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Abstract We propose a hybrid dynamical model of hu-
man motion and develop a classification algorithm for the
purpose of analysis and recognition. We assume that some
temporal statistics are extracted from the images, and use
them to infer a dynamical model that explicitly represents
ground contact events. Such events correspond to “switches”
between symmetric sets of hidden parameters in an auto-
regressive model. We propose novel algorithms to estimate
switches and model parameters, and develop a distance be-
tween such models that explicitly factors out exogenous in-
puts that are not unique to an individual or his/her gait. We
show that such a distance is more discriminative than the
distance between simple linear systems for the task of gait
recognition.

Keywords Human motion estimation · Hybrid system
identification · Tracking · Gait analysis · Synthesis ·
Recognition · Dynamical models

1 Introduction

The analysis of human motion has been a subject of in-
terest in the vision community for decades, further rein-
forced in recent years by applications in security, biome-
chanics and entertainment. All aspects of the problem, from
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modeling to detection, tracking, classification, and recog-
nition are the subject of active research (Gavrila 1999;
Shah and Jain 1999). From a modeling perspective, humans
are physical objects interacting with physical space in ways
that are mediated by forces, masses and inertias that can
be described, to first approximation, by ordinary differential
equations. In other words, humans are dynamical systems.
Analytically, each individual can be described by a model
that includes intrinsic parameters (masses, inertias), internal
states (skeletal configurations, internal forces), also a prop-
erty of the individual, and external forces (inputs), including
contact forces, that depend on the environment and other
nuisance factors. From the point of view of perception, hu-
mans and their clothes interact with light and an imaging
device to yield output images.

While “static” (e.g. pose, skeletal configurations Lee and
Grimson 2002), “quasi-static” (e.g. graphs of transitions be-
tween poses Sarkar et al. 2005, cumulative video statis-
tics Bobick and Davis 2001), or “kinematic” representations
(Bregler 1997) already contain significant information on
both the identity of humans and their action,1 dynamics also
play a crucial role, that has been recognized early on by Jo-
hansson (1973) who showed that even if we strip the images
of all of their pictorial content and look at displays of mov-
ing dots, from their motion we can often tell whether a per-
son is young or old, happy or sad, man or woman.2 In this

1It is often easy to tell that someone is running, rather than walking,
from a single snapshot.
2One could argue that moving dot displays also contain pose and kine-
matic information; however, dynamics remains an important cue, as
one can guess by watching two-hundred pound actors imitating Char-
lie Chaplin’s walk (different masses, inertias and skeletal configura-
tion, same perceived dynamic characteristics). Furthermore, one single
snapshot of such moving dot displays rarely yields much information.
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paper we concentrate on dynamics as a perceptual cue for
human motion recognition. This does not mean that kine-
matics, or pose or even pictorial cues are not important, and
eventually all will have to be integrated into a coherent sys-
tem. We believe, however, that dynamics has been largely
unexploited, hence our emphasis in this paper.

If we agree in viewing humans as dynamical systems,
then learning their dynamic characteristics is a system iden-
tification task (Ljung 1987). System identification is a well
established field, and yet in almost 50 years of research
the problem of performing decision tasks, such as detec-
tion and recognition, in the space of dynamical models is
largely unexplored. Several attempts have been made to en-
dow the space of dynamical models with a metric and prob-
abilistic structure, such as the Gap metric (Zames and El-
Sakkary 1980), subspace angles (De Coch and De Moor
2000), Martin’s distance (Martin 2000). However, even for
simple linear systems deciding “how far” two models are is
not straightforward, and learning a distribution (e.g. a prior)
in model space is even less so (Krishnaprasad and Brockett
1979).3 In particular, if we want to be able to learn models
that have discriminative power, we have to factor out nui-
sance factors, such as external forces, that do not depend
on the particular individual or gait. Therefore, in this work
we consider models that explicitly represent contact dynam-
ics; such models are hybrid, in the sense that they involve
both continuous dynamics and discrete “switches.” There-
fore, the simplest instance of our problem involves perform-
ing inference and classification of hybrid dynamical mod-
els. Since the analysis is complex enough for repetitive gaits
(e.g. walking, running, jumping), we concentrate on this
case. Ideally an individual should be recognized regardless
of the gait, and in particular during transient maneuvers, but
this is beyond the scope of this paper.

In order to distill the essence of the problem, we concen-
trate on dynamics, and assume that some representation of a
human gait has been inferred, either in the form of joint an-
gles in a skeletal model (e.g. Bregler and Malik 1998), or in
the form of joint positions, e.g. from a motion-capture sys-
tem. In other words, we use data similar to Johansson’s dis-
plays, that distill dynamic information. Note that, although
we assume that the “image-to-model” problem is solved,
which is not quite the case even today, and although we do
not use any images in this work, the models we study are
designed and analyzed for the purpose of vision-based clas-
sification: If we were to infer and analyze models for, say,
computer graphics, or robotics, or biomechanics, the mod-
els would be quite different, and their inference would likely

3Note that each of these techniques has been applied to the analysis
and classification of human motion (Bissacco et al. 2001 for subspace
angles and Martin’s distance, Mazzaro et al. 2002 for the Gap metric)
with encouraging but limited results.

entail additional measurements (e.g. forces) that are not di-
rectly available in a vision context. So, we concentrate on
inference and classification of hybrid dynamical models de-
signed for vision-based human motion analysis and recogni-
tion. This is not a trivial problem, and even some of the basic
ingredients are missing from the literature, as we explain in
the following section.

1.1 Relation to Previous Work

The problem of recognizing human activities compounds
several aspects including modeling and inference. Modeling,
in turn, requires addressing the photometric, geometric and
dynamic aspects of the image formation process. Photomet-
ric modeling addresses the variability in the images due to
the interaction of light with matter, specifically clothing for
the case of humans. Geometric modeling addresses the vari-
ability in the shape of objects in the scene, for instance the
pose and deformation of the human figure. Whatever rep-
resentation of the photometry and geometry of the object
of interest, dynamic modeling addresses the temporal vari-
ability of such a representation. Naturally there is interplay
between these factors, as one can explain the data with infi-
nitely many combinations of different photometric, geomet-
ric and dynamic configurations. In this paper, we focus on
the dynamic aspect of the problem, and therefore we wish to
isolate it as much as possible from the photometric and geo-
metric aspects. For this reason, we use motion capture data,
as an abstraction of a representation where the photometric
and geometric aspects of the image formation process have
been factored out, similarly to what Johansson did for his
psychophysical experiments.

