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Abstract This paper studies segmentation of multiple rigid-
body motions in a 3-D dynamic scene under perspective
camera projection. We consider dynamic scenes that contain
both 3-D rigid-body structures and 2-D planar structures.
Based on the well-known epipolar and homography con-
straints between two views, we propose a hybrid perspec-
tive constraint (HPC) to unify the representation of rigid-
body and planar motions. Given a mixture of K hybrid
perspective constraints, we propose an algebraic process to
partition image correspondences to the individual 3-D mo-
tions, called Robust Algebraic Segmentation (RAS). Partic-
ularly, we prove that the joint distribution of image corre-
spondences is uniquely determined by a set of (2K)-th de-
gree polynomials, a global signature for the union of K mo-
tions of possibly mixed type. The first and second deriva-
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tives of these polynomials provide a means to recover the
association of the individual image samples to their respec-
tive motions. Finally, using robust statistics, we show that
the polynomials can be robustly estimated in the presence
of moderate image noise and outliers. We conduct exten-
sive simulations and real experiments to validate the per-
formance of the new algorithm. The results demonstrate
that RAS achieves notably higher accuracy than most ex-
isting robust motion-segmentation methods, including ran-
dom sample consensus (RANSAC) and its variations. The
implementation of the algorithm is also two to three times
faster than the existing methods. The implementation of the
algorithm and the benchmark scripts are available at http://
perception.csl.illinois.edu/ras/.

Keywords Motion segmentation - Epipolar geometry -
Homography - Outlier rejection - Influence function -
Algebraic segmentation

1 Introduction

Structure from Motion (SFM) is one of the fundamental
problems in computer vision. Given a 3-D dynamic scene
with multiple moving objects, the task in SFM is to recover
the parameters of the motions from a sequence of 2-D im-
ages. In order to recover the motion parameters, one must
assume a certain motion model for individual objects in the
scene. Over the years, many different motion models have
been studied, which range from assumptions on the cam-
era projection model (e.g., perspective, affine, orthographic)
to assumptions on the objects in the scene (e.g., planar or
general rigid bodies). In the literature, previous investigation
had been largely focused on segmentation and estimation of
specific motion models, and the methods did not generalize
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well to complex dynamic scenes containing multiple mo-
tions or multiple types of motions.

Particularly, the presence of planar structures complicates
the estimation problem. In SFM, when a rigid object is ob-
served in two perspective camera views, its feature corre-
spondences satisfy either an epipolar constraint for a general
rigid-body or a homography constraint for a planar object.
Clearly, a planar motion is a degenerate rigid-body motion.
Since planar structures commonly exist in urban environ-
ments (e.g., ground, building facade, and background in dis-
tance) together with general rigid-body objects (e.g., cars),
in a typical image sequence, one should expect to see more
than one type of motion, described by multiple epipolar con-
straints and homographies.

As an attempt to unify the analyses of different motion
models, a joint image space has been proposed in the litera-
ture (Shapiro 1995; Triggs 1995; Anandan and Avidan 2000;
Tong et al. 2004). The main focus of the study has been the
representation of the epipolar constraints and/or the affine
projection constraints in a joint image space. Anandan and
Avidan (2000) showed that a single epipolar constraint rep-
resents a 4-D point cone in R, and an affine constraint rep-
resents a 3-D affine subspace in R>. Regardless of the differ-
ence in these two ways of embedding the image pair into a
joint image space, estimation of one or multiple epipolar and
homography relations is converted to fitting algebraic mani-
folds defined by a set of implicit polynomials. The problem
of fitting conics is indeed more difficult than fitting linear
subspaces represented by affine projection constraints. Sev-
eral inspiring solutions have been proposed to tackle this
problem. The reader is referred to Goshen et al. (2005) for a
review of work on estimating single epipolar constraints.

Coupled with the problem of mixture motions in a dy-
namic scene, the measurement of 3-D feature correspon-
dence in the images can be noisy in terms of pixel coor-
dinates. In addition, mismatched feature points from the ob-
jects and the background often introduce outliers in most
real-world applications. The presence of image noise and
outliers have historically affected the accuracy of SFM es-
timation. Previous studies have produced several robust al-
gorithms that can estimate single rigid-body motions in the
presence of large number of outliers. However, the exten-
sions of these algorithms to multiple rigid-body motions do
not generally perform well, because the single fundamental
matrix assumption is violated in the dynamic scene (Tong et
al. 2004; Schindler and Suter 2005; Yang et al. 2006).

In this paper, we study the segmentation problem of mul-
tiple rigid-body and planar motions from two views un-
der perspective projection, one of the most general assump-
tions in SFM.! Assuming that the number of mixed motions

'We note that there are many proposed methods in the literature for per-
forming motion segmentation under perspective projection with three

@ Springer

(K) is given, we propose a unified hybrid perspective con-
straint (HPC) in the joint image space to characterize mix-
ture epipolar and homography constraints. The new algo-
rithm, called robust algebraic segmentation (RAS), focuses
on recovering a set of polynomials vanishing on the alge-
braic set of multiple epipolar and homography constraints.
We prove, for the first time, that the distribution of K mix-
ture epipolar and homography constraints in the joint image
space is uniquely determined by a set of (2K)-th degree van-
ishing polynomials. Based on robust statistics, we further
show that these polynomials can be robustly estimated from
a data set with moderate data noise and outliers. Using the
polynomials, we provide a solution to segment the inlying
image features into corresponding motions. Finally, a com-
parison is conducted to quantitatively measure the perfor-
mance of RAS with several established algorithms for mo-
tion segmentation (Torr and Zisserman 2000; Schindler and
Suter 2005; Subbarao and Meer 2006; Rao et al. 2008). The
implementation of the algorithm and the benchmark scripts
are available at http://perception.csl.illinois.edu/ras/.

1.1 Relations to Previous Work

To put our contributions in context, we briefly review ex-
isting methods developed to model data points sampled
from a mixture of geometric manifolds or statistical distribu-
tions. An extension to principal component analysis (PCA)
called probabilistic PCA fits data points into a mixture of
multiple subspace models, using a mixture Gaussian dis-
tribution and expectation maximization (EM) (Tipping and
Bishop 1999). Agrawal et al. (1998) presented a scalable al-
gorithm to perform clustering on multiple individual sub-
spaces. K-subspaces, proposed by Lee et al. (2005), is an
extension of the K-means for fitting multiple linear mod-
els. Leonardis et al. (2002) developed a subspace selection
method for multiple subspaces. Scholkopf et al. (1998) in-
troduced a set of nonlinear mappings called kernels that
map the original nonlinear data points into another space
in which the manifold is linear. Recently, an agglomerative
method based on the principles of lossy data compression,
called agglomerative lossy compression (ALC) (Ma et al.
2007), has proven highly effective in segmenting data from
multiple subspaces. The method has been applied to parti-
tion affine camera motions with outlying and corrupted tra-
jectories (Rao et al. 2008). There has also been work to ap-
ply manifold learning techniques such as ISOMAP and local
linear embedding to cluster data drawn from multiple mani-
folds (Souvenir and Pless 2007; Goh and Vidal 2007). In the
literature of computer vision, many effective methods have
been developed based on the above clustering techniques

or more views (Ozden et al. 2007; Vidal and Hartley 2008). We do not
compare with such methods in this paper.
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to segment specific types of rigid-body motions from im-
ages (Costeira and Kanade 1998; Han and Kanade 2000;
Shashua and Levin 2001; Kanatani 2002b; Kanatani and
Sugaya 2003; Yan and Pollefeys 2006).>

The methods proposed in this paper have strong con-
nections to the algebraic method pioneered by Vidal et al.
(2005) known as generalized principal component analy-
sis (GPCA). GPCA is a non-iterative method for segment-
ing data drawn from multiple linear subspaces that first es-
timates a set of polynomials that vanish on the data set,
and then uses derivatives of these vanishing polynomials
to segment samples to their respective subspaces. GPCA
has been applied to motion segmentation under the affine
camera model, and has also been applied to motion seg-
mentation under the perspective camera model via vari-
ous nonlinear and complex embeddings (Vidal et al. 2006;
Vidal and Ma 2006; Yang et al. 2005). However, GPCA
faces two major problems when applied to perspective mo-
tion segmentation. First, the embeddings used by GPCA for
perspective motion segmentation assume that all the motions
in the scene are of the same type (i.e., all planar motions
or all general rigid-body motions), and so have no guaran-
tees to succeed in the mixture motion case described in this
paper. Second, these embeddings are also somewhat brit-
tle, often failing to segment motion data even with little or
no noise present. Our prior work has quantitatively demon-
strated the inefficacy of GPCA for segmentation of mixture
motions on both simulated and real scenes (Yang et al. 2005;
Rao et al. 2005).

