only, we
add corrupted data to the training set. We demonstrate the
generalization capability for severe image noise and show
that DeepLabv3+ generalizes considerably well to various
types of image noise (Sect. 6).

5.1 Experimental Setup

Network backbones We trained DeepLabv3+ with sev-
eral network backbones on clean and corrupted data using
TensorFlow (Abadi et al. 2016). We utilized MobileNet-
V2, ResNet-50, ResNet-101, Xception-41, Xception-65 and
Xception-71 as network backbones. Every model has been
trained with batch size 16, crop-size 513× 513, fine-tuning
batch normalization parameters (Ioffe and Szegedy 2015),
initial learning rate 0.01 or 0.007, and random scale data
augmentation.

Datasets We use PASCAL VOC 2012, the Cityscapes
dataset, and ADE20K for training and validation. The train-
ing set of PASCAL VOC consists of 1,464 train and 1,449
validation images. We use the high-quality pixel-level anno-
tations of Cityscapes, comprising of 2975 train and 500

validation images.We evaluated allmodels on original image
dimensions.

ADE20Kconsists of 20,210 train, 2,000validation images,
and 150 semantic classes.

Evaluation metrics We apply mean Intersection-over-
Union as performance metric (mIoU) for every model and
average over severity levels. In addition, we use, and slightly
modify, the concept of Corruption Error and relative Corrup-
tion Error from Hendrycks and Dietterich (2019) as follows.

We use the termDegradation D, where D = 1−mIoU in
place ofError. Degradations across severity levels, which are
defined by the ImageNet-C corruptions (Hendrycks andDiet-
terich 2019), are often aggregated. Tomake models mutually
comparable, we divide the degradation D of a trained model
f through the degradation of a reference model ref . With
this, the Corruption Degradation (CD) of a trained model is
defined as

CDf
c =

(
5∑

s=1

D f
s,c

) / (
5∑

s=1

Dref
s,c

)
(2)

where c denotes the corruption type (e.g., Gaussian blur) and
s its severity level. Please note that for category noise, only
the first three severity levels are taken into account.

For comparing the robustness of model architectures, we
also consider the degradation ofmodels relative to clean data,
measured by the relative Corruption Degradation (rCD).

rCDf
c =

(
5∑

s=1

D f
s,c − D f

clean

)/ (
5∑

s=1

Dref
s,c − Dref

clean

)
(3)

We predominantly use the Corruption Degradation (CD) to
rate model robustness with respect to image corruptions,
since the CD rates model robustness in terms of absolute per-
formance. The relative CorruptionDegradation (rCD), on the
other hand, incorporates the respective model performance
on clean data. The degradation on clean data is for both mod-
els (i.e., themodel for which the robustness is to be rated, and
the referencemodel) subtracted, resulting hence in ameasure
that gives a ratio of the absolute performance decrease in the
presence of image corruption.

5.2 Benchmarking Network Backbones

We trained various network backbones (MobileNet-V2,
ResNets, Xceptions) on the original, clean training-sets of
PASCAL VOC 2012, the Cityscapes dataset, and ADE20K.
Table 1 shows the average mIoU for the Cityscapes dataset,
and each corruption type averaged over all severity levels.
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Table 1 Average mIoU for clean and corrupted variants of the Cityscapes validation set for several network backbones of the DeepLabv3+
architecture (top) and non-DeepLab based models (bottom)

Architecture Clean Blur Noise

Motion Defocus Frosted glass Gaussian PSF Gaussian Impulse Shot Speckle Intensity