Once a model is in place, a number of inference tech-
niques can be exploited to estimate its state or identify its
parameters. Although general techniques exist to approxi-
mate the posterior distribution of the state of any dynamical
model (North et al. 2000), they do not exploit the particular
structure of our model and are, in this sense, overkill. We
propose an inference technique that is tailored to the class
of model we have introduced.

In order to justify and validate a particular model, one
can consider a variety of end-tasks, for instance the classi-
fication of gaits (Shah and Jain 1999) regardless of the in-
dividual, or the identification of people regardless of their
gait (Sarkar et al. 2005). Most of the approaches in the liter-
ature can be classified as either model-based (Bregler 1997;
Bissacco et al. 2001; Lee and Elgammal 2004; Kale et al.
2004), whereby motion is represented by parameters in a
model within a chosen class, or holistic (Little and Boyd
1998; Veres et al. 2004), where some statistics are ex-
tracted from the video sequence and used for classifica-
tion. In all cases the first step consists in deriving a com-
pact representation of the motion, such as binary silhouettes
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(Sarkar et al. 2005; Kale et al. 2004), optical flow (Little and
Boyd 1998), joint angles of an articulated body model with
image-based tracking (Bregler 1997; Bissacco et al. 2001;
North et al. 2000), or other spatio-temporal motion de-
scriptors (BenAbdelkader et al. 2004; Efros et al. 2003;
Zelnik-Manor and Irani 2006). Then some statistics are
computed on the reduced data and pattern recognition tech-
niques such as principal component analysis (BenAbdelka-
der et al. 2004), bilinear models (Lee and Elgammal 2004),
Hidden Markov Models (He and Debrunner 2000; Kale et
al. 2004; Wilson and Bobick 1999; Oliver et al. 2000), K-
Nearest Neighbor classification (Little and Boyd 1998) or
Support Vector Machines (Lee and Grimson 2002) are used
to solve the classification problem.

We propose modeling the dynamics of human gaits
with hybrid linear models. As opposed to standard ap-
proaches using discrete models such as Hidden Markov
Models (HMMs) and their variants (Oliver et al. 2000;
Wilson and Bobick 1999), hybrid models capture both the
discrete and continuous character of human motion and can
be used for both synthesis (Bissacco 2005) and recognition.

Inference of the state and model parameters for a switch-
ing linear model is, in general, NP complete (Tugnait 1982).
While several approximations exist (e.g. Pavlovic and Rehg
2000; Oh et al. 2005; Agarwal and Triggs 2004; North et al.
2000), there is no optimal algorithm of reasonable complex-
ity for the model orders that we need to consider. There-
fore, we concentrate on a specific class of models, that is
switching autoregressive (AR) ones. These are a subclass
of switching linear systems that is particularly attractive
since, for each model, the optimal estimator can be writ-
ten as a closed-form function of the data (Ljung 1987). For
hybrid-AR models, recent algebraic approaches to filtering
and identification (Ma and Vidal 2005) have shown promis-
ing results; however, they do not provide probabilistic infor-
mation on the estimates and therefore are not suited to our
purposes. We will derive our own identification algorithm in
Sect. 2.2, and this is our first contribution.

Our second challenge is to define a distance in the space
of hybrid-AR models. Common approaches to model-based
motion recognition (Bregler 1997; Wilson and Bobick 1999;
North et al. 2000) perform classification by comparing the
likelihoods of sequences given learned models. Such ap-
proaches present a number of drawbacks: Long sequences
yield peaked likelihoods and weak generalization perfor-
mance, there is no principled way to learn and compare
models representing motion classes, and it is not possible
to include learned priors on the model parameters. We pro-
pose to overcome these limitations by endowing a metric in
the space of models. To the best of our knowledge, this has
only been done once before Del Vecchio et al. (2003) for
the case where the models are represented by determinis-
tic unknown parameters, rather than having a distribution of

them. We show that the simple extension of Del Vecchio et
al. (2003) to a stochastic model yields non-sensical distances
that either are non-zero when the two models are identical
(see (6)), or that can be infinite for models that are arbitrarily
close in the deterministic sense (see (7)). The notion of dis-
crepancy we propose is principled in the sense that, as we
show, it can be written as the Euclidean distance between
optimal estimators.

The main goal in this paper is to show that the distance
between hybrid models is more discriminative than the dis-
tance between linear models that was previously used to
classify gaits based on their dynamics. While this may not
be surprising at first, since hybrid-AR models are a super-
class of linear models, and therefore they naturally have
more modeling power, note that discriminative power usu-
ally decreases with model complexity, since we can have
orbits of model parameters that yield the same output sta-
tistics. This is not the case in our model, and we show that
it sharply classifies gait data where linear models yield total
confusion.

2 Modeling Human Dynamics for Classification

In this section we will describe the models used to describe
human gaits, we will derive system identification (learning)
algorithms to estimate their parameters, and we will intro-
duce a distance between such models, that is to be used
for classification in the simplest possible form, that is us-
ing a nearest-neighbor criterion. Obviously one could em-
ploy more sophisticated classifiers, but our goal here is to
introduce a distance between dynamical models, so to best
evaluate its properties we keep the classifier trivial. Obvi-
ously, classification results can only be improved by using
more sophisticated decision rules.

We first go through the process for the simple linear au-
toregressive models. This for two reasons: First, because
they are simple and provide some intuition into the algo-
rithms. Second, because the results derived there are used
as building blocks for the extension of the algorithms to the
case of hybrid models.