When the data are further contaminated by outliers,
robust statistical methods should be applied to separate
the outliers from the inliers. Outlying measurements affect
model estimation and 3-D reconstruction in most computer
vision applications. Despite centuries of study in robust sta-
tistics, there is no universally accepted definition for “out-
liers.” Most robust solutions are based on one of the follow-
ing three assumptions (Yang et al. 2006):

1. Probability-based: Outliers are a set of small-probability
samples with respect to the probability distribution in
question. The given data set is therefore an atypical set
if such samples constitute a significant portion of the
data. Methods in this approach include the M-estimator
(Campbell 1980; Huber 1981) and its variation, multi-
variate trimming (MVT) (Gnanadesikan and Kettenring
1972).

ZNotice that there exist statistical algorithms (e.g., Anandan and
Avidan 2000) that can be modified to iteratively estimate multiple
quadratic manifolds. We did not compare our algorithm with this line
of development. Instead, we point out that our algorithm gives a good
noniterative approximation of the globally optimal solution, and it can
be used to initialize other statistical algorithms so that the nonlinear
optimization can be conducted near its global optimum.

2. Influence-based: Outliers are samples that have rela-
tively large influence on the estimated model parameters
(Campbell 1978; Hampel et al. 1986; Jollife 2002). The
influence of a sample is normally defined as the differ-
ence between the model estimated with and without the
sample.

3. Consensus-based: Outliers are samples that are not con-
sistent with the model inferred from the remainder
of the data. A measure of inconsistency is normally
the error residue of the sample in question with re-
spect to the model. Methods in this approach include
Hough transform (Ballard 1981), least median estima-
tors (Rousseeuw 1984), and random sample consensus
(RANSAC) (Fischler and Bolles 1981; Stewart 1995;
Torr and Davidson 2003; Rousseeuw 1984; Wang and
Suter 2004; Schindler and Suter 2005; Frahm and Polle-
feys 20006).

In robust statistics, the breakdown point, the minimal per-
centage of outliers in a data set that can cause arbitrarily
large estimation error, is an important index of a robust esti-
mator. It can be shown that the theoretical breakdown points
for probability-based and influence-based methods are 50%
(Hampel et al. 1986; Stewart 1999). This drawback moti-
vates the investigation of consensus-based methods. These
techniques treat outliers as samples drawn from a model
that is very different from the model of inliers. Therefore,
although the outlier percentage may be greater than 50%,
they may not result in a model with higher consensus than
the inlier model.

In computer vision, consensus-based algorithms have
been popularly used to reject outliers in SFM applications,
most of which are largely based on the RANSAC principle.
Particularly, a series of work has been proposed to extend
RANSAC from single motions (Torr 1998; Torr and Zisser-
man 2000; Torr and Davidson 2003) to mixture rigid-body
and homography motions (Bartoli 2001; Tong et al. 2004;
Schindler and Suter 2005; Subbarao and Meer 2006). On
the other hand, due to the lack of a global representation
for mixture motions, most algorithms have to iteratively es-
timate individual motions from the data set when a mixture
of multiple motions is present in a common scene.

1.2 Organization of the Paper

The paper is organized as follows: Sect. 2 derives a unified
quadratic polynomial constraint for both rigid-body and pla-
nar motions, and further proposes a hybrid perspective con-
straint for cases where multiple mixture motions are present.
Section 3 discusses robust estimation of a single well-chosen
vanishing polynomial, called the segmentation polynomial,
from a data set with both noise and outliers. Combining
these results, Sect. 4 proposes a robust algebraic segmen-
tation (RAS) algorithm to segment image points of mixture

@ Springer



428

Int J Comput Vis (2010) 88: 425-446

motions using the recovered segmentation polynomial. Sec-
tion 5 shows that RAS complements the traditional random
sampling-based methods. In particular, we apply RANSAC
as a post-processing step to RAS to further improve the ro-
bustness of RAS to outliers. By using RAS in conjunction
with RANSAC, we obtain much improved speed and accu-
racy compared to using RANSAC alone. Finally, Sects. 6
and 7 conduct extensive experiments on synthesized data
and real images to evaluate the performance of the algo-
rithm, with careful comparison to other existing methods.

2 Mixture Motions and Hybrid Perspective Constraints
2.1 Two-View Geometry on Joint Image Spaces

Given a point X in space and its image correspondences
(x1,x2) € R3 in homogeneous coordinates, its (uncali-

brated) epipolar constraint with respect to a fundamental
matrix

fir fiz fi3
F=\|fu fo fn|eR¥
1 3
18
xI Fx;=o0. )]

If X lies on a plane in space, the image correspondences also
satisfy a homography constraint w.r.t. a homography matrix

hit hi hiz
H=|hy hy hy|eR>3
h3t hz  hiz
is
#2Hx =0€eR?, )

where & € R3*3 is a skew-symmetric matrix of x such that
X2x| = X2 X x1, the cross product of the two vectors. Since
rank(X) = 2, two of the three equations in (2) are linearly
independent.

Definition 1 (Quadratic Manifold) In a D-dimensional am-
bient space, a quadratic manifold® of dimension d is a set of
points S that all jointly satisfy D — d quadratic equations of
the form

y'0jy=0, VyeS, j=1,....D—d, (3)

where each Q; is a symmetric D x D matrix.

3 A quadratic manifold here is an algebraic surface that satisfies a set
of quadratic equations. Strictly speaking, such a surface could be an
algebraic surface of order higher than two.
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Constraints (1) and (2) are both bilinear in terms of the
image pair (x1,Xx2) in R3. However, we can stack x; =
(x1, y1, DT and x5 = (xp, 2, DT into a single vector of the
form

y=(x1,y1, %2, 5, DT e R’ )

The set Y = {y} C R? is a joint image manifold in the 5-D
Jjoint image space (Goshen et al. 2005).

Using the notation in (4), the epipolar equation (1) can be
rewritten in the following quadratic form:

0 0 fuu fa fan
0 0 fi2 f2 fe
yAy=y'lfn fiz 0 0 fi3
far f2 0 0 fr
31 f fis faz 2f33

Equation (5) shows that joint image samples that satisfy
the epipolar constraint lie on a 4-D quadratic manifold
in R3 (Anandan and Avidan 2000), which is referred to as a
quadratic fundamental manifold (QFM) in this paper.
Similarly, we can also rewrite (2) in quadratic form:

0 0 0 hy1 —hy
0 0 0 hyp —hxy
yIBiy=yT| 0 0 0 0 0 |y=0,
hs31  hix 0 O h33
| —h21 —hp 0 hzz —2ho;
0 0 —h31 0  hpy
0 0 —h3 0 hypp
y'Boy=y"|—hsi —hy» 0 0 —h3|y=0,
0 0 0 0 0
| hir k2 —hzz 0 2hg3
0 0 hyr —hi 0
0 0 hy —hyp 0
y'By=y"| hay hn 0 0 has [ y=0.
—hy1 —hiz 0O 0 —hp3
| 0 0 hyy —his 0
(6)

In the R? joint image space, the above three quadratic con-
straints are linearly independent. Hence, they define a 2-D
quadratic manifold in R3, which is referred to as a quadratic
homography manifold (QHM). It is easy to see that any
QFM or QHM shall pass the origin at y = 0.

To derive a single perspective constraint for either a QFM
or a QHM, we define a symmetric 5-by-5 matrix

0 0 g1 ¢ ¢
0 0 g4 g5 g
O=|q1 g4 0 0 g7/, @)
@2 g5 0 0 gs
43 46 491 48 49
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which has at most 9 degrees of freedom. Then, a QFM de-  Theorem 2
fined in (5) is rewritten as

17 =105, 17 =1(st). (14)
sf=yeR:g"n=y"0"y=0). ®)

Proof See Appendix. (]

Similarly, a QHM defined in (6) is rewritten as
ST={yeR g/ (m=y"0fy=0i=1,23),
=l M=0n{g' Mm=0n{ffmM=0,  ©

Subsequently, we also assume that the polynomials gf1 , gf ,
and g# are linearly independent.

The following theorem gives an important rank condition
to matrix Q from the QFM or QHM constraint:

Theorem 1 If a matrix Q satisfies either a QFM constraint
(8) or a QHM constraint (9), then rank(Q) < 4.

Proof The conclusion is straightforward given that at least
one eigenvalue of Q is zero from (8) or (9). For more details,
please refer to Anandan and Avidan (2000). U

Finally, we consider a dual relation between an algebraic
set S and its generating polynomials. In (8) and (9), it is clear
that given a quadratic polynomial g/, all points y € R that
vanish on g¥ are uniquely determined, i.e., S¥. Likewise,
SH is uniquely determined by (gf'l , gf , gf ). On the other
hand, we are interested in a dual problem: Given an alge-
braic set S¥ or S, are its generating polynomial(s) also
uniquely determined?