MobileNet-V2 72.0 53.5 49.0 45.3 49.1 70.5 6.4 7.0 6.6 16.6 26.9

ResNet-50 76.6 58.5 56.6 47.2 57.7 74.8 6.5 7.2 10.0 31.1 30.9

ResNet-101 77.1 59.1 56.3 47.7 57.3 75.2 13.2 13.9 16.3 36.9 39.9

Xception-41 77.8 61.6 54.9 51.0 54.7 76.1 17.0 17.3 21.6 43.7 48.6

Xception-65 78.4 63.9 59.1 52.8 59.2 76.8 15.0 10.6 19.8 42.4 46.5

Xception-71 78.6 64.1 60.9 52.0 60.4 76.4 14.9 10.8 19.4 41.2 50.2

ICNet 65.9 45.8 44.6 47.4 44.7 65.2 8.4 8.4 10.6 27.9 29.7

FCN8s-VGG16 66.7 42.7 31.1 37.0 34.1 61.4 6.7 5.7 7.8 24.9 18.8

DilatedNet 68.6 44.4 36.3 32.5 38.4 61.1 15.6 14.0 18.4 32.7 35.4

ResNet-38 77.5 54.6 45.1 43.3 47.2 74.9 13.7 16.0 18.2 38.3 35.9

PSPNet 78.8 59.8 53.2 44.4 53.9 76.9 11.0 15.4 15.4 34.2 32.4

GSCNN 80.9 58.9 58.4 41.9 60.1 80.3 5.5 2.6 6.8 24.7 29.7

Architecture Digital Weather

Brightness Contrast Saturate JPEG Snow Spatter Fog Frost Geometric Distortion

MobileNet-V2 51.7 46.7 32.4 27.2 13.7 38.9 47.4 17.3 65.5

ResNet-50 58.2 54.7 41.3 27.4 12.0 42.0 55.9 22.8 69.5

ResNet-101 59.2 54.5 41.5 37.4 11.9 47.8 55.1 22.7 69.7

Xception-41 63.6 56.9 51.7 38.5 18.2 46.6 57.6 20.6 73.0

Xception-65 65.9 59.1 46.1 31.4 19.3 50.7 63.6 23.8 72.7

Xception-71 68.0 58.7 47.1 40.2 18.8 50.4 64.1 20.2 71.0

ICNet 41.0 33.1 27.5 34.0 6.3 30.5 27.3 11.0 56.5

FCN8s-VGG16 53.3 39.0 36.0 21.2 11.3 31.6 37.6 19.7 62.5

DilatedNet 52.7 32.6 38.1 29.1 12.5 32.3 34.7 19.2 63.3

ResNet-38 60.0 50.6 46.9 14.7 13.5 45.9 52.9 22.2 73.2

PSPNet 60.4 51.8 30.6 21.4 8.4 42.7 34.4 16.2 73.6

GSCNN 75.9 61.9 70.7 12.0 12.4 47.3 67.9 32.6 76.4

Every mIoU is averaged over all available severity levels, except for corruptions of category noise where only the first three (of five) severity levels
are considered. Xception based network backbones are usually most robust against each corruption. Most models are robust against our realistic
PSF blur. Highest mIoU per corruption is bold

As expected, for DeepLabv3+, Xception-71 exhibits the
best performance for clean data with an mIoU of 78.6%.1

The bottom part of Table 1 shows the benchmark results of
non-DeepLab based models.

Network backbone performance Most Xception based
models perform significantly better than ResNets and
MobileNet-V2. GSCNN is the best performing architecture
on clean data of this benchmark.

Performance w.r.t blur Interestingly, all models (except
DilatedNet and VGG16) handle PSF blur well, as the respec-
tive mIoU decreases only by roughly 2%. Thus, even a
lightweight network backbone such as MobileNet-V2 is

1 Note that we were not able to reproduce the results from Chen et al.
(2018b). We conjecture that this is due to hardware limitations, as we
could not set the suggested crop-size of 769× 769 for Cityscapes.

hardly vulnerable against this realistic type of blur. The
number of both false positive and false negative pixel-level
classifications increases, especially for far-distant objects.
With respect to Cityscapes this means that persons are sim-
ply overlooked or confusedwith similar classes, such as rider
(see Fig. 8).

Performance w.r.t noise Noise has a substantial impact on
model performance (see Fig. 9). Hence we only averaged
over the first three severity levels. Xception-based network
backbones of DeepLabv3+ often perform similar or bet-
ter than non-DeepLabv3+ models. MobileNet-V2, ICNet,
VGG-16, and GSCNN handle the severe impact of image
noise significantly worse than the other models.

Performance w.r.t digital The first severity levels of cor-
ruption types contrast, brightness, and saturation are handled
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(a) Blurred validation image (b) ground truth (gt) (c) Overlay clean estimate + gt (d) Overlay blur estimate + gt

Fig. 8 Prediction of the reference architecture (i.e., original
DeepLabv3+) on blurred input, using Xception-71 as network back-
bone. a A blurred validation image (Gaussian blur, severity level 3) of
the Cityscapes dataset and corresponding ground truth (b). c Prediction
on the clean image overlaid with the ground truth. True-positives are

alpha-blended, false-positives and false-negatives remain unchanged.
Hence, wrongly classified pixels can be easier spotted. d Prediction on
the blurred image overlaid with the ground truth (b). Whereas the riders
are mostly correctly classified in (c), they are in (d) miss-classified as
person. Extensive areas of road are miss-classified as sidewalk

(a) Corrupted validation image (b) Prediction on (a) (c) Corrupted validation image (d) Prediction on (c)

Fig. 9 Drastic influence of image noise on model performance. a A
validation image of Cityscapes is corrupted by the second severity level
of Gaussian noise and respective prediction (b). c A validation image

of Cityscapes is corrupted by the third severity level of Gaussian Noise
and respective prediction (d). Predictions are produced by the reference
model, using Xception-71 as the backbone

well.However, JPEGcompression decreases performance by
a large margin. Notably, PSPNet and GSCNN have for this
corruption halved or less mIoU than Xception-41 and -71,
though their mIoU on clean data is similar.

Performance w.r.t weather Texture-corrupting distortions
as snow and frost degrade mIoU of each model significantly.

Performance w.r.t geometric distortion All models per-
form similarly with respect to geometric distortion. The
GSCNN is the most robust model against this image cor-
ruption. Whereas most models withstand the first severity
level (illustrated in Fig. 6) well, the mIoU of GSCNN drops
only by less than 1%.

This benchmark indicates, in general, a similar result as in
Geirhos et al. (2019), that is image distortions corrupting the
texture of an image (e.g., image noise, snow, frost, JPEG),
often have a distinctly negative effect on model performance
compared to image corruptions preserving texture to a certain
point (e.g., blur, brightness, contrast, geometric distortion).

To evaluate the robustness w.r.t image corruptions of pro-
posed network backbones, it is also interesting to consider
CorruptionDegradation (CD) and relativeCorruptionDegra-
dation (rCD). Figure 10 illustrates the mean CD and rCD
with respect to the mIoU for clean images (lower values cor-
respond to higher robustness than the referencemodel). Each

dot depicts the performance of one network backbone, aver-
aged over all corruptions except for PSF blur.2

Discussion of CD Subplot a−c illustrates respective
results for PASCAL VOC 2012, Cityscapes, and ADE20K,
and subplot d illustrates the results for the non-DeepLab-
based networks evaluated on Cityscapes. On each of the
three datasets, the CD for Xception-71 is the lowest for
DeepLabv3+ architecture, which decreases, in general, with
increasing mIoU on clean data.

A similar trend can be observed for the non-DeepLab
models, except for PSPNet and FCN8s (VGG16). TheGated-
Shape-CNN (GSCNN) is among them clearly the overall
most robust architecture. The CD scores for models eval-
uated on Cityscapes (subplot b and d) are in a similar range,
even though the utilized reference models are different archi-
tectures (but the respective mIoU on clean data is similar).