We will adopt the following notation throughout. For a
matrix A, A� denotes its transpose and A(i, j) is the el-
ement of A located at row i and column j . A sequence
(y1, y2, . . . , yT ) is indicated with the superscript notation
yT . Given a random vector x, p(x) denotes its probabil-
ity density function (or mass function if x is discrete) and
E[f (x)] denotes the expectation of f (x) taken with respect
to the distribution of x.

N (μ,�) denotes a random vector with Gaussian joint
distribution of mean μ and covariance �; G(x;μ,�) is
the corresponding probability density evaluated at x, while
U {1, . . . , T } indicates a discrete random variable distributed
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uniformly between 1 and T . We will use Ip to denote the
identity matrix of dimension p × p. Ri will represent the
noise covariance matrices and Pi the parameter covariance
matrices.

2.1 Autoregressive Models

In this section we derive a simple learning algorithm for lin-
ear autoregressive models, and introduce a distance between
models. We show that the most obvious choice of distances,
the Euclidean distance between parameters, or Kullback-
Leibler’s divergence, lead to non-sensical classification, and
hence introduce our distance.

Consider a Gaussian linear time-invariant autoregressive
(AR) model of order n:

yt =
n∑

i=1

Aiyt−i + et yt ∈ R
p, et ∼ N (0,R) (1)

The equation can be rewritten in normal form:

yt = ϕtθ + et (2)

ϕt = [
yt−1 ⊗ Ip yt−2 ⊗ Ip · · · yt−n ⊗ Ip

]

θ� = [
θ�

1 θ�
2 · · · θ�

p

]

θ�
i = [

A1(i,1) · · · A1(i,p) · · ·
An(i,1) · · · An(i,p)

]

where ⊗ denotes the Kronecker tensor product and Ip is the
identity matrix of dimension p.

Parameter Estimation

Assuming a Gaussian prior on the parameter θ ∼ N (θ0,P0)

and given a sequence of observations yT = (y1, y2, . . . , yT ),
the posterior distribution of the parameter θ is (Ljung 1987):

p(θ |yT , θ0,P0,R) = G(θ; θ̂ , P̂ ) (3)

where:

θ̂ = P̂

(
P −1

0 θ0 +
T∑

t=1

ϕtR
−1yt

)
,

P̂ =
(

P −1
0 +

T∑

t=1

ϕtR
−1ϕT

t

)−1

(4)

and G(θ; θ̂ , P̂ ) is the Gaussian density with mean θ̂ and
variance P̂ evaluated at θ :

G(θ; θ̂ , P̂ ) = (2π)−
d
2 det(P̂ )−

1
2

× exp

(
−1

2
(θ − θ̂ )T P̂ −1(θ − θ̂ )

)
(5)

For an intuitive understanding of these expressions consider
the simple case of scalar measurements y ∈ R. The equa-

tion of P̂ reduces to: P̂ = (
P0 +

∑T
t=1 y2

t

R

)−1 = (
P0 + (T −

1)
�y

R

)−1
, where �y is the sample variance of the measure-

ments. The variance P̂ is a measure of the uncertainty in the
estimated parameters. As we could expect, it decreases as
the length T of the observation sequence and the signal-to-
noise ratio �y

R
increase. In the limit T → ∞, the variance

P̂ becomes zero and the estimate θ̂ is the true value of the
parameters.

Model Distance (AR)

We use the posterior distributions p(θ |yT ) on the para-
meters to define a distance between models. As a first at-
tempt we consider the expectation of the Euclidean dis-
tance between the parameters θ1|yT

1 ∼ N (θ̂1, P̂1), θ2|yT
2 ∼

N (θ̂2, P̂2):

de(θ1, θ2)
2 = E[(θ1 − θ2)

�(θ1 − θ2)]
= (θ̂1 − θ̂2)

�(θ̂1 − θ̂2) + Trace(P̂1 + P̂2) (6)

Unfortunately, this is not a viable distance between mod-
els; indeed, it is not even a distance, in the sense that
de(θ1, θ1) �= 0, violating one of the conditions that define
a distance function. A second attempt is to consider as a
discrepancy function the symmetric Kullback-Leibler diver-
gence (K-L) between the two distributions:

KL(p1‖p2) =
∫

p1(x) log
p1(x)

p2(x)
+ p2(x) log

p2(x)

p1(x)
dx (7)

which for our Gaussians becomes:

KL(θ1‖θ2) = 1

2
Trace

(
P̂ −1

2 P̂1 + P̂ −1
1 P̂2 − 2I

)

+ (θ̂1 − θ̂2)
� (

�̂−1
1 + �−1

2

)
(θ̂1 + θ̂2). (8)

This is also not a distance, as it does not satisfy the triangular
inequality. Furthermore, as the variances �̂1, �̂2 go to zero
(i.e. the confidence on the parameter estimates increases),
the divergence goes to infinity. K-L is a measure of the ex-
tent to which two probability distributions agree. If the two
distributions have no common support the K-L distance is
infinite independently of how far the distributions are (see
the example in Fig. 2). Such a condition is met for example
when we have good estimates from sequences generated by
models with different underlying parameters.

We can overcome these problems by using a distance be-
tween probabilities distributions known with several names,
as the Wasserstein, Mallows, Ornestein, or rho-bar distance
(Bickel and Freedman 1981). Using the L2 norm as base
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distance, it is defined between two densities P and Q as:

dW (P,Q)2 = inf
F

{EF [(X − Y)�(X − Y)] :
(X,Y ) ∼ F,X ∼ P,Y ∼ Q} (9)

where the infimum is taken over all the joint densities F

which have marginals equal to P and Q. This distance rep-
resents the solution to the Monge-Kantorovich mass transfer
problem, and can be interpreted as the minimum amount of
work that is required to transport a mass of soil with distribu-
tion P to an excavation having distribution Q. For Gaussian
distributions dW can be computed analytically as in (Dow-
son and Landau 1982):

dW (N (θ̂1,P1), N (θ̂2,P2))
2

= (θ̂1 − θ̂2)
�(θ̂1 − θ̂2) + Tr(P1 + P2 − 2(P1P2)

1
2 ) (10)

This distance has some desirable properties. First it is a
proper distance, in particular it satisfies the triangular in-
equality. This guarantees that if the estimated densities P̂ , Q̂

are good (i.e. d(P, P̂ ) and d(Q, Q̂) are small), also the
estimated distance d(P̂ , Q̂) is close to the true distance
d(P,Q): |d(P,Q) − d(P̂ , Q̂)| ≤ |d(P, P̂ )| + |d(Q, Q̂)|.
Second, it is equal to the Euclidean distance in the case of
deterministic distributions P1 = P2 = 0.