In algebraic geometry, the quadratic polynomials (8) and
(9) are said to lie in a ring of polynomials of five variables
(Harris 1992), which is denoted by

R=RPI =R[X|, X2, ..., X5]. (10)

In this polynomial ring, all polynomials p that vanish on an
algebraic set S constitute a special subset /(S), i.e.,

I1(S)={p:p(y)=0forall y € S}. an

The subset 7 (S) is called an ideal. Particularly, if g € 1(S),
then for an arbitrary polynomial & € R, clearly gh is also an
element of 7(S) since gh(y) =0forall y € S.

On the other hand, we define the generating ideals /7 =
(gFy and 1H = (gf{, gf, gf). Hence, for any polynomial
pelf,

p=pi-¢°, per. (12)

Similarly, for any polynomial p € I (S¥),

p=pi-gf+p2-g +p3-gi, pippieR. (13)

The following theorem establishes the equivalence rela-
tion between I (S) and its corresponding generating ideal:

Although the proof of the theorem is technical, the the-
orem essentially establishes the following equivalence rela-
tion: Given a set of points Y = {y} C R that satisfy a QFM
or QHM constraint, its quadratic generating polynomials g;
are uniquely determined.

In summary, the set of quadratic polynomials g; as a
global signature completely determine the algebraic set S.
Therefore, the problem of recovering individual QFM and
QHM constraints from ) is equivalent to that of recovering
their quadratic vanishing polynomials. For more detailed de-
velopment between an algebraic set and its vanishing poly-
nomials, the reader is referred to Ma et al. (2008).

2.2 Hybrid Perspective Constraints

In this paper, our focus is on an image set ) from a mix-
ture of motions. Suppose YV = {yy, ..., yy} is drawn from a
union of QFM’s and QHM’s:

A=S5USU---USk, (15)

where each S; may represent a QFM or a QHM. Then the
problem of motion segmentation becomes the problem of
simultaneously segmenting the data set ) into its individ-
ual motions sets S;, and recovering the motion coefficients
represented by fundamental matrices F’s and homography
matrices H'’s.

In Sect. 2.1, we have shown that given a single motion S,
its vanishing polynomials (8) or (9) completely determine
the algebraic set. Similarly, with a mixture motion A, we
are also looking for a set of polynomials of higher degrees
that serve as a global signature of the mixture motion. The
following theorem proves the existence of such polynomi-
als:

Theorem 3 Let I, denote the set of polynomials in (2K )-
th degree that vanish on a mixture motion A = S; U Sy U
.U Sk.

1. Ik is a subspace (of (2K)-degree polynomials).
2. Ais uniquely determined by Ik .

Proof See Ma et al. (2008). U

We reiterate Theorem 3 in the context of motion segmen-
tation: In order to estimate the global structure of A as a
union of mixture motions, one only needs to recover a set
Dk of (2K)-th degree polynomials that vanish on the data
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set V. This is a very small subset of all the vanishing polyno-
mials on A of arbitrary degrees. Furthermore, since g is a
polynomial subspace, one only needs to recover a maximal
set of linearly independent polynomials as its basis. Hence,
we define a hybrid perspective constraint as follows:

Definition 2 (Hybrid Perspective Constraint) A hybrid per-
spective constraint (HPC) for a union of K mixture epipolar
and homography motions ) is a maximal set of linearly in-
dependent (2K)-th degree polynomials that vanish on ).

As shown in Theorem 3, the HPC is both a necessary
and sufficient global polynomial constraint that represents a
union of mixture motions. In other words, y is a joint image
sample from a union of mixture motions .4 if and only if all
of the polynomials in the corresponding HPC for A vanish
on y. We illustrate the HPC in the following example.

Example I Suppose that the underlying distribution is a
mixture of one QFM, S¥, and one QHM, S¥ . Then samples
from the QFM satisfy a quadratic constraint: y” Q011y=0;
and samples from the QHM satisfy three quadratic con-
straints: {y” 021y =0}, {y7 02,y =0}, and {y” @23y =
0}. Therefore, all samples in the mixture must simultane-
ously satisfy the following three vanishing polynomials:

i =0T011y)0T 021y,
P2 =T 011y 022y),
3 =T 011y 023y).

Hence, the quadratic polynomials p1, p2, p3 of degree 4 are
a basis for I (S U §H), and they simultaneously vanish on
both S¥ and S . Finally, because p, p», p3 are linearly in-
dependent, dim(I4(S¥ U §7)) =3.

In the rest of this section, by assuming a perfect data set
Y without noise and outliers, we introduce a means of esti-
mating from )’ a maximal set of (2K)-th degree independent
polynomial as a basis of Ik .

Definition 3 (Veronese Map) Given K independent mo-
tions, the Veronese map of degree (2K), vk : RS — RM X R
is defined as

2K -1

. T 2K 2KN\T
U2K'(x17y17x27y2’z) ’_)(x] 7x1 ylv"'yz ) )

(16)

where M ,5< = (2K2+K5 _1) is the total number of monomials
of degree (2K) with 5 variables, i.e., the dimension of the

codomain of vy .
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Using the Veronese map, we can rewrite an arbitrary ho-
mogeneous polynomial p(y) of (2K)-th degree as

p(y) =cl vk (y), a7

where ¢ consists of all coefficients of p(y) associated with
the monomials in vog ().

Veronese maps have been well studied in the segmen-
tation of subspace arrangements, i.e., a finite union of lin-
ear subspaces (Vidal et al. 2005; Ma et al. 2008). However,
we notice that a vanishing polynomial for an HPC is not a
general (2K)-th degree polynomial. Particularly, as shown
in (7), each Q matrix only has 9 degrees of freedom. Refer-
ring back to (5) and (6), the two 2-by-2 diagonal minors are
zero for all Q matrices. Enforcing the zero coefficients in
recovering the vanishing polynomials is essential to achieve
accurate estimation of the individual motions.

Example 2 Let y € § be joint image samples drawn from
two rigid body motions parameterized by the matrices

0 0 a by ]
0 0 di e fi
Q1 = | al d1 0 0 81 and
b] el 0 0 /’l1

Ler fio &t ki

[0 0 a» by o
0 0 d e f
OQo=|ax d&o 0 0 g,
by eo 0 0 h

L2 f2 g hy ir |

respectively. Then, each sample y = (x1, y1, X2, y2, l)T sat-
isfies

P ="M 02y)
= Qaix1xy +2b1x1y2 + 2c1x1 4+ 2d1y1x2
+2e1y1y2 + 2 fiy1 +281x2 +2h1y2 +i)
X (2azx1x2 + 2bax1y2 + 2c2x1 + 2day1x2
+2e2y1y2 + 2 fay1 +2g2x2 + 2h2y2 +i2).

Though there are 70 monomials of order at most 4, there are
only 36 such monomials with nonzero coefficients in p(y):
xlzxzz, xlzxzyz, xlzxz, xlzyg, x12y2, xlz, xlylxg, X1y1X1x2,
X1Y1X2, X1Y1Y3, X1V1Y2, X1V1, X1X3, X1X2Y2, X1X2, X1Y3,
X1Y2, X1, YEX3, yixay2, yix2, yiv3, yiy2. ¥i. y1X3, YiX2y2,
YIX2, Y13, Y12, V1, X3, X2¥2, X2, ¥3, ¥2, L. This is be-
cause p(y) is a product of two quadratic forms, neither of
which contains terms that are quadratic in a single element.
This condition tightly constrains the form of polynomials
that arise from multiple motions.
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To enforce this constraint imposed by the O matrices, we
define the following special Veronese map. This map does
not generate monomials associated to the zero terms in (M.

Definition 4 (Perspective Veronese Map) Given K indepen-
dent motions, the perspective Veronese map of degree (2K),
U2k, is defined as

ny_npy_n3_ng n5]T

Mak 1y = [x1, 1, %2, y2, 20T = [x; 7%y, 2 , (18)

whereny +ny <K,n3+ngs <K,andn; +---+ns=2K.

Finally, we are now ready to estimate a maximal set of
(2K)-th degree linearly independent polynomials from the
data Y of K motions. The process is conceptually identi-
cal to the one first demonstrated by Vidal et al. (2005) but
with the Veronese map v replaced by the new perspective
Veronese map .