Discussion of rCD The rCD, on the other hand, behaves
contrary between subplot a–c (where it usually decreases
such as CD, except for ResNets on ADE20K and Xception-
65 on PASCAL VOC 2012) and subplot d. The authors
of Hendrycks and Dietterich (2019) report the same result
for the task of full-image classification: The rCD for estab-
lished networks stays relatively constant, even though model
performance on clean data differs significantly, as Fig. 10d
indicate. When we, however, evaluate within a semantic seg-

2 Due to the considerably smaller impact of PSF blur on model per-
formance, small changes in mIoU of only tenths percentage can have a
significant impact on the corresponding rCD.
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Fig. 10 a–c CD and rCD for several network backbones of the
DeepLabv3+ architecture evaluated on PASCAL VOC 2012, the
Cityscapes dataset, andADE20K.MobileNet-V2 is the referencemodel
in each case. rCD and CD values below 100% represent higher robust-
ness than the reference model. In almost every case, model robustness

increases withmodel performance (i.e., mIoU on clean data). Xception-
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Fig. 11 CD (left) and rCD (right) evaluated on Cityscapes for ICNet
(set as reference architecture), FCN8s-VGG16, DilatedNet, ResNet-38,
PSPNet, GSCNN w.r.t. image corruptions of category blur, noise, dig-
ital, weather, and geometric distortion. Each bar except for geometric
distortion is averaged within a corruption category (error bars indicate
the standard deviation). The CD of image corruption “jpeg compres-

sion” of category digital is not included in this barplot, since, contrary
to the remaining image corruptions of that category, the respective CDs
range between 107 and 133%. Bars above 100% represent a decrease
in performance compared to the reference architecture. Best viewed in
color (Color figure online)

mentation architecture, as DeepLabv3+, the contrary result
(i.e., decreasing rCD) is generally observed, similar to Orhan
(2019) and Michaelis et al. (2019) for other computer vision
tasks.

The following speculation may give further insights.
Geirhos et al. (2019) stated that (i) DCNNs for full-image
classification examine local textures, rather than global
shapes of an object, to solve the task at hand, and (ii)
model performance w.r.t image corruption increases when
the model relies more on object shape (rather than object
texture).

Transferring these results to the task of semantic seg-
mentation, Xception-based backbones, and the GSCNN
might have a more pronounced shape bias than others (e.g.,

ResNets), resulting hence in a higher rCD score image cor-
ruption.

Figure 11 illustrates the CD and rCD averaged for the
proposed image corruption categories for non-DeepLabv3+
based models. Please note that the CD of image corruption
“jpeg compression” of category digital is not included in this
barplot. CD (left) and rCD (right) evaluated onCityscapes for
ICNet (set as reference architecture), FCN8s-VGG16, Dilat-
edNet, ResNet-38, PSPNet, GSCNNw.r.t. image corruptions
of category blur, noise, digital, weather, and geometric dis-
tortion. Each bar except for geometric distortion is averaged
within a corruption category (error bars indicate the standard
deviation).

FCN8s-VGG16 and DilatedNet are vulnerable to corrup-
tions of category blur. DilatedNet is more robust against
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Table 2 Average mIoU for clean and corrupted variants of the Cityscapes validation dataset for Xception-71 and five corresponding architectural
ablations

Blur Noise
Deeplab-v3+ backbone Clean Motion Defocus Frosted glass Gaussian PSF Gaussian Impulse Shot Speckle Intensity

Xception-71 78.6 64.1 60.9 52.0 60.4 76.4 14.9 10.8 19.4 41.2 50.2

w/o ASPP 73.9 60.7 59.5 51.5 58.4 72.8 18.5 14.7 22.3 39.8 44.7

w/o AC 77.9 62.2 57.9 51.8 58.2 76.1 7.7 5.7 11.2 32.8 43.2

w/o ASPP+w/ DPC 78.8 62.8 59.4 52.6 58.2 76.9 7.3 2.8 10.7 33.0 42.4

w/o LRL 77.9 64.2 63.2 50.7 62.2 76.7 13.9 9.3 18.2 41.3 49.9

w/ GAP 78.6 64.2 61.7 55.9 60.7 77.8 9.7 8.4 13.9 36.9 45.6

Digital Weather
Deeplab-v3+ backbone Brightness Contrast Saturate JPEG Snow Spatter Fog Frost Geometric distortion

Xception-71 68.0 58.7 47.1 40.2 18.8 50.4 64.1 20.2 71.0

w/o ASPP 63.4 56.2 42.7 39.9 17.6 49.0 58.3 21.8 69.3

w/o AC 67.6 55.6 46.0 40.7 18.2 50.1 61.1 21.6 71.1

w/o ASPP+w/ DPC 64.8 59.4 45.3 32.0 14.4 48.6 64.0 20.8 72.1

w/o LRL 64.5 59.2 44.3 36.1 16.9 48.7 64.3 21.3 71.3

w/ GAP 68.0 60.2 48.4 40.6 16.8 51.0 62.1 20.9 73.6

Based on DeepLabv3+ we evaluate the removal of atrous spatial pyramid pooling (ASPP), atrous convolutions (AC), and long-range link (LRL).
We further replaced ASPP by Dense Prediction Cell (DPC) and utilized global average pooling (GAP). Mean-IoU is averaged over severity levels.
The standard deviation for image noise is 0.2 or less. Highest mIoU per corruption is bold

corruptions of category noise, digital, and weather than the
reference. ResNet-38 is robust against corruptions of cat-
egory weather. The rCD of PSPNet is oftentimes higher
than 100% for each category. GSCNN is vulnerable to
image noise. The rCD is considerably high, indicating a high
decrease of mIoU in the presence of this corruption. The
low scores for geometric distortion show that the reference
model is vulnerable to this corruption. GSCNN is the most
robust model of this benchmark with respect to geometric
distortion, and overall mostly robust except for image noise.