For discrete distributions, the Wasserstein distance is
equivalent to the Earth’s movers distance (Rubner et al.
1998), a distance commonly used for measuring texture and
color similarities.

In the more general case of a mixture of Gaussian distri-
butions, no close form solution is available and an approxi-
mation must be used, as we will show in the next section.

2.2 Hybrid Autoregressive Models

In order to model contact forces in human motion we fol-
low the approach of Bissacco (2005) in using hybrid mod-
els where the switches correspond to ground contacts. How-
ever, unlike Bissacco (2005), we intend to use such mod-
els for classification, and therefore we introduce a differ-
ent switching autoregressive model. This has some similar-
ity with the Autoregressive HMM proposed in Juang and
Rabiner (1985), although for each autoregressive model we
consider the distribution of the observations yt for finite
length sequences instead of using the asymptotic distribu-
tion of yt , t → ∞.

Consider a discrete Markov chain with m states, transi-
tion matrix M and prior probabilities πm = [π1, . . . , πm].
To each state q we associate an AR model with noise co-
variance Rq and parameter θq with prior distribution θq ∼
N (θ0,q ,P0,q ). The equations of the system are:

yt = ϕtθqt + eqt , eqt ∈ N (0,Rqt )
(11)

p(qt |qt−1) = M(qt , qt−1), p(q1) = πq1

A graphical representation of this model is shown in Fig. 1.
As we can see from the figure, the AR parameters θm =
(θ1, . . . , θm) are time-invariant random vectors, and the ob-
served outputs yt induce a distribution on hidden states qt

and model parameters θm. The motivation for this model is
that we assume m underlying autoregressive models, whose
parameters θi are random but fixed, and the transitions be-
tween models are determined by the hidden states qt . Re-
lated models have been proposed in the adaptive filtering lit-
erature, where for each segmentation of the output sequence
a different linear regression model is assumed in each seg-
ment and the posterior of the segmentation is computed
by marginalizing the hidden parameters (Gustafsson 2000).
Our model is more complex in that we assume a finite num-
ber m of autoregressive systems, and the transitions among
these are governed by a Markov chain. Thus, as opposed to
Gustafsson (2000), observation segments are no longer sta-
tistically independent given the segmentation, which makes
the inference problem harder.

In other hybrid AR systems proposed in the literature
(Del Vecchio et al. 2003; North et al. 2000), the parameters
θ are modeled as unknown deterministic values. A learn-
ing algorithm is derived to compute the maximum likelihood
estimate θML = arg maxθ p(yT |θ) given an observation se-
quence yT . Unfortunately, this method does not provide a
natural way to compare the parameters of two models θ1, θ2,
and a common solution (Del Vecchio et al. 2003) is to use
the Euclidean distance between the parameters, ‖θ1 − θ2‖.
Our approach is different in the sense that we treat θ as a
random vector with given prior distribution p(θ) and com-
pute the posterior given the observations p(θ |yT ). This al-
lows us to consider multiple model hypotheses by inferring
(multimodal) posteriors on the model parameters and com-
paring models by using distances between these probability
distributions.

We can relate the two approaches by considering the
case of flat (uninformative, possibly improper) prior p(θ) �
const. Then the posterior p(θ |yT ) is proportional to the
likelihood p(yT |θ), and the maximum likelihood estimate
is also the maximum a posteriori θML = θ̂ . The distance
dML = ‖θ̂1 − θ̂2‖ measures how far the principal modes of
the posterior distributions p(θ1|yT ) and p(θ2|yT ) are. In the
case of hybrid models this solution is suboptimal since the
posteriors p(θi |yT ) are typically multimodal mixtures, as
we can see in Fig. 6, while the distance dML takes into ac-
count only one parameter hypothesis.

Once the reader accepts the use of hybrid models for hu-
man gaits, we are left with the problem of learning the para-
meters and filtering its state, and then extend the definition
of distance, so we can perform classification tasks. We dis-
cuss these problems in the next two subsections.
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2.2.1 Parameter Estimation

Given an observation sequence yT = (y1, . . . , yT ) generated
by the hybrid model (11), we want to estimate the poste-
rior distribution of the autoregressive parameter θ randomly
sampled from the sequence (θq1 , . . . , θqT

):

θ � θqτ , τ ∼ U {1, . . . , T } (12)

We have:

p(θ |yT ,�) =
∑

qT

p(θqτ |qT , yT ,�)p(qT |yT ,�)

=
∑

qT

m∑

i=1

p(θi |qT , yT ,�)p(qτ = i|qT , yT ,�)

× p(qT |yT ,�)

=
∑

qT

m∑

i=1

p(θi |qT , yT ,�)p(qτ = i|qT )

× p(qT |yT ,�) (13)

Fig. 1 Dynamic Bayesian network representing our proposed hybrid
autoregressive model. Nodes are random vectors (observed nodes are
shaded) and edges are conditional dependence relations. The presence
of multiple loops in the graph makes exact inference a computationally
intractable problem

where � = {θm
0 ,P m

0 ,Rm,M,π} are the model parame-
ters, with θm

0 = (θ0,1, . . . , θ0,m), P m
0 = (P0,1, . . . ,P0,m),

Rm = (R1, . . . ,Rm). Similarly to (3), we have that p(θi |qT
j ,

yT ,�) = G(θi; θ̂i , P̂i ) are Gaussian, p(qτ = i|qT ) is the
relative frequency of the state i in the sequence qT , and
p(qT |yT ,�) is the posterior of the hidden states given the
observations, that can be computed in closed form as we
will show in the next section. Unfortunately, marginalizing
the hidden states qT = (q1, . . . , qT ) is intractable because it
would require evaluating an exponential number of hypothe-
ses.