Define a data matrix Vg that collects all the embedded
samples of {y, ..., yn}:

Vak V) = (n2k (1), m2k (¥2), -, w2k (¥ y)) - (19)

Suppose that enough samples are drawn to cover the union
of QFM’s and QHM’s. Then, any vector ¢ in the left null
space of Vo corresponds to the coefficients of a (2K)-th
degree polynomial p(y) = ¢! 112k (y) that vanishes on V. If
{c1,¢a, ..., cr}is abasis for the null space, then the polyno-
mial subspace Ik ())) has the following basis:

hrx V) = (el wak ), X 1ok (), ..., el nak (). (20)

It is easy to see that the polynomials in (20) are also linearly
independent.

3 Robust Estimation of Segmentation Polynomials

In the previous section, we demonstrated that an HPC
Ik ()) can be recovered from the null space of the data
matrix Vog ()). Nevertheless, when ) is contaminated with
data noise and outliers, Vog ()) will, in general, be full rank,
and will thus have a trivial null space. In this section, we
investigate robust estimation of vanishing polynomials in
Ik ()) in the presence of both data noise and outliers.

3.1 Segmentation Polynomial

When ) is perturbed by moderate data noise, the estimation
of its null space becomes a statistical problem. A common

4The constraint on the possible monomials in this map is a necessary
but insufficient condition for enforcing all of the zeroes in the Q ma-
trices: It is possible to find matrices with nonzero entries on the off
diagonal entries that still satisfy the constraint.

method for estimating the original null space in the presence
of noise is singular value decomposition (SVD). That is, if
the dimension k of the null space is known, then the null
space is approximated by a subspace spanned by the eigen-
vectors corresponding to the k smallest singular values.

The null space dimension k corresponds to the number
of linearly independent vanishing polynomials in Ik (}),
which in turn depends on the mixture of rigid body motions
and planar homographies. Recently, a closed-form solution
was discovered for the number of linearly independent van-
ishing polynomials for subspace arrangements (Ma et al.
2008). However, to the best of our knowledge, there is still
no theoretical solution for k when the algebraic set is a union
of quadratic manifolds. Empirical estimation of k from the
singular values of Vog () is also known to be not stable in
the presence of noise.

To address this issue, we propose a novel approach to seg-
ment mixture motions using a single, well-chosen vanishing
polynomial, which we shall call a segmentation polynomial.
To this end, we show that we do not need all of the linearly
independent vanishing polynomials to reliably segment im-
age correspondences from different motion models. In this
section, we study how to robustly estimate the segmentation
polynomial from noisy data samples. The segmentation al-
gorithm based on the segmentation polynomial is studied in
Sect. 4.

The coefficients of a polynomial that most likely vanishes
on ), in a least-squared sense, can be found as the singular
vector corresponding to the minimal singular value of V.
This is equivalent to finding the polynomial coefficient vec-
tor ¢ that minimizes:

¢* =argmin ¢! T(Y)e, (1)
(4

where £(V) = 3,y ok M2k 0 = Vax V..

However, in the presence of noise, this polynomial is not
the optimal polynomial for the purposes of segmentation.
Inspired by Taubin (1991), we consider minimizing an ob-
jective function known as the Sampson distance.

Definition 5 (Jacobian of polynomials) Let Q = [q1, ...,
gm]1T be a set of (linearly independent) polynomials of five
variables {x1, y1, x2, ¥2, z}. Then the Jacobian of Q is:

0x1 ay1 0
El dy ]
J(Q) = ’f' f‘ 'Z (22)
dgm  dqm . dqm
axg ayy 0z

Particularly, for a vanishing polynomial p(y) = uag (y)7e,
its Jacobian is:

T(py) =T (max (y)Te. (23)
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Assume a point y from an algebraic set A defined by a
set of polynomials Q, i.e., Q(y) = 0. Denote y to be a noisy
version of y, which is close to A:

y=y+n. (24)

Using Taylor expansion, the value of Q evaluated at ¥ is
given by

0 =0 +TQ@ONGF—»N+0Uy—ylI». (25

Ignoring the higher order terms, and applying Q(y) =0,
we obtain the approximate residual.

y=3= TN TN TN 0 (26

Definition 6 (Sampson distance) The Sampson distance be-
tween y and y is defined by:

1y—yl~ \/Q(y)T(J(Q(y))J(Q(y))T)*Q(y) eR, (27)

where A" for a matrix A denotes the Moore-Penrose
pseudo-inverse.

Thus, given a set of noisy samples ), minimizing the av-

erage squared Sampson distance
1
3 22 2T @I @NN e (28)

yey

leads to optimal estimation of the vanishing polynomials Q
(Taubin 1991).

Solving the above minimization problem (28) typi-
cally requires nonlinear optimization via iterative gradient-
descent techniques. However, under mild assumptions, the
optimal polynomials that minimize the Sampson distance
(28) can be solved linearly, using a Rayleigh-quotient type
criterion (Ma et al. 2008; Yang et al. 2005).

Let p(y) = ]_[’}zl(yTij) be a vanishing polynomial
for a mixture of n motion models, and let y; be a joint im-
age sample from the first motion model (i.e. le 01y, =0).
From (5) we obtain:

J(p(y1) = (1'[ leijl)@Qlyl).

j=2

If y, does not lie in any intersection of multiple motion
models, then (y{ Q;y; #0),2 < j <n. Thus [T (p(y)l
will be proportional to the (algebraic) distance between y,
and all other quadratic manifolds. As a result, a good “seg-
mentation polynomial” should simultaneously minimize the
distance between a joint image sample y and its quadratic
manifold, while keeping y far from all other quadratic man-
ifolds.
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Definition 7 (Segmentation Polynomial) A segmentation
polynomial in Ik ()) is a vanishing polynomial with coeffi-
cient vector ¢* obtained from the following minimization:?

I 2 Y )T

¢* = argmin 7 5 Tohe (29)

where

S =) ok Mok ()7 (30)
yey

and

W)= Z T (2x ()T (mak )T (31)
yey

In Definition 7, the matrix ¥ measures the square of the
fitting polynomial evaluated at each sample, which can be
regarded as a squared “algebraic distance” between samples
and the quadratic manifolds they lie on. Similarly, matrix
W measures the squared norm of the derivative of the poly-
nomial evaluated at each sample, which can be regarded as
a squared “distance” between samples and all of the other
quadratic manifolds in the multi-motion model. This ratio
is similar to the Rayleigh quotient used in linear discrimi-
nant analysis (LDA). The minimization of the Rayleigh quo-
tient only requires that ¥ and W be real, symmetric, pos-
itive semidefinite matrices. Thus, the vector ¢* that mini-
mizes this ratio is the minimal generalized eigenvector of X
and W.

3.2 Robust Estimation via Influence Functions

In this subsection, we further consider robust estimation of
segmentation polynomials when the data are contaminated
by a moderate amount of outliers. It is known that the break-
down point for estimating vanishing polynomials using ei-
ther SVD (21) or the Rayleigh quotient (29) is 0%. That is, a
single outlier with a large magnitude may arbitrarily perturb
the singluar values and the corresponding subspaces (Jollife
2002). As a result, the estimated segmentation polynomial
p(y) = ok (¥)T ¢* will not vanish on the valid inlying sam-
plesin V.

In this paper, we use a set of vanishing polynomials as
a global constraint to represent mixture motions. Since the
coefficients of the polynomials are estimated via recover-
ing eigenvectors of the data matrix Vog()), the outliers
that affect the polynomials can be rejected by robust esti-
mation of the eigenvalues and eigenvectors. In robust statis-
tics, such methods are referred to as robust principal com-
ponent analysis (Robust PCA), and they are rooted on either

5To prevent the denominator of the quotient in (29) from being zero,
we add a regularization term €/ to W())), where ¢ is a small positive
number and / is the identity matrix.
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probability or influence based approaches (Jollife 2002). In
this paper, we choose to present a means of robustly estimat-
ing segmentation polynomials using influence functions. For
detailed comparisons between influence functions and the
other two approaches, the reader is referred to Yang et al.
(2006) and Yang (2006).

As mentioned in Sect. 3.1, the vector of coefficients of
a segmentation polynomial p(y) is the generalized eigen-
vector ¢ that minimizes the Rayleigh quotient (29). For a
particular sample y,, a new coefficient vector ¢®) can be
estimated using all but the k-th sample:

cI's®e

SETIE (32)

c® = argmin
c

where ® = SV \ {y;}), and WO =W\ {y,}). The
influence of y; on ¢ and hence p(y) is then defined as the
difference between the vector ¢ and the vector ¢:

I(yp) = (e, e®), (33)

where (-, -) denotes the subspace angle difference between
two subspaces/vectors. In robust statistics, 7 (y,) is called
the sample influence function (Hampel et al. 1986). Given
an influence function, the samples with the highest influence
values will be rejected as “outliers”, and will not be used for
the estimation of the segmentation polynomial.® The empir-
ical breakdown point of the sample influence function for
robust PCA is typically above 30-50%.