5.3 Ablation Study on Cityscapes

Instead of solely comparing robustness across network back-
bones, we now conduct an extensive ablation study for
DeepLabv3+. We employ the state-of-the-art performing
Xception-71 (XC-71), Xception-65 (XC-65), Xception-41
(XC-41), ResNet-101, ResNet-50 and, their lightweight
counterpart, MobileNet-V2 (MN-V2) (width multiplier 1,
224 × 224), as network backbones. XC-71 is the best per-
forming backbone on clean data, but at the same time,
computationally most expensive. The efficient MN-V2, on
the other hand, requires roughly ten times less storage space.
We ablated for each network backbone of the DeepLabv3+
architecture the same architectural properties as listed in
Sect. 4.2. Each ablated variant has been re-trained on clean
data of Cityscapes, PASCALVOC2012, andADE20K, sum-
ming up to over 100 trainings. Table 2 shows the averaged
mIoU for XC-71, evaluated on Cityscapes. In the following

sections, we discuss the most distinct, statistically significant
results.

We see that with Dense Prediction Cell (DPC), we achieve
the highest mIoU on clean data followed by the reference
model. We also see that removing ASPP reduces mIoU sig-
nificantly.

To better understand the robustness of each ablatedmodel,
we illustrate the average CD within corruption categories
(e.g., blur) in Fig. 12 (bars above 100% indicate reduced
robustness compared to the respective reference model).

Effect of ASPP Removal of ASPP reduces model perfor-
mance significantly (Table 2 first column).

Effect of AC Atrous convolutions (AC) generally show a
positive effect w.r.t corruptions of type blur for most network
backbones, especially for XC-71 and ResNets (see Fig. 13).
For example, without AC, the average mIoU for defocus
blur decreases by 3.8% for ResNet-101 (CD=109%). Blur
reduces high-frequency information of an image, leading to
similar signals stored in consecutive pixels. Applying AC
can hence increase the amount of information per convolu-
tion filter, by skipping direct neighbors with similar signals.
Regarding XC-71 and ResNets, AC clearly enhance robust-
ness on noise-based corruptions (see Fig. 14). The mIoU for
the first severity level of Gaussian noise are 12.2% (XC-71),
10.8% (ResNet-101), 8.0% (ResNet-50) less than respective
reference. In summary, AC often increase robustness against
a broad range of network backbones and image corruptions.

Effect of DPC When employing Dense Prediction Cell
(DPC) instead of ASPP, the models become clearly vulnera-
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Fig. 12 CD evaluated on Cityscapes for the proposed ablated variants
of the DeepLabv3+ architecture w.r.t image corruptions, employing six
different network backbones. Bars above 100% represent a decrease
in performance compared to the respective reference architecture.
Each ablated architecture is re-trained on the original training dataset.

Removing ASPP reduces the model performance significantly. Atrous
convolutions increase robustness against blur. The model becomes vul-
nerable against most effects when Dense Prediction Cell is used. Each
bar is the average CD of a corruption category, except for geometric
distortion (error bars indicate the standard deviation)

(a) corrupted image (b) ground truth (c) prediction of ref. model (d) prediction w/o AC

Fig. 13 Predictions of reference architecture and the ablated variant without atrous convolutions (AC), which is especially vulnerable to blur.
Validation image is corrupted by defocus blur (severity level 2)

(a) corrupted image (b) ground truth (c) prediction of ref. model (d) prediction w/o AC

Fig. 14 Predictions of reference architecture and the ablated variant without atrous convolutions (AC), which is especially vulnerable to noise.
Validation image is corrupted by shot noise (severity level 1)

ble against corruptions of most categories.While this ablated
architecture, (i.e., w\ DPC) reaches the highest mIoU on
clean data for XC-71, it is less robust to a broad range of
corruptions. For example, CD for defocus blur on MN-V2
and XC-65 are 113 and 110%, respectively. Average mIoU
decreases by 6.8 and by 4.1%. For XC-71, CD for all corrup-
tions of category noise arewithin 109 and 115%. The average
mIoU of this ablated variant is least for all, but one type of
noise (Table 2). Similar behavior can be observed for other
corruptions and backbones.

DPC has been found through a neural-architecture-search
(NAS, e.g. Zoph et al. 2018; Zoph and Le 2017; Pham et al.
2018)with the objective ofmaximizing performance on clean
data. This result indicates that such architectures tend to over-
fit on this objective, i.e., clean data. It may be an interesting

topic to evaluate robustness w.r.t image corruptions for other
NAS-based architectures as future work, however, is beyond
the scope of this paper. Consequently, performing NAS on
corrupted data might deliver interesting findings of robust
architectural properties–similar as inCubuk et al. (2019)w.r.t
adversarial examples.

We further hypothesize that DPC might learn less multi-
scale representations than ASPP, which may be useful for
common image corruptions (e.g., Geirhos et al. 2019 shows
that classification models are more robust to common cor-
ruption if the shape bias of a model is increased). Whereas
ASPP processes its input in parallel by three atrous convolu-
tion (AC) layers with large symmetric rates (6, 12, 18), DPC
firstly processes the input by a single AC layer with small
rate (1 × 6) (Chen et al. 2018a, Fig. 5). When we test DPC
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on corrupted data, it cannot hence apply the same beneficial
multi-scale cues (due to the comparable small atrous convo-
lution with rate 1× 6) as ASPP and may, therefore, perform
worse.