Let us point out that existing techniques for learning hy-
brid models similar to (11), such as (North et al. 2000;
Ghahramani and Hinton 1998; Pavlovic and Rehg 2000;
Oh et al. 2005), treat the system matrices as parameters and
not as latent variables, therefore such approaches cannot be
applied to the problem of computing parameter posteriors.

A first approach to inference would be to apply Gibbs
sampling to obtain sequences of hidden states qT and model
parameters θm distributed according the posterior. However,
we have observed that for this model the parameters typi-
cally have highly peaked multimodal distributions, trapping
the Gibbs sampler in local modes and thus requiring large
number of samples to obtain good approximations.

On the other hand, the graphical model in Fig. 1 shows
that each parameter θi is statistically dependent on all the
observations yt , thus preventing the application of standard
algorithms such as loopy belief propagation.

We could apply variational inference techniques in or-
der to obtain an approximate model with a smaller number
of dependencies for which the inference problem would be
easier. Typically these methods work by approximating the
posterior of the hidden variables qT given observations yT

Fig. 2 Comparison between Wasserstein distance and Kullback-
Leibler divergence for classifying parameter distributions. (a) Simple
case of 4 Gaussians, where N1, Ñ1 have the same mean but Ñ1 has
smaller variance, similarly for N2 and Ñ2. (b) Confusion matrix show-
ing the pairwise Kullback-Leibler divergence between these distribu-
tions. We can see that Kullback-Leibler has the undesirable effect of

classifying N2 closer to N1 than to Ñ1, whereas N1 and Ñ1 represent
the same estimate with different degree of confidence. (c) Confusion
matrix from the Wasserstein distance: Here N1, Ñ1 and N2, Ñ2 are cor-
rectly grouped together, and the distance between Ñ1 and Ñ2 equals the
distance between their means as the variance goes to zero (as opposed
to becoming infinite as the Kullback-Leibler does)
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and parameters θm. However, notice that by doing so there
is no simple way to break the dependencies between outputs
and parameters, therefore we would not remove the main
source of complexity in the model.

Our solution is to approximate the posterior using a bank
of K filters, where each filter is tuned on a segmentation hy-
pothesis qT

j . At each time t we generate a new hypothesis

qT
t by imposing a jump to the most likely sequence and dis-

carding the less likely ones. In formulas, this corresponds to
the following approximation:

p(θ |yT ,�) � 1

C

K∑

j=1

m∑

i=1

p(θi |qT
j , yT ,�)p(qτ = i|qT

j )

× p(qT
j |yT ,�) (14)

where C = ∑K
j=1 p(qT

j |yT ,�) and qT
j are the filter hy-

potheses. This approximation is a mixture of a constant
number Km of Gaussians. In practice, we have duplicate hy-
potheses (due to permutations of the states) and hypotheses
with low posterior, so the effective number of components
can be rather smaller (Fig. 6).

Hidden State Filtering

In order to obtain a good approximation of the posterior (14)
we need to estimate the K most probable hidden state se-
quences qT

1 , . . . , qT
K given the measurements yT :

q̂T
1 , . . . , q̂T

K = arg max
qT

1 ,...,qT
K

K∑

i=1

p(qT
i |yT ,�) (15)

Notice that, since in our model the autoregressive parame-
ters θi conditioned on the measurements yT are Gaussian,
it is possible to marginalize them in the computation of the
hidden state posterior (15). This is a remarkable advantage
compared to approaches with deterministic parameters such
as North et al. (2000) where Expectation Maximization or
other iterative minimization techniques become necessary,
because the resulting segmentation no longer depends on the
initial guess. Here only a prior is needed, and using an un-
informative one such as a Gaussian with high variance al-
lows for a non-iterative, unbiased estimation of the switch-
ing times.

We derive a recursive expression for the likelihood
p(yT |qT ,�):

p(yt |qt ,�) = p(yt |qt , yt−1,�)p(yt−1|qt−1,�) (16)

which yields (see Gustafsson 2000):

p(yt |qt , yt−1,�) = G(yt ;ϕ�
t θ̂qt ,t−1, ϕ

�
t P̂qt ,t−1ϕt + Rqt )

(17)

where θ̂i,t , P̂i,t are the estimates at time t of the parameters
θi associated to state i (compare to (4)):

θ̂i,t = P̂i,t

⎛

⎝P −1
0,i θ0,i +

∑

j |qj =i,j≤t

ϕjR
−1
i yj

⎞

⎠ (18)

P̂i,t =
⎛

⎝P −1
0,i +

∑

j |qj =i,j≤t

ϕjR
−1
i ϕ�

j

⎞

⎠
−1

(19)

which can be rewritten in recursive form as:

θ̂i,t = θ̂i,t−1 + P̂i,t−1ϕt (ϕ
�
t P̂i,t−1ϕt + Ri)

−1

× (yt − ϕ�
t θ̂t−1) (20)

P̂i,t = P̂i,t−1 − P̂i,t−1ϕt

×
(
ϕ�

t P̂i,t−1ϕt + Ri

)−1
ϕ�

t P̂i,t−1 (21)

From (16) we obtain a recursive equation for the posterior
up to time t :

p(qt |yt ,�) = 1

Kt

p(yt |qt ,�)p(qt |�)

= Kt−1

Kt

p(yt |qt , yt−1,�)p(qt |qt−1,�)

× p(qt−1|yt−1,�)

where Kt = p(yt |�) is a constant independent of qt ,
p(qt |qt−1,�) = M(qt−1, qt ), t > 1 and p(q1|q0,�) =
πq1 . Substituting p(yt |qt , yt−1,�) ∼ N (ϕ�

t θ̂qt ,t−1, ϕ
�
t ·

P̂qt ,t−1ϕt + Rqt ), and taking the logarithms, we have:

logp(qt |yt ,�) = C + logp(qt−1|yt−1,�)

+ logM(qt−1, qt ) − 1

2
log det�

− 1

2

(
yt − ϕ�

t θ̂qt ,t−1

)�

× �−1
(
yt − ϕ�

t θ̂qt ,t−1

)
(22)

where C is a constant and � = (ϕ�
t P̂qt ,t−1ϕt + Rqt ).