3.3 Estimation of Outlier Percentage

Given the estimation of sample influence values for all im-
age correspondences, the outlier rejection problem is still
not completely solved. In general, we do not know how
many image features are outliers that need to be rejected.
In this subsection, we propose a means to estimate the out-
lier percentage. Based on this estimate, the image features
with the highest influence will be rejected as outliers. Note
that the rejection does not require a segmentation of the data
into correct individual motions. The issue of segmentation
will be addressed in the next section.

We estimate the outlier percentage as the smallest por-
tion of the total sample set such that the maximal Sampson
distance (27) from the remaining samples is smaller than a
given residual threshold t. Equivalently, we reject samples
that have large Sampson distance to the union of QFM’s and

6The major drawback of the sample influence function is the speed.
Suppose we have N samples. We then need to compute LDA N + 1
times in order to evaluate the influence values of the N samples. In
light of this problem, several formulas have been proposed to approxi-
mate the function in closed form, called theoretical influence functions.
For clarity, we only use sample influence functions in this paper. The
interested reader is referred to Ma et al. (2008) for further discussion.

QHM'’s, and identify those that have small Sampson distance
as inliers. The distance threshold t can be seen as the vari-
ation of the noise of the inlying noisy data. The use of
also helps us to conduct a fair comparison with other robust
statistical methods such as RANSAC, where the residual
threshold is popularly used to reject outliers. The complete
algorithm for robust estimation of the segmentation polyno-
mial is shown as Algorithm 1.

Algorithm 1 (Robust Segmentation Polynomial)

Given a set of joint image samples )Y = {y; =
[x1, y1, X2, 2, Z]T € Rs},ivzl that are associated with n mo-
tions from two perspective images and a Sampson distance
threshold 7,

1: Compute
e
ming =7 W(g)))é.
for all y, € YV do

polynomial coefficients

cY) =

x®e

wig’
Compute influence function 7 (y;) = (c, c®y.

end for

for outlier percentage r = 0 to 50 do
Let outlier set Y be the r% of samples with largest
influence 7 (y), and inlier set Y/ =Y\ V9.
Compute X (Y1), W(Y'), and ¢(Y)).
Compute p(y) = c¢(¥")7 12 (y), Jacobian 7 (p(y))
and Hessian H,(y) forall y € Y'.

10:  Compute maximal Sampson distance:

Compute ¢©) = min;

A A o

o ®

@ = max \ O (T PONT (PN P,
ye

11: ifd* <7 then

12: break
13:  end if
14: end for

15: Output: Y =Y U Y9, p(y), T(p), and H,,.

4 Robust Algebraic Segmentation of Quadratic
Manifolds

We now show how to use a segmentation polynomial
p(y) = ¢l ok () to segment joint image samples ) into
clusters corresponding to different motion models. Because
our approach does not rely on the specific form of the Q
matrices, the proposed algorithm is able to segment data
drawn from a mixture of general quadratic manifolds. Thus,
for the following analysis, we assume that the data lie in a
D-dimensional space, and their respective quadratic mani-
folds have dimensions dj, ..., d, (for joint imagery data in
our case, D =5 and each d; will be either 2 or 4).
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As stated before, the estimation of the number of lin-
early independent vanishing polynomials on g () is ill-
conditioned. However, without loss of generality, we assume
that there are s linearly independent vanishing polynomials
on Ik ()). We notice that an arbitrary polynomial coeffi-
cient vector ¢ is a linear combination of s ¢, ’s, and hence
may not correspond to a factorable polynomial. Therefore,
such vanishing polynomials are linear combinations of fac-
torable ones:

P = apk(m = ar ][y Qiciyy- (34)
k=1 k=1 i=1

To avoid the difficulty of polynomial factorization, we in-
stead consider the first and second derivatives of the fit-
ting polynomials {p(y)}. Below we list some of the relevant
properties of the derivatives.

Theorem 4 (Derivative of the Fitting Polynomials) Let
p(») =i ak [T, T Qi) y be any multivariate poly-
nomial that vanishes on Y. If y; € YV belongs to the
quadratic manifold S; defined by { Q,, :f:] ,then J(p(y1)) €
RP, the derivative of p(y) at Y1, is given by:

r
Ty =Y 20,(y))Quy;.

u=1

(35)

where o, (y1) are scalar functions of y that contain polyno-
mial factors from other manifolds. If y  is on the intersection
of more than one manifold, then J (p(y;)) =0.

Proof Without loss of generality, we assume y, is in the first
quadratic manifold Si, that is / = 1. Taking the gradient of

p(y) in (34),

J(p(y) = Zakj<]_[ yTQ,-a,.(k)y>

k=1 i=1
N n

= Zak Z(zQiai(k)y 1_[ y' Qja,-(k)J’>- (36)
k=1 1

i= J#i
Since y; is in Si, the scalar ]_[jﬁ yTngj(k)y =0 for all
i =2,...,n. Therefore,

s

TPy, = Z(Zak 1_[ " Qjaj(k)y1> Qo1 V1

k=1 j#1
r

=Y " 20,(y) Q1
u=1

where @, (¥1) = Y-, )=u 9% [ 1j21 Y1 Qjo; 0y ¥1- The terms
oy, (yq) are scalar functions that contain polynomial factors
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from other manifolds. Obviously, when y; is at the intersec-
tion of more than one manifold, then in (36), all of the terms

[1;2 ¥{ Qjo;y1 =0, and hence J (p(y1)) = 0. O

Theorem 5 (Surface Normals from the Derivatives) Let
y € Y be a general point that lies exclusively in a single
d-dimensional manifold S. Then the matrix

TP =[T 1), ..., T(ps(y)] € RP*S

has rank r = D — d. Let the singular value decomposi-
tion (SVD) of J(P(y)) be J(P(y)) = USVT with U and
V' being orthogonal matrices and ¥ a diagonal matrix.
The first r columns of U give a set of orthonormal vectors
ni(y),...,n.(y)toSaty.

Proof Please refer to Lang (2002). (]

Theorems 4 and 5 allow one to compute the normal vec-
tors to the manifold from the fitting polynomials. If a mix-
ture manifold model consists of only linear subspaces, their
normal vectors are indeed sufficient to segment the mixture
data, since the normal vectors are invariant for each sub-
space. This constraint is explicitly harnessed in generalized
principal component analysis (GPCA) for segmenting mix-
ture subspace models (Vidal et al. 2005).

In the following example, we show that under a special
condition, the normal vectors are also sufficient to segment
quadratic manifolds.

Example 3 (Segmentation of Quadratic Surfaces with Dif-
ferent Dimensions) Assume all of the quadratic manifolds
in the mixture manifold have different dimensions. Then the
manifold normals estimated by [ (P (y)) are not a globally
invariant, as the normal vectors vary at different locations
of a quadratic surface. However, in theory, J (P (y)) is still
sufficient for segmentation: One can segment the points into
manifolds with different dimensions by examining the rank
of J(P(y)) at each point y, which corresponds to the codi-
mension of the manifold. In this case, the method harnesses
the invariant manifold dimensions that are different among
mixture manifolds.

However, as we have stated, determining the number of
fitting polynomials from noisy data is an ill-conditioned
problem. Also, for most of the problems we investigate,
many of the quadratic manifolds in a mixture have the same
dimension. Thus, additional information from higher-order
derivatives is needed.

Theorem 6 (Hessian of the Vanishing Polynomials) Let
) =20 ak [12; ¥T Qic, )y be any multivariate poly-
nomial that fits Y. If y; € Y belongs to a quadratic mani-
fold S; defined by {sz}r’ then the Hessian of p(y) at yq,

u=1"
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H,(yy) is given by:

r

Y [200(y) Quu + Quy 1 T (u(y))”

u=1

+ T () QuyD’], (37)

where o, (y) are scalar functions of y that contain polyno-
mial factors from other manifolds.

Proof Without loss of generality, we assume y, is in the first
quadratic manifold Sy; that is, / = 1. We have shown in (36)
that

n

T =Y a Z(zgm,. wy[]y" 0 jg_,.<k>y).

k=1 i=1 ji

Hence, its second order derivative is

Z [2 (l—[ y' Qjo;(k))’) Qi (k)

Hy(y) =) a
k=1

= i=1 j#i
+ 2Qig,<k>yj(1"[ y'o ,-g,(my)} (38)
JF#i

Substituting y; in (38), and canceling all terms with
leQluyl =0, we get

r

Hy(y)) = Y _[20u(y) Quu + Quuy1 T (e (y))”

u=1

+ T (D) Quuy )’ - (39)

O

Examining (37), we notice that the first term is indeed the
Hessian of the factor for the manifold itself, but the second
and third terms depend on the derivatives of factors from
other manifolds in the mixture. This prevents us from di-
rectly using the Hessians to segment the data to different
manifolds.