Effect of LRL A long-range link (LRL) appears to be very
beneficial for ResNet-101 against image noise. The model
struggles especially for our noise model, as its CD equals
116%. For XC-71, corruptions of category digital as bright-
ness have considerably high CDs (e.g., CDXC-71 = 111%).
For MN-V2, removing LRL decreases robustness w.r.t defo-
cus blur and geometric distortion as average mIoU reduces
by 5.1% (CD = 110%) and 4.6% (CD = 113%).

Effect of GAP Global average pooling (GAP) increases
robustness w.r.t blur slightly for most Xceptions. Interest-
ingly, when applied in XC-71 (ResNet-101), the model is
vulnerable to image noise. Corresponding CD values range
between 103 and 109% (106 and 112%). ResNet-101 shows
similar behavior.

5.4 Ablation Study on Pascal VOC 2012

We generally observe that the effect of the architectural
ablations for DeepLabv3+ trained on PASCAL VOC 2012
is not always similar to previous results on Cityscapes (see
Fig. 15). Since this dataset is less complex than Cityscapes,
the mIoU of ablated architectures differ less.

We do not evaluate results on MN-V2, as the model is
not capable of giving a comparable performance. Table 3
contains the mIoU of each network backbone for clean and
corrupted data.

Effect of ASPP Similar to the results on Cityscapes,
removal of ASPP reduces model performance of each net-
work backbone significantly.

Effect of AC Unlike on Cityscapes, atrous convolutions
show no positive effect against blur. We explain this with
the fundamentally different datasets. On Cityscapes, a model
without AC often overlooks classes covering small image-
regions, especially when far away. Such images are hardly
present in PASCAL VOC 2012. As on Cityscapes, AC
slightly helps performance for most models with respect to
geometric distortion. For XC-41 and ResNet-101, we see a
positive effect of AC against image noise.

Effect of DPC As on Cityscapes, DPC decreases robust-
ness for many corruptions. Generally, CD increases from
XC-41 to XC-71. The impact on XC-71 is especially strong
as indicated by the CD score, averaged over all corruptions,
is 106%. A possible explanation might be that the neural-
architecture-search (NAS) e.g.

Zoph et al. (2018), Zoph and Le (2017) and Pham
et al. (2018) has been performed on XC-71 and enhances,
therefore, the overfitting effect additionally, as discussed in
Sect. 5.3.

Effect of LRL Removing LRL increases robustness against
noise for XC-71 andXC-41, probably due to discarding early
features. Removing the Long-Range Link (LRL) discards
early representations. The degree of, e.g., image noise is
more pronounced on early CNN levels. Removing LRL tends
hence to increase the robustness for amore shallow backbone
as Xception-41 on PASCAL VOC 2012 and Cityscapes, as
less corrupted features are linked from encoder to decoder.
For a deeper backbone like ResNet-101, this behavior cannot
be observed. However, this finding does not hold for XC-65.
As reported in Sect. 5.2, on PASCAL VOC 2012, XC-65 is
also the most robust model against noise.

Effect of GAP When global average pooling is applied,
the overall robustness of every network backbone increases,
particularly significant. ThemIoU on clean data increases for
every model (up to 2.2% for ResNet-101, probably due to the
difference between PASCAL VOC 2012 and the remaining
dataset. Global average pooling (GAP) increases perfor-
mance on clean data on PASCAL VOC 2012, but not on the
Cityscapes dataset or ADE20K. GAP averages 2048 activa-
tions of size 33× 33 for our utilized training parameters. A
possible explanation for the effectiveness of GAP on PAS-
CAL VOC 2012 might be that the Cityscapes dataset and
ADE20K consist of both a notably larger number and spa-
tial distribution of instances per image. Using GAP on these
datasets might, therefore, not aid performance since impor-
tant features may be lost due to averaging.

5.5 Ablation Study on ADE20K

The performance on clean data ranges from MN-V2
(mIoU of 33.1%) to XC-71 using DPC, as best-performing
model, achieving an mIoU of 42.5%. The performance on
clean data for most Xception-based backbones (Res-Nets) is
highest when Dense Prediction Cell (global average pooling)
is used. Our evaluation shows that the mean CD for each
ablated architecture is often close to 100.0%, see Fig. 16.
Table 4 contains the mIoU of each network backbone for
clean and corrupted data.

Effect of ASPP The removal of ASPP can reduce model
performance significantly.

Effect ofAC The removal ofACdecreases the performance
slightly for most backbones against corruptions of category
digital and weather.

Effect of DPC As on PASCALVOC 2012 and Cityscapes,
applying DPC oftentimes decreases the robustness, espe-
cially for Xception-71 against most image corruptions. As
on Cityscapes, using DPC along Xception-71, results in the
best-performing model on clean data.

Effect of LRL The removal of LRL impacts, especially
Xception-71, against image noise.

Effect of GAPWhenGAP is applied, themodels generally
perform most robust.
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Table 3 AveragemIoU for clean and corrupted variants of the PASCALVOC2012 validation set for several network backbones of the DeepLabv3+
architecture

Blur Noise
Deeplab-v3+ backbone Clean Motion Defocus Frosted glass Gaussian Gaussian Impulse Shot Speckle Intensity

ResNet-50 69.6 38.7 43.5 31.1 45.5 43.2 40.7 44.2 50.9 59.8

ResNet-101 70.3 45.8 45.6 33.2 46.6 49.4 48.3 50.1 55.4 61.3

Xception-41 75.5 52.9 54.7 35.5 53.9 55.8 53.3 56.7 62.8 67.6

Xception-65 76.5 53.5 58.3 37.7 57.2 56.6 54.7 57.4 62.5 69.3

Xception-71 76.7 56.5 59.1 40.2 59.5 56.6 57.8 57.6 63.2 69.9

Digital Weather
Deeplab-v3+ backbone Brightness Contrast Saturate JPEG Snow Spatter Fog Frost Geometric distortion