To find an approximate solution to the most probable
state sequences problem (15), we use a bank of K filters,
each matched to a hidden state sequence hypothesis qT

i ,
where the posterior p(qT |yT ,�) is computed recursively
with (22). We use Algorithm 1.

The number of filters K determines the quality of the
estimates. For K ≥ T , this algorithm is guaranteed to find
the optimal state sequences for switching regression mod-
els where data segments are independent (Gustafsson 2000).
However, in our hybrid models, different segments can be
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Algorithm 1 Hybrid autoregressive model hidden state filtering using marginalized posteriors

1: Initialize states so that there is at least one sample q1
i = i for each i ∈ {1, . . . ,m}.

2: for t = 2 to T do
3: For each hypothesis qt

i , compute the posterior log-likelihood logp(qt
i |yt ) using (22).

4: Extend the hypotheses qt
j , j = 1, . . . ,K to t + 1 by assuming no switch: qt+1

j = (qt
j , qj,t ).

5: Let the most probable sequence qt
o split at time t +1, i.e. generate m−1 new hypotheses qt+1

K+i such that {qK+i,t+1} =
{1, . . . ,m}\{qo,t }.

6: Cut off the m − 1 least probable sequences, so that only K are left.
7: end for

Fig. 3 Learning hybrid model segmentations from synthetic walk
data. (a) Simple 2D passive walker model (Garcia et al. 1998) used
to generate the synthetic motion. An asymmetric walk is obtained by
setting unit mass at the hip, 0.2 at the left and 0 at the right foot.
(b) Two gait cycles represented as trajectories of the angles of the legs
with respect to the vertical. (c) Expected posteriors on the hidden states
computed from the segmentation hypothesis generated by our filtering
approach (solid) and the EM algorithm after 100 iterations (dotted),
with switching ground truth. The plot shows how the EM approach

fails to segment the dynamics of the gait motion, whereas our hybrid
filter finds the switching sequence. There is a slight offset between the
switches in the ground truth and ones obtained from the hidden state
estimates. Because the identification is performed in a non-causal fash-
ion, the offset can be either positive (delay) or negative. This error may
be due to the linear approximation, given that the nonlinear dynamics
of each motion segment is represented by a first order autoregressive
model

generated by the same autoregressive model, and therefore
the estimated sequences q̂T

i will only be an approximate so-
lution to (15). In order to improve performance it is useful

to assume a minimum segment length l and allow splitting
and cut off only for sequences that did not switch in the last
l steps.
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In the experiments we compare our filtering approach
to learning hybrid autoregressive models with determinis-
tic parameters via EM and particle-filtering as proposed in
North et al. (2000). By applying both techniques to segment
synthetic data of a simple passive walker, in Fig. 3 we show
that our hybrid filters can successfully estimate the switch-
ing times whereas the EM approach fails to segment the hy-
brid dynamics.

Distance Between Hybrid AR Models

We obtain a discrepancy measure between models by ex-
tending to hybrid models the distance (10) between posteri-
ors of autoregressive parameters. For each motion sequence
yT
k , let the posterior distribution of the hybrid parameter θk

be approximated as:

p(θk|yT
k ,�) �

nk∑

i=1

αk,iG(θk; θ̂k,i , P̂k,i ) (23)

The Wasserstein distance between general mixtures of
Gaussians cannot be computed in closed form. Following
Greenspan et al. (2004), we approximate dW (θ1, θ2) by solv-
ing a maximum flow problem. We have:

dW (θ1, θ2) =
n1∑

i=1

n2∑

j=1

fi,j dW (N (θ̂1,i , P̂1,i ), N (θ̂2,j , P̂2,j ))

(24)

where the Wasserstein distance between normal distribu-
tions is given in (10) and fi,j ≥ 0 is the optimal admissible
flow that minimizes (24) while satisfying the constraints:

n2∑

j=1

fi,j = α1,i ,

n1∑

i=1

fi,j = α2,j

In the next section we will use this distance to compare hy-
brid dynamical models learned from human motion data.

3 Experiments

Our goal in this research is to recognize human motion
based on dynamic signatures. We believe that the tempo-
ral evolution of a representation abstracted from video car-
ries a significant amount of discriminative power: Johans-
son’s moving-dot displays (Johansson 1973) can allow one
to infer whether the person is young, old, happy, sad, even
man or woman. In particular, we use a hybrid dynamical
model because we have determined that the contact dynam-
ics, which is an exogenous event independent of the individ-
ual and his/her gait, is a dominant dynamic event that must

be factored out of the classification and recognition process.
However, our framework applies to the recognition of dy-
namic events in general. In particular, even within human
motion, our framework applies to different representations,
from the trajectories of moving intensity blobs, to the joint
angles estimated from a video-based tracking system, to the
position of retro-refractive markers in motion capture. Let us
also point out that hybrid generative models as in Bissacco
(2005) can be effectively used for synthesis, while common
discrete models (e.g. HMMs) cannot reproduce the original
data except at a very coarse granularity.

In order to perform a fair comparison with competing ap-
proaches, we must factor out the effects of photometric and
geometric factors in the image formation process. For this
reason we concentrate on motion capture data. Compari-
son with approaches based on silhouette extraction, block-
correlation or other appearance-based approach that does
not use a dynamical model would not shed light on the
virtues or limitations of our approach.

To the best of our knowledge, the only other class of dy-
namical models used for motion analysis is linear. While on
one hand linear models can capture the second-order statis-
tics of any stationary sequence arbitrarily well (indeed, for
a large-enough state one can approximate the actual realiza-
tions to an arbitrary degree), we will show that—at equal
model order—our approach substantially improves classi-
fication when compared to linear dynamical models. This
is because most of the energy in the data occurs at contact
events, and therefore most of the modeling power goes to
represent such phenomena, that are nuisance factors irrele-
vant to classification.