In order to obtain a common signature for each manifold,
we seek to eliminate the second and third terms from (37).
These two terms are degenerate matrices formed from the
outer product of the normal to the manifold Qy,y; and an-
other vector J (a, (y1)). Thus, any vector that is tangent to
the manifold at y; annihilates these terms. The tangent vec-
tors to the manifold at y; span the null space of the normal
to the manifold.

For segmentation, we examine the contraction of the
Hessian by the tangent vectors to the manifold.

Definition 8 (Contraction of Hessians) Let 7 (y) be the ma-
trix [£1, ..., t4] € RP*4 amatrix whose columns are ortho-

normal tangent vectors to a manifold at a point y. Then for
every vanishing polynomial p(y), the contraction of Hy,(y)
by T (y) is defined to be the symmetric matrix:

Cy) =TT H,(»T(y) e R,

Theorem 7 (Properties of Contractions) Given a mixture of
quadratic manifolds, if a point y is on a quadratic manifold

S defined by {Q, then

’
u=1’

Cy) =) 2e,(MNT(MN" QLT (y) e R (40)

u=1

for some scalars oy, (y) € R that contain polynomial factors
from other manifolds.

Proof This is a direct result using Theorem 6 and Defini-
tion 8. (]

The contraction matrix defined in Definition 8 eliminates
the second and third terms in (37). However the contrac-
tion matrix is still not common for all points of the same
quadratic surface, because the tangent and Hessian matrices
of two points on the same surface are different. However, we
can consider the infersection of the two tangent spaces at the
two points. Without loss of generality, let y,, y, € ) be two
points on a mixture of d-dimensional quadratic surfaces. Let
T (yy) and T (y,) be the two tangent spaces at y; and y,, re-
spectively. Their intersection T'(yq, y,) =T (y;) N T (y,) is
in general a (2d — D)-dimensional subspace in R?, assum-
ing 2d > D. Every t € T (yy, y,) is a tangent to the surface
at both points.

Definition 9 (Mutual Contraction) For every fitting poly-
nomial pr(x),k = 1,...,s, the mutual contraction for
Y1, Y, € Y is the pair of contractions of Hessians at y; and
Yo with T'(yy, y2):

C*(y1,¥) =T (1, y) Hy (3 DT (31, ¥2).
Ck (32, y) =T (1. y) Hy 3T (31, y2)-

Notice that both C_'k(yl, y,) and C_'k(yz, y1) are (2d — D)
X (2d — D) symmetric matrices. Since the space of all n x n
symmetric matrices has dimension n(n + 1)/2, we define
M = (2d — D)(2d — D + 1)/2, and treat the matrix C as a
vector in RM . By the assumption that 2d > D, M is posi-
tive. Then we have the following relation between the sub-
spaces spanned by the two sets of mutual contractions ma-
trices:

Theorem 8 (Mutual Contraction Subspace) Suppose M >

D—d>0.Ify,, y, € Y both belong to the same quadratic
surface, then we have
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span{C' (y1, y2) .-, C*(yy, y2)}
=span{C'(y5, y1). ..., C*(y2. yD} 41)

which is a proper subspace in RM. We call it the mutual
contraction subspace between y, and y,.

Proof Suppose the quadratic surface is defined by the set of
symmetric matrices Aj, j =1,..., D — d. Similarly to the
proof of Theorem 7, one can show that both sets of matrices
span the same subspace as the following » matrices:

Ty y) ATy, y), j=1,..., r. (42)

By the assumption that M > D — d, the subspace is
proper. O

Corollary 1 (Quadratic Hyper-Surfaces) Ifall the quadratic
manifolds are of D — 1 dimension (i.e. s = 1), for two points

Fig. 1 Top: A pair of points
have the same mutual
contraction (up to a scale) if the R
points are from the same EX o
quadratic manifold, and a
different mutual contraction “‘X‘
otherwise. Bottom: Different ANSY
pairs of points on the same N
quadratic manifold, in general,

have different mutual

contractions

e
"

..
[
.-
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Y1 and y, to be on the same quadratic manifolds S, we must
have

C(y1.y2) ~ C(yy. y;) e RP=DX(D=2) (43)

where ~ means “equal up to a nonzero scalar.”

The mutual contraction subspace, unlike the normal vec-
tors for linear subspaces, is not globally invariant on the
quadratic surfaces. It can be different for different pairs of
points (yy, ¥,) (see Fig. 1). Nevertheless, the mutual con-
traction subspace gives a very effective necessary condi-
tion for segmenting the data points: If two points belong to
the same quadratic manifold, their mutual contraction sub-
spaces are the same. Thus, if we define

Wi =span{C'(y;.y0).- ... C*(yj.yp)} and

Wi =span{C'(y;, ¥)),....C* (. ¥ )},

="

______

="

LK Y,’A;f’l X
Vs %
X
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we can form a similarity matrix S with elements

. (W5, W), dim(W;) = dim(Wy),
Sjig=1." : (44)
0, otherwise,

where (-, -) is the subspace angle. Then, based on the simi-
larity matrix S, any spectral clustering algorithm (Ng et al.
2001; Weiss 1999) can be used to segment the data into dif-
ferent quadratic surfaces.

We summarize the results of our derivations in Algo-
rithm 2.

Algorithm 2 (RAS: Robust Algebraic Segmentation)

Given joint image samples Y = {y, = [x1, ¥1, X2, y2, z]T €
]RS},]{V=1 from n motions in two perspective images, and a
residual threshold 7,

1: Call Algorithm 1 with arguments (), n, T) to partition
Y =Y U Y9 into an inlier set and an outlier set, and
obtain the values of the segmentation polynomial p(y),
Jacobian J (p(y)), and Hessian H,(y) forall y € V.

2: for all pair of points (yj, Yi) € V! do

32 Compute T(y;, y;) =T (p(y;, )" NI (p(y)*.

4:  Compute the mutual contraction matrices

Ci=T(;.y0)" Hy(y )T (y;.y;) and

Co =T,y Hyy)T (v, yo)-

5:  Compute the similarity matrix entry S = { C s Cr).

6: end for

7: Use a spectral clustering method on S to cluster Y/ into
n groups.

5 Improving RAS via Robust Statistical Methods

Robust algebraic segmentation (RAS) in Algorithm 2 pro-
vides an algebraic, noniterative algorithm to segment a mix-
ture of rigid-body and planar motions, and is also capable
of rejecting outlying image correspondences using robust
segmentation polynomials (Algorithm 1). In this section,
we show that RAS complements existing iterative statistical
methods, particularly for consensus-based methods such as
RANSAC. In particular, we show how to apply RANSAC as
a post-processing step to RAS to detect and remove outliers.
Supplementing RAS with RANSAC also allows us to uti-
lize both the eight-point algorithm and four-point algorithm
in RANSAC to identify individual motions that belong to
either general rigid bodies or degenerate planar structures.
In this paper, we do not study the problem of model se-
lection between epipolar constraints and homography con-
straints, so long as the respective images are correctly seg-

mented. The interested reader can refer to Kanatani (2002a)
and Schindler and Suter (2005).

The approach proceeds as follows. Given a set of image
correspondences known to belong to n motions, we first call
RAS with a relaxed outlier rejection parameter T to parti-
tion the data set into n subsets plus an outlier set. We then
apply RANSAC to each inlying subset individually to de-
tect and remove outliers.” Within each inlying subset, we
define eight joint image samples as the minimum sampling
set. In each iteration, RANSAC uses the eight-point algo-
rithm to recover a fundamental matrix ', and calculates its
consensus in the group w.r.t. F' and a robust threshold 7.
This process is repeated over a number of trials 7. Subse-
quently, the optimal solution F* corresponds to the largest
consensus among joint image samples within the group, and
the samples that do not satisfy the robust threshold 77 are
rejected as outliers.

Next, because a homography is a degenerate epipolar re-
lation, we explicitly use the four-point algorithm to verify if
the samples that satisfy the above epipolar constraint are de-
generate. We apply the four-point algorithm with a threshold
Ty to all four-point subsets of those eight correspondences
corresponding to F* to obtain a set of candidate homogra-
phy matrices H’s, and recalculate the consensus for each H.
If the maximum consensus is a significant portion of the
maximum consensus for F* (e.g., two-thirds), we label this
group as a planar motion, otherwise the group is labeled as a
general rigid-body motion. Any feature correspondence that
does not adequately satisfy the chosen motion model is la-
beled an outlier.