ResNet-50 63.5 50.3 63.8 58.2 31.3 47.0 56.9 39.8 67.2

ResNet-101 64.5 50.6 65.3 59.7 31.4 50.4 57.6 41.2 67.6

Xception-41 70.8 51.9 70.9 64.6 42.5 59.0 63.1 48.4 73.0

Xception-65 71.8 55.9 72.1 66.7 40.2 58.5 64.0 47.5 73.6

Xception-71 72.1 57.1 72.6 68.1 43.9 60.9 66.1 50.9 73.6

Every mIoU is averaged over all available severity levels, except for corruptions of category noise where only the first three (of five) severity levels
are considered. Highest mIoU per corruption is bold
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w/ Global Average Pooling
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Xception-41
ResNet-101
ResNet-50

Fig. 15 CD evaluated on PASCAL VOC 2012 for the proposed
ablated variants of the DeepLabv3+ architecture w.r.t image corrup-
tions, employing five different network backbones. Each bar except for
geometric distortion is averaged within a corruption category (error
bars indicate the standard deviation). Bars above 100% represent a
decrease in performance compared to the respective reference archi-
tecture. Each ablated architecture is re-trained on the original training

dataset. Removing ASPP reduces the model performance significantly.
AC and LRL decrease robustness against corruptions of category digi-
tal slightly. Xception-71 is vulnerable against many corruptions when
DPC is used. GAP increases performance against many corruptions.
Each backbone performs further best on clean data when GAP is used.
Best viewed in color (Color figure online)

5.6 Performance for Increasing Severity Levels

We illustrate in Fig. 17 the model performance evaluated
on every dataset with respect to individual severity levels.
The figure shows the degrading performance with increasing
severity level for some candidates of category blur, noise,
digital, and weather of a reference model and all correspond-
ing architectural ablations.

The ablated variant without ASPP oftentimes has the low-
est mIoU. However, it performs best on speckle noise for
severity level 3 and above. The mIoU of the ablated variant
without AC is relatively low for defocus blur and contrast.

ThemIoU of the ablated variant without ASPP andwithDPC
is relatively low for speckle noise, shot noise (for severity
level 4 and 5), spatter. The mIoU of the ablated variant with-
out LRL is relatively high for speckle noise and shot noise.
The mIoU of the ablated variant with GAP is high for PAS-
CAL VOC 2012 on clean data and low for speckle noise.

5.7 Robust Model Design Rules

We presented a detailed, large-scale evaluation of state-
of-the-art semantic segmentation models with respect to
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Fig. 16 CD evaluated on ADE20K for the proposed ablated variants
of the DeepLabv3+ architecture with respect to image corruptions,
employing six different network backbones. Each bar except for geo-
metric distortion is averaged within a corruption category (error bars
indicate the standard deviation). Bars above 100% represent a rel-
ative decrease in performance compared to the respective reference

architecture. Each ablated architecture is re-trained on the original train-
ing dataset. Removing ASPP decreases performance oftentimes. AC
increase performance slightly against most corruptions. DPC and LRL
hamper the performance for Xception-71 with respect to several image
corruptions. GAP increases the robustness for most backbones against
many image corruptions. Best viewed on screen

0 1 2 3 4 5
Severity Level

0

20

40

60

80

M
ea
n-
Io
U

[%
]
on

C
it
ys
ca
pe

s Defocus Blur

Reference
w/o ASPP
w/o AC
w/o ASPP + w/ DPC
w/o LRL
w/ GAP

0 1 2 3 4 5
Severity Level

Speckle Noise

0 1 2 3 4 5
Severity Level

Contrast

0 1 2 3 4 5
Severity Level

Spatter

0 1 2 3 4 5
0

20

40

60

80

M
ea
n-
Io
U

[%
]
on

PA
SC

A
L
V
O
C

20
12

Motion Blur

0 1 2 3 4 5

Shot Noise

0 1 2 3 4 5

JPEG

0 1 2 3 4 5

Snow

0 1 2 3 4 5
0

10

20

30

40

M
ea
n-
Io
U

[%
]
on

A
D
E
20

K Gaussian Blur

0 1 2 3 4 5

Intensity Noise

0 1 2 3 4 5

Brightness

0 1 2 3 4 5

Fog

Fig. 17 Model performance (mIoU) for many candidates with respect
to the image corruption categories blur (first column), noise (second
column), digital (third column), and weather (fourth column) for a
reference model and all corresponding architectural ablated variants,
evaluated for every severity levels on Cityscapes, PASCAL VOC 2012,
and ADE20K. Severity level 0 corresponds to clean data. First row:

Xception-71 evaluated on the Cityscapes dataset for defocus blur,
speckle noise, contrast, and spatter. Second row: ResNet-101 evalu-
ated on PASCAL VOC 2012 for motion blur, shot noise, JPEG, and
snow. Third row:Xception-41 evaluated onADE20K for Gaussian blur,
intensity noise, brightness, and fog
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Table 4 AveragemIoU for clean and corrupted variants of theADE20Kvalidation set for several network backbones of theDeepLabv3+ architecture

Blur Noise

Deeplab-v3+ backbone Clean Motion Defocus Frosted glass Gaussian Gaussian Impulse Shot Speckle Intensity