We performed two sets of experiments. The first is on
synthetic data, where the goal is comparing our learning ap-
proach based on hidden state filtering to standard maximum
likelihood techniques based on Expectation Maximization.
The second set of experiments aims at comparing the per-
formance in gait discrimination using the proposed distance
between hybrid systems with respect to previous approaches
based on distances between single linear dynamical systems.

3.1 Hidden State Filtering

In this experiment we test the performance of the hidden
state estimation of our filtering approach compared to stan-
dard parameter estimation by EM and particle filtering, with
a method similar to the one proposed in North et al. (2000).
As the reader may notice, our model differs from the one
of North et al. (2000) in that the yt is observed instead of
being a hidden variable, thus the forward-backward filter-
ing proposed in North et al. (2000) is not needed. Even de-
spite this simplification, the dependencies between observa-
tions y1, . . . , yT do not allow to derive a backward recur-
sion for the hidden state likelihood (conditioning on qt does
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Fig. 4 List of motion capture data sequences in the gait dataset. For
each subject (first column), number of walking, running and limping
sequences collected

not make yt and yt+1 independent, see Fig. 1), therefore we
cannot solve the Expectation step in polynomial time and a
sampling scheme is still required.

In order to have controlled conditions with ground truth,
we use synthetic gait data generated by the simple passive
walker of Garcia et al. (1998). It is a 2D two-link model,
with rigid massless legs hinged at the hip and point masses
at the feet, that walks down a slope under the effects of grav-
ity. We set unit mass at the hip and unequal masses at the
feet, respectively 0 and 0.2, so as to have a limp-like mo-
tion. The data consists of the trajectories of the leg angles
in two walking cycles, as shown in Fig. 3. We approximate
such time series with a two-system (left and right step) hy-
brid autoregressive model of order n = 1.

We applied our filtering Algorithm 1 and the Expectation-
Maximization algorithm with particle filtering to estimate
hidden parameters θm and discrete states qt . We use Algo-
rithm 2, a simple particle filter based on the forward prop-
agation of North et al. (2000), which provides an efficient
way to sampling sets of K particles on-line for t = 1, . . . , T

q̂t (1), . . . , q̂t (K) from the posterior p(qT |yT ,ϕm,Rm).
The complexity of the Expectation step is O(KT ), where

K is the number of samples. The Maximization step is the
same of North et al. (2000), where the expected values are
used to update the estimates of the parameters θm,M,π (as
suggested in North et al. 2000 the noise variances Rm are
set by hand and not learned). In this experiment we use a
hybrid model with two systems, the number of samples is
equal to the sequence length K = T , the model parameters

θm are initialized randomly and the Markov chain parame-
ters are so that all states have equal probability and average
segment length L: M(i, j) = 1

(L+1)(m−1)
i �= j , wi = 1

m
,

here L = 50. The noise variance is fixed and set to Rq = Ir

with r a random variable uniformly distributed in [0,10−3].
In the hybrid filter approach of Algorithm 1, we use the

same parameters, and set the number of filters K equal the
sequence length T . The time complexity of the algorithm is
O(T K).

Figure 3 shows the segmentation results on the syn-
thetic walker data. We compare the expected posteriors on
the hidden states estimated by the two approaches, com-
puted from the sample segmentations q̂T

i as E[qT |yT ,�] �∑K
i=1 p(q̂T

i )q̂T
i . We can see how the EM approach fails to

separate the different dynamics of the two phases of the gait
cycle, attributing the largest part of the sequence to a single
system. This is an example of how such gradient approaches
can get stuck in local minima if the initial guess on the para-
meters is not close to the true value. On the other hand, our
filtering approach avoids any iterative minimization scheme
by marginalizing out the system parameters, which in our
model are hidden variables. As we see in Fig. 3, it success-
fully finds the correct segmentation, and the computational
cost amounts to a single iteration of the particle-based EM
method.

3.2 Gait Classification

In the second set of experiments, the data is given as a set
of joint angle trajectories on a skeletal model of the human
body. These angles may be obtained from a video-based full
body tracker or from a motion capture system. We opted for
the latter for ease of collection and ground-truth testing. We
used a 6-camera infrared motion capture system running at
60 Hz, with 20 retro-reflective markers placed on the test
subjects at the proximity of the body joint locations, and
with that we recorded the marker trajectories during the mo-
tion. The subjects were asked to walk, run and limp on a
treadmill. We collected a total of 233 sequences from 11

Algorithm 2 Expectation step in hybrid autoregressive model learning
1: for k = 1 to K do {Initialization}
2: w0(k) = 1

K

3: Sample q0(k) ∼ U {1, . . . ,m}
4: end for
5: for t = 1 to T do
6: for k = 1 to K do {Online Sampling}
7: Resample from observation weights: l ∼ wt−1

8: Predict qt (k) by sampling from p(qt |qt−1(l))) = M(qt−1(l), qt )

9: Compute new observation weights: wt(k) = G(yt − ϕtθqt (k);0,Rqt (k))

10: end for
11: end for
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Fig. 5 Short clips (about 3 seconds) from the sequences of the gait dataset. Subject 1 walking (top), running (center) and limping (bottom)

subjects, see the table in Fig. 4 for details. Each sequence
is sampled at 60 Hz and is about 6 second-long. Different
sequences thus sample different instance of the same gait
performed by different individuals.