The combination of RAS and RANSAC dramatically re-
duces the complexity of RANSAC applied to mixture mod-
els. In contrast, it was shown by Yang et al. (2006) and
Schindler and Suter (2005) that the complexity of RANSAC
grows exponentially with the number of mixture models,
mainly because the percentage of outliers w.r.t. a single
model is the sum of the true outliers plus all the inliers from
the other mixture models (please refer to Fig. 5 in Sect. 6 for
a simulated comparison).

6 Simulation

In this section, we validate the performance of RAS us-
ing synthetic image data. We have constructed four types
of dynamic scenes for our simulations, referred to as “3F,”
“2F+1H,” “1F+2H,” and “3H,” respectively. The numbers
before “F” and “H” specify the number of general rigid and
planar objects in the given scene, respectively. Thus, these

7In our implementation, RANSAC neither reassigns samples of an in-
lying subset to any other inlying subsets, nor reassign samples in the
outlying subset to any inlying subset.
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scenes all contain three motions, but each scene has differ-
ent combinations of general rigid-body and planar motions.
In a given trial, three rigid objects of the specified type are
generated in space with 150 feature points on each object. In
each trial, we randomly vary the location of feature points on
each rigid object/plane and location of rigid objects/planes
in the scene, the motion of rigid objects/planes and the cam-
era between the two views, the noise perturbation of feature
points in the scene, and the location of outlier feature points
(if any) in the scene. The three objects all undergo differ-
ent rigid-body motions and then are projected onto camera
frames via perspective projection. Thus the joint image sam-
ples from the two image views lie on a mixture of QFMs and
QHMs. Two examples of our synthetic dynamic scenes can
be seen in Fig. 2.

For scenes with two or more planar structures, we sim-
ulate the presence of two walls. Thus, we force two of the
planar structures to remain stationary relative to each other
between the camera views. This introduces a modeling am-
biguity, as the joint image samples from these two structures
can be fit either by two planar homographies or a single gen-
eral rigid motion. However, each algorithm is provided with
the correct number of motion models. The ground-truth seg-
mentation assigns the joint image samples from these two
planar structures to two different planar homographies.

We compare the performance of RAS with four other
methods: a greedy agglomerative approach to subspace seg-
mentation called agglomerative lossy compression (ALC)
(Rao et al. 2008), a form of RANSAC that finds mo-
tion models one at a time (MLESAC) (Torr and David-
son 2003), a form of RANSAC that globally finds multiple
motion models via Monte-Carlo sampling (MC-RANSAC)
(Schindler and Suter 2005), and the projection-based M-
estimators (pbM) (Subbarao and Meer 2006). All implemen-
tations of the algorithms were obtained from their respective
authors.

6.1 Performance on Noisy Data

We measure the misclassification rate of each algorithm as
a function of added image noise. After image correspon-
dences are generated as previously described, each image
pixel is perturbed by random noise that ranges from O to
2 pixels w.r.t. an image size of roughly 1024 x 1024. We
conduct 200 trials for each combination of rigid-body mo-
tion and noise level, and compute the average misclassifica-
tion rate w.r.t. to the ground-truth labeling. The results of this
simulation are displayed in Fig. 3. RAS obtains a reasonable
segmentation of the joint image samples in all four scenes.
RAS performs exceedingly well in the scenes with planar
motions, achieving less than 2% misclassification rate in
those three cases. The presence of QHMs in the joint image
space generally results in many linearly independent vanish-
ing polynomials. Hence, as these results show, the choice of
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the segmentation polynomial is the one that best segments
the joint image samples. The highest misclassification rate
at two-pixel noise level is 5.5% for the 3F model.

We observe that ALC also obtains good segmentations
of 3F, although it has been designed to segment linear affine
motions. One possible reason could be that, because QFMs
are hypersurfaces in the joint image space, a QFM can be
reasonably approximated as a Gaussian blob. Thus, the mix-
ture of three general rigid-body motions in “3F” is well mod-
eled by the mixture of Gaussians implicitly used in ALC.
The observation is consistent with the drastic decrease in
performance as more planar motions are added to the scene.

As for MLESAC, though it works well for mixtures of
pure general rigid motion, the greedy nature of its maxi-
mum consensus search causes it to fail to segment multiple
planar parts of a single motion (the two “walls” in 1F+2H
and 3H). Conversely, MC-RANSAC has some trouble seg-
menting general rigid-body motions, but its accuracy does
increase in scenes with more planar motions. Finally, ppM
is unable to obtain adequate segmentations for any of the
scenes, even in the absence of noise. Thus, we do not com-
pare our methods with pbM in subsequent simulations and
experiments.

6.2 Performance with Outliers

We further compare the performance of each algorithm
on synthetic image data with both pixel noise and outly-
ing image correspondences. First, we test the efficacy of
RAS in rejecting outlying image correspondences. We then
show the improvement of the segmentation by activating a
RANSAC post-processing step of RAS, a method we label
as “RAS+RANSAC.”

In each trial, 150 feature correspondences are generated
from three objects in the same manner as before, and the
coordinates of each joint image sample are randomly per-
turbed by up to one pixel. Then the set of joint image sam-
ples is inflated from 0% up to 30% with random correspon-
dences. The algorithms are not given the true outlier per-
centage. We chose the residual threshold t for RAS and
RAS+RANSAC to be 0.22 and 0.25, respectively. The para-
meters used for RANSAC post-processing are tr = 0.035,
ty = 0.04, 50000 trials, and 2/3 consensus for planar homo-
graphies. Figure 4 shows the segmentation accuracy in terms
of false positive rate (FPR) and verification rate (VR).3
Once again, we observe that RAS obtains reasonable seg-
mentations for all four scenes, and the accuracy is consis-
tent. With 30% added outliers, RAS achieves 6.33% FPR
and 93.8% VR for the 3F model, and 4.9% FPR and 98%

8False Positive Rate is the percentage of samples that are either falsely
classified as inliers or assigned to the wrong group. Verification Rate is
the percentage of samples that are falsely classified as outliers.
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Fig. 2 Two examples of image
correspondences of mixed 1t
motions (in color)
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(a) Two perspective images of a (2F + 1H) model. The green
planar structure simulates a static wall in space.
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(b) Two perspective images of a (3H) model. The red and blue
planar structures simulate two static walls in space.
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Fig. 3 Comparison of misclassification rates of various algorithms on three rigid bodies in space with different types of motions and added noise
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Fig. 4 Performance of various algorithms on four dynamic scenes with different types of motions and synthetic outliers. Left: False Positive Rate.

Right: Verification Rate

VR for the 3H model. Supplementing RAS with RANSAC
further improves performance, in terms of both FPR and VR.
With 30% added outliers, RAS+RANSAC achieves 4.3%
FPR and 95.9% VR for the 3F model, and a meager 0.8%
FPR and 98.3% VR for the 3H model.

We compare the performance of RAS and RAS+
RANSAC with other methods. ALC can obtain a decent
segmentation for the 3F model with no outliers, but does not
work well with increased numbers of outliers and/or pla-
nar motions. MLESAC obtains good results for the 3F and
2F+1H models, and the performance is independent of the
number of outliers. However, just as in the noise case, MLE-
SAC cannot segment multiple planar motions of the same
rigid object. Finally, while MC-RANSAC does not fail on
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Fig. 5 The average running time of various algorithms on synthetic
scenes as a function of added outlier percentage

any of the models, its performance, in both FPR and VR, is
consistently worse than RAS+RANSAC.
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(a) boxes

(d) desk

(e) lightbulb

(f) manycars

Fig. 6 Segmentation results (in color) of RAS+RANSAC on nine real image sequences. Features assigned to different motions are labeled with
different colors and shapes. Features classified as outliers are labeled as black squares

We also measure the average running time of each
method as a function of outlier percentage. As Fig. 5 shows,
both RAS and RAS+RANSAC are considerably more effi-
cient, running at least two to three times faster than meth-
ods based on RANSAC. In addition, the running times of
RAS and RAS+RANSAC scale gracefully with added out-

liers. In summary, both the proposed algorithm, RAS, and its
variation, RAS+RANSAC, achieve the best overall segmen-
tation performance in simulations with mixed rigid-body
motions, and their running times are only a small fraction
of the running times of most random sampling-based algo-
rithms.
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(g) man-in-office

Fig. 6 (Continued)

7 Experiment

In this section we verify the performance of RAS and
RAS+RANSAC on the 13 real image sequences listed in
Table 1. We obtained the sequences “boxes,” “deliveryvan,”
“desk,” “lightbulb,” and “office” from (Schindler and Suter
2005), “man-in-office,” “parking-lot,” and “toys-on-table”
from (Sugaya and Kanatani 2003), and “carsnbus3,” “many-
cars,” and “nrbooks3” from (Tron and Vidal 2007). In addi-
tion, we created the sequences “posters-checkerboard” and
“posters-keyboard” to mimic the simulation models 3H and
1F+2H, respectively.