MobileNet-V2 33.1 16.1 16.6 14.9 16.5 12.1 11.5 12.4 17.0 24.7

ResNet-50 37.4 18.0 19.7 16.9 19.2 14.1 12.8 14.4 19.4 28.5

ResNet-101 38.1 19.1 20.6 17.3 19.8 15.4 14.6 15.7 20.7 28.8

Xception-41 39.7 22.1 22.7 17.4 20.8 20.8 18.1 20.5 24.8 33.7

Xception-65 41.4 23.4 25.2 18.9 22.7 23.2 19.8 22.9 27.1 35.4

Xception-71 42.4 24.4 26.4 19.5 23.9 24.0 20.3 23.3 27.5 36.8

Digital Weather

Deeplab-v3+ backbone Brightness Contrast Saturate JPEG Snow Spatter Fog Frost Geometric distortion

MobileNet-V2 27.2 14.8 26.5 25.1 7.8 18.5 20.1 10.7 28.3

ResNet-50 31.1 18.0 30.1 29.5 8.8 21.5 23.9 13.6 32.9

ResNet-101 31.6 19.7 31.2 31.4 10.2 22.9 25.6 14.0 32.8

Xception-41 34.2 20.9 32.5 32.6 13.0 25.0 28.4 17.0 34.4

Xception-65 36.1 23.5 34.8 34.2 14.8 27.7 30.0 18.4 35.6

Xception-71 37.2 25.3 35.7 34.7 16.1 29.4 31.3 19.8 37.1

Every mIoU is averaged over all available severity levels, except for corruptions of category noise where only the first three (of five) severity levels
are considered. Highest mIoU per corruption is bold

real-world image corruptions. Based on the study, we can
introduce robust model design rules.

Network backbones and architectures Regarding
DeepLabv3+, Xception-41 has, inmost cases, the best price-
performance ratio. It performs especially with respect to
Cityscapes and ADE20K close to Xception-71 (the most
robust network backbone overall), for a similar perfor-
mance on clean data but approx. 50% less storage space
and less complex architecture. Xception-based backbones
are generally more robust than ResNets, however, for a less
severe degree of image corruption, this difference is low.
MobileNet-V2 is vulnerable to most image corruptions, also
for a low severity, however, it is capable of handling blurred
data well.

For non-DeepLab-based models, the GSCNN, a model
that incorporates shape information, is overall robust against
most weather and digital corruptions, and geometrically dis-
torted input, but is also vulnerable against image noise.

Atrous Spatial Pyramid Pooling A multi-scale feature
extracting module, like ASPP, is important for geometrically
distorted input. Removing ASPP decreases the mIoU, espe-
cially for PASCAL VOC 2012, considerably. The relative
decrease, when no ASPP is used, is less for the remaining
datasets.

Atrous convolutions On Cityscapes, atrous convolutions
are generally recommended since they increase robustness
against many common corruptions. For such a dataset, atrous
convolutions increase the robustness against image blur
and noise for many network backbones. With respect to
ADE20K, similar tendencies can be observed.

Dense Prediction Cell Models using the DPC instead of
ASPP is throughout the datasets vulnerable to many types of
image corruptions, especially image noise. This should hence
be considered in applications, such as low-light scenarios,
where the amount of image noise may be considerably high.

Long-Range Link The previously discussed results indi-
cate that more shallow networks as Xception-41 and ResNet-
50 are more robust to corruptions of category image noise,
and we recommend hence to omit an LRL for these networks
if the respective application comes along with image noise.

Global average pooling Global average pooling should
always be used on PASCAL VOC 2012, as its mIoU and
robustness are often increased. ForCityscapes, utilizingGAP
in Xception-71 is clearly vulnerable to image noise.

6 Image Degradation Study on Cityscapes

In the previous sections, we evaluated the robustness of
semantic segmentation models when we train the models
on clean data only and evaluated on corrupted data. In this
section, we present results when corrupted data is added to
the training set.

We train DeepLabv3+ using the ResNet-50 backbone and
add a corrupted variant of each image corruptions category
(i.e., blur, noise, digital, and weather). This results in four
trainings where, compared to a regular training, the amount
of training data is doubled.

The results are presented in Fig. 18. Each plot shows the
performance degradation for increasing severity level, for
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Fig. 18 Model performancewhencorrupteddata is added to the training
set. We train four models of DeepLabv3+ using the ResNet-50 back-
bone and add a corrupted variant of each image corruptions category
(i.e., blur, noise, digital, and weather). Each plot shows the perfor-
mance degradation for increasing severity level, for either a model that
is trained on clean data only (dashed lines) or both clean and corrupted
data (solid lines). Severity level 0 corresponds to clean data. The last

element of each legend is used as training data, marked by an asterisk,
and the scalar value indicates the utilized severity level.When themodel
is trained on corruptions of category blur, noise, and digital, it can gen-
eralize to unseen types of respective image corruptions. The model is
able to generalize significantly up to a certain severity level well to a
wide range of noise models. The model is not able to perform well on
every unseen image corruption of category digital

either a trained model on clean data only (dashed lines) or
both clean and corrupted data (solid lines). Each legend’s last
element is used as training data, marked by an asterisk, and
the scalar value indicates the utilized severity level.

Study on blur The performance on clean data decreases by
2.6% when image data corrupted by Gaussian blur is added
to the clean training data. The model performance further
increases for the remaining types of blur. The performance is
especially high for defocus blur, probably due to similarity
to Gaussian blur.

Study on image noise The performance on clean data
decreases by 1.9% when image noise is added to the training
data. Interestingly, the model is able to generalize quite well
to awide range of noisemodels (similar toRusak et al. (2020)
for full-image classification). The model performs well for
severity level 4 and 5 of speckle noise, though it is trained on
severity level 3. The signal-to-noise ratio of severity level 5
is more than 3dB less than of severity level 3, which corre-
sponds to doubling the degree of noise for that severity level.
Whereas the mIoU for Gaussian, impulse, and shot noise is

already below 10% for severity level 2, when the model is
trained on clean data only, it is significantly increased for
the model that is trained on image noise. The model perfor-
mance decreases significantly for higher severity levels for
image noise types that are not part of the training data.

Study on digital corruptions The performance on clean
data increases slightly by 0.4% when image corruption “sat-
urate” is added to the training data. Besides for “saturate”, the
mIoU increases only for “brightness” compared to the model
that is trained on clean data only. The image corruptions of
this category are quite diverse. “Brightness” and “saturate”
have a contrary effect as “contrast”. The “JPEG compres-
sion”, on the other hand, posterizes large areas of the image.

Study on weather corruptions The performance on clean
data decreases by 1.9% when image corruption “spatter” is
added to the training data. Unlike for image noise, the model
cannot generalize to a more severe degree of the corrupted
data themodel is trained on (i.e., its performance on the fourth
and fifth severity level of “spatter” is hardly increased). The
mIoU for image corruption “snow” increases significantly
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Fig. 19 Averaged mIoU for
clean data and the four image
corruption categories blur
(Gaussian blur, severity level 5),
noise (speckle noise, severity
level 3), digital (saturate,
severity level 3), and weather
(spatter, severity level 3). Each
radar plot illustrates the
performance of a model that is
trained on clean data only and a
model that is additionally
trained on one image corruption
category. The models which are
trained on a noise, digital, or
weather corruption increase the
performance in general solely
for the respective image
corruption category. However,
the model that is trained on blur
increases the performance also
on image noise significantly

severity level 1. Interestingly, this model does not generalize
with respect to “fog” and “frost”, and performs even worse
than the reference model, which is trained on clean data only.

We previously discussed the model performance solely
within an image corruption category. In our final evaluation,
we illustrate the performance of the remaining image corrup-
tion categories (see Fig. 19) as averaged mIoU. Please note
that the results in this Figure are based on the same experi-
ments as conducted for Fig. 18. When blurred data is added
to the clean training data, the model increases the perfor-
mance also for noisy data. When noisy data is added to the
clean training data, the performance on the remaining image
corruption categories is barely affected. Similar results can
be observed when data of category digital is added to the
training data. For image corruptions of category weather, the
average mIoU is only slightly increased when the model is
trained on that corruption category.

6.1 Influence of Realistic Image Corruptions

This section focuses on evaluating model robustness with
respect to our proposed, more realistic image corruptions.
Figure 20 shows the model performance of the ResNet-50
model again when corrupted data is added to the training set.
To make severity levels mutually comparable, we average

their Signal-to-Noise ratio (SNR) in this Figure over the val-
idation set, i.e., each abscissa represents the averaged SNR
of a severity level.3

PSF blur We observe that our modeled PSF blur (purple,
Fig. 20 left) is in terms of SNR by considerably less severe
than the severity levels of the remaining image corruptions
of category blur. The mIoU with respect to PSF blur of the
first two severity levels is considerably higher than for the
remaining types of blurwith a similar SNR (i.e., severity level
1 of defocus blur andmotion blur),which is observed not only
for the ResNet-50 (as illustrated in this Figure) backbone but
also for all remaining backbones.

These results might indicate that a CNN could learn, to
a certain extent, real PSF blur, which is inherently present
in the training data. The fact that the mIoU with respect to
PSF blur and Gaussian blur (i.e., the weakest blurs regarding
their SNR) decreases when Gaussian blur is added to the
training data might also support this hypothesis. However,
the performance quickly degrades similarly to anmIoU score
that is comparable to the remaining blur types.

Intensity noise The model performs significantly worse
for our proposed noise model than for speckle noise, when

3 Contrary to Fig. 18, where each abscissa corresponds to a severity
level in terms of integer values.
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Fig. 20 Model performance when corrupted data is added to the train-
ing set. We train four models of DeepLabv3+ using the ResNet-50
backbone and add a corrupted variant of blur and image noise. To make
the image corruptions mutually more comparable, each abscissa cor-

responds to the averaged Signal-to-Noise ratio of the respective image
corruption. The models are trained on Gaussian blur (severity level 5,
left) or speckle noise (severity level 3, right) (Color figure online)

the model is trained with clean data only (purple, Fig. 20
right, dashed lines). The model’s mIoU tends to converge to
a common value for each image corruption of category noise.
When noisy data is added to the training data, the model
performs clearly superior to this particular image corruption.
The mIoU of the fifth severity level of speckle noise and
third severity level of impulse noise has a similar SNR, but
the mIoU differs by approx. 30%.

This result indicates that semantic segmentation models
generalize on image noise since a clear mIoU increase is
observable; however, it depends strongly on the similarity of
image noise models. Based on this assumption, the poor per-
formance with respect to our proposed intensity noise (blue
line) indicates that training a model with unrealistic image
noisemodels, is not a reasonable choice for increasingmodel
robustness towards real-world image noise.

Geometric distortionAs stated in Sect. 5.2, the model per-
formance with respect to geometric distortion is comparable
among the benchmarked architectures (see the last column of
Table 1). In general, the GSCNN is the most robust network
against geometric distortion. ThemIoUofGSCNNdecreases
for the first severity level by less than 1%. The Xception-
based backbones are for the DeepLabv3+ architecture the
best-performing networks.

7 Conclusion

We have presented a detailed, large-scale evaluation of state-
of-the-art semantic segmentation models with respect to
real-world image corruptions. Based on the study, we report
various findings of the robustness of specific architectural

choices and the generalization behavior of semantic segmen-
tation models. On the one hand, these findings are useful for
practitioners to design the right model for their task at hand,
where the types of image corruptions are often known. On
the other hand, our detailed study may help to improve on
the state-of-the-art for robust semantic segmentationmodels.
When designing a semantic segmentation module for a prac-
tical application, such as autonomous driving, it is crucial to
understand the robustness of the module with respect to a
wide range of image corruptions.
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