For each sequence, we apply our methods RAS and
RAS+RANSAC, as well as MLESAC and MC-RANSAC.’
For sequences that contain features from more than two im-
age frames, we simply use the first and last image frames
to construct joint image samples. All parameters for RAS
and RAS+RANSAC are the same as those used in Sect. 6,
and parameters for all other methods are tuned to achieve
the best segmentation results. The segmentation results for
RAS+RANSAC on each sequence are shown in Figs. 6
and 7. The performance results (in terms of FPR and VR)
for all methods are listed in Table 2.

RAS outperforms MLESAC on all but one sequence, and
MC-RANSAC on eight of the thirteen sequences. RAS+

9 As ALC is designed to work with sequences with many image frames,
we do not compare our methods with it in this section.
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(h) nrbooks3

(i) office

Table 1 Information about image sequences used for experiments

Sequence Models # Samples # Outliers
boxes 2F 115, 121 2
carsnbus3 3F 85,45, 89 28
deliveryvan 2F 62,192 0
desk 1F+2H 50, 50, 55 45
lightbulb 3F 51,121, 33 0
manycars 4F 54,24,23,43 0
man-in-office 2F 16,57 34
nrbooks3 1F+2H 129, 168, 91 32
office 2F+1H 76, 109, 74 48
parking-lot 2F 19, 117 4
posters-checkerboard 3H 100, 99, 81 99
posters-keyboard 1F+2H 99, 99, 99 99
toys-on-table 1F+1H 49,42 35

RANSAC further improves the accuracy of RAS, achiev-
ing almost perfect segmentation for most of the sequences,
even in cases where the segmentation by RAS is poor.
The notable exceptions are the sequences from Sugaya
and Kanatani (“man-in-office,” “parking-lot,” and “toys-on-
table”). These sequences contain multiple image frames that
are continuous in time, and were originally designed for
affine camera models. In this experiment, only the first and
last frames from each of the sequences are used. Hence the
segmentation problem becomes much more challenging. In
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Fig. 7 Segmentation results (in
color) of RAS+RANSAC on
four more real image sequences.
Features assigned to different
motions are labeled with
different colors and shapes.
Features classified as outliers
are labeled as black squares

(c) posters-keyboard

addition, some of the motions in these sequences have very
few tracked correspondences, making it difficult for RAS
to find a polynomial that vanishes on all of the joint im-
age data. Nevertheless, RAS+RANSAC still obtains the best
segmentation of the methods we tested on these sequences.
MC-RANSAC is able to achieve comparable segmentation
results on some sequences, but tends to falsely reject many
more inliers.

8 Conclusion

We have proposed a general framework for segmentation of
mixed rigid-body motions and planar motions, whose fea-
tures lie on certain quadratic manifolds in the joint image
space. We have proved that the joint image of features from
K mixture epipolar and homography constraints is uniquely
determined by a set of (2K)-th degree vanishing polyno-
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Table 2 False positive and
verification rates for verious
algorithms on thirteen real
image sequences. Best results
are in bold

@ Springer

boxes MLESAC MC-RANSAC RAS RAS+RANSAC
FPR 9.24% 0.84% 1.68% 0.84%

VR 36.97% 84.87% 100% 87.39%
carsnbus3 MLESAC MC-RANSAC RAS RAS+RANSAC
FPR 45.75% 12.55% 2.83% 1.62%

VR 83.81% 90.28% 97.17% 85.83%
deliveryvan MLESAC MC-RANSAC RAS RAS+RANSAC
FPR 23.23% 10.63% 5.91% 0.39%

VR 97.64% 96.85% 100% 94.09%

desk MLESAC MC-RANSAC RAS RAS+RANSAC
FPR 9.00% 2.50% 3.00% 0.50%

VR 55.50% 93.50% 91.50% 93.50%
lightbulb MLESAC MC-RANSAC RAS RAS+RANSAC
FPR 39.52% 0.00% 0.00% 0.00%

VR 76.19% 82.86% 100% 99.52 %
manycars MLESAC MC-RANSAC RAS RAS+RANSAC
FPR 30.56% 22.22% 0.00% 0.00%

VR 90.28% 95.83% 100% 88.89%
man-in-office MLESAC MC-RANSAC RAS RAS+RANSAC
FPR 20.56% 34.58% 20.56% 11.21%

VR 89.72% 95.33% 84.11% 82.24%
nrbooks3 MLESAC MC-RANSAC RAS RAS+RANSAC
FPR 12.38% 9.05% 5.48% 0.95%

VR 41.19% 65.48% 94.29% 88.33%

office MLESAC MC-RANSAC RAS RAS+RANSAC
FPR 2.28% 0.33% 10.42% 0.00%

VR 89.59% 90.55% 86.97% 93.49%
parking-lot MLESAC MC-RANSAC RAS RAS+RANSAC
FPR 7.86% 5.00% 3.57% 2.86%

VR 98.57% 96.43% 100% 97.86%
posters-checker MLESAC MC-RANSAC RAS RAS+RANSAC
FPR 20.58% 1.06% 9.23% 0.00%

VR 49.87% 97.36% 70.71% 95.25%
posters-keyboard MLESAC MC-RANSAC RAS RAS+RANSAC
FPR 8.59% 0.25% 10.61% 0.51%

VR 56.06% 83.33% 78.03% 88.13%
toys-on-table MLESAC MC-RANSAC RAS RAS+RANSAC
FPR 38.10% 38.10% 15.08% 7.94%

VR 91.27% 92.86% 81.75% 77.78%
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mials. The membership of the feature points in term of the
K motions can be derived from the first and second deriva-
tives of the recovered vanishing polynomials. We note that
our current method requires that K is provided as an input.
Automatic determination of K, by applying a prior such as
spatial continuity, is a topic for future research.

Throughout the paper, we have emphasized the conflu-
ence of algebra and statistics in segmentation of mixture
geometric models (here quadratic manifolds). The new al-
gebraic algorithm complements traditional robust segmen-
tation methods that are based on statistical inference only.
On one hand, we have shown that certain techniques in ro-
bust statistics can effectively reject outlying samples in the
estimation of segmentation polynomials, and improve the
accuracy of segmentation with noisy image samples. On the
other hand, the global algebraic algorithm, RAS, can be cou-
pled with the RANSAC, which not only reduces the number
of iterations but also improves the final segmentation result.

The efficacy of the proposed algorithm, RAS, has been
validated by extensive simulations and experiments on real,
public motion sequences. The comparison of RAS with
several other robust motion segmentation algorithms (i.e.,
MLESAC, MC-RANSAC, ALC, and pbM) has shown that
RAS and its variation, RAS+RANSAC, clearly outperform
the existing algorithms, particularly when a dynamic scene
contains multiple motions with different types. The experi-
ment has also demonstrated that the implementation of RAS
is two to three times faster than the implementation of the
other robust algorithms.
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Appendix

Proof of Theorem 2 One direction of the equalities is trivial.
Since IF is generated by gF e I(SF), hence 1F C 1(SF).
Similarly, I € 1(SH).

To show the other direction, by Hilbert’s Nullstellensatz
theorem, we only need to prove that 7 and I are prime
ideals (Lang 2002).

Since I = RgF, i.e., it only has one generator, IF is a
principal ideal. Therefore, I is a prime ideal. By the Null-
stellensatz theorem, ¥ D I (S F ).

For I, we need to show by definition that if py p) € 17,
either py € I or pr € I, Since p1pr € I, p1pr =
alng + azggl + a3g§1 for some polynomials ay, a2, a3z € R.
By the assumption, we also know that g1, g» and g3 are lin-
early independent.

Suppose that p; & I, hence by polynomial division,
p1 = blgfq + bzgf + b3g§{ + bs for some polynomials
b1,ba,b3,bs € R, and b4 is linearly independent with g,
g2 and g3. Therefore,

pipa = (b1gl 4+ bagh! +b3g¥ +by)py
=aigf +agd +asgl. (45)

Combining the gf’ , ng , and g3H terms on the two sides
of the equality, it is easy to see that p, must be of the
form c1gf1 + czgf + C3g§1 for some c1, ¢2, c3 € R. Hence,

p2 € Il TH is also a prime ideal. Hence, 17 2 I1(S*).
In summary, 7 = 1(SF) and 1! = 1(S¥). O
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