From marker positions we estimated body skeleton
model and joint angles with an approach similar to the one
proposed in O’Brien et al. (2000). First, we estimated the
reference frame moving with the body limb from the set of
markers attached to the limb. Then the joint positions were
obtained as the center of rotation of the reference frame of
adjacent limbs. From joint positions, by enforcing fixed limb
length, we obtained the model of the skeleton and the joint
angles. Since we did not use a reference model for the skele-
ton, the estimated skeletons vary from person to person, af-
fecting the joint angles estimates and making the recognition
problem harder. In Fig. 5 we show some sample clips of the
data sequences. From each sequence, we extracted the 24
angles corresponding to the 8 joints defining the positions
of hips, femurs, tibias and feet. The angles are represented
using the exponential map (Ma et al. 2003). Since the num-
ber of parameters of the AR model is p2, where p is the
dimension of the measurements, we had to reduce the di-
mensionality of the data. For this purpose we applied prin-
cipal component analysis (PCA) to each sequence, treated
as a collection of static poses. We retained the first p = 4
components, and used the coefficients of the joint angles
projected onto the learned basis as observations yT

i . From
the low-dimensional sequence yT

i , we learned the posterior
(14) using Algorithm 1 described in Sect. 2.1. The model we
propose is very general and contains a number of parameter
that should be tuned to the particular class of signals un-
der investigation. In these experiments, we used first-order
autoregressive models, i.e. n = 1 in (1). Of course, in or-
der to take into account acceleration, a second-order system
would be more appropriate. However, in these experiments,
we show that a first-order model is sufficient for discrim-
inative purposes. We set the prior means θm

0 to zero and
the prior variances P m

0 to p0I , where p0 is a large number,
to capture the lack of prior information on the parameters.
The noise variances Rm are set to the identity, so that in
(18) we obtain least squares estimates. As before, we have 2

hidden states and models with equal probability. The poste-
riors are computed with a bank of K filters. To have optimal
segmentations we would need K to be no smaller than the
sequence length T , typically about 400. In practice, we no-
ticed that reducing K to 50 does not significantly change
the approximation (14). Since some of the computed seg-
mentation hypotheses are equivalent (they are equal up to
a permutation of the states), the filtering is followed by a
hypothesis reduction step where we remove the duplicate
hypotheses. Then we proceed to compute the posterior on
the parameters (14). Of all the components of (14), typi-
cally only few have weight significantly different from zero.
Therefore, we proceed by pruning all the hypotheses that
have weight below a small threshold. In Fig. 6 we show the
weight of the mixture components of the parameter posteri-
ors learned from the gait sequences. We see that most of the
sequences have multimodal distribution, with a number of
modes limited by the number of filters K .

3.3 Hybrid Models for Dynamic Discrimination

The point of this section is to show that hybrid models have
more discriminative power than simpler linear models (Bis-
sacco et al. 2001). Our intent here is to show that discrim-
ination between different classes (e.g. different gaits by the
same individual, or different individuals walking the same
gait) is made possible by a hybrid model where it was not
by using a linear dynamical model.

This is, therefore, a feasibility study, not in competition
with other gait or individual recognition techniques that use
different (static) features. Our approach is meant to comple-
ment them, not to replace them.

In Fig. 6 we show the pairwise distance between mod-
els learned from the dataset sequences. We clearly see that
the hybrid models can discriminate between gait classes.
For comparison, we learned first-order autoregressive mod-
els from the same sequences and computed the Euclidean
distance between the maximum likelihood parameter esti-
mates. By using this simpler model distance we would not
be able to discriminate between gaits. The confusion be-
tween limp and walk may be due to the different parame-
terizations of the motion, to the dimensionality reduction
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Fig. 6 (Color online) Discrepancy measure between models learned
from the gait dataset; (a) shows the Euclidean distance between max-
imum likelihood estimates of autoregressive model parameters; (b)
displays the Martin distance between ARMA models as proposed in
Bissacco et al. (2001); (c) shows the approximated Wasserstein dis-
tance between posterior distributions of the parameters of the hybrid
autoregressive models. For each row the green cross denotes the near-
est neighbor. We can see that the simple autoregressive models are
not discriminative enough to capture the character of the motion class.
Following Bissacco et al. (2001), we increase the descriptive power by
using state-space ARMA models (here we have a 4-dimensional state)
and measure similarity by the Martin distance; still, this is not suffi-
cient to separate motion classes (b). Discrimination greatly improves

by using hybrid autoregressive models with hidden parameters and
measuring distances between their probability distributions (c). Fur-
ther evidence in support of the hybrid model is given by the number of
dominant components in the parameter posteriors (14) as estimated by
Algorithm 1 on the dataset. In (d) we show the weights αk,i of the mix-
ture components in the posterior distributions (23) for each sequence
k in the dataset. We can see that in the vast majority of sequences
the posteriors exhibit multiple modes, whereas in the case of linear
dynamics we would have unimodal posteriors. From (c) it appears that
the limping and walking gaits are not successfully discriminated. This
is not surprising: It is hard to limp on a running treadmill, and the two
gaits, as we see in Fig. 5, are very similar indeed

step or simply to the fact that the dynamics of the two gaits
are very close. In Fig. 6 we also plot the pairwise Martin
distance between Gaussian auto-regressive moving-average
(ARMA) models learned from the same data using the ap-
proach of Bissacco et al. (2001). An ARMA model is a lin-
ear dynamical model that is identified using standard tools

from the literature of System Identification, as described in
Bissacco et al. (2001). While a linear model can be chosen of
order high enough to approximate any second-order covari-
ance sequence to an arbitrary degree, here we limit the order
of the model to the same order of our hybrid model, show-
ing the our approach out-performs linear models at equal
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Table 1 Comparison of gait classification performance in k-nearest
neighbor matching using distances between models. We report the frac-
tion of correct k-nearest neighbor matches in the dataset (k = 3,5
and 7) using the same metrics of Fig. 6: Euclidean distance between
AR model parameters, Martin distance between ARMA models, and

Wasserstein distance between Hybrid AR parameter posteriors. The
first number is the rate of correct matches in the entire dataset, in brack-
ets the fraction of correct matches for respectively walking, running
and limping sequences. This data show that modeling hybrid dynamics
clearly yields better discrimination between gait classes

Model and Measure k = 3 k = 5 k = 7

Euclidean distance 0.571 0.575 0.592

between AR (0.632, 0.709, 0.125) (0.675, 0.671, 0.125) (0.693, 0.696, 0.150)

Martin distance 0.665 0.648 0.627

between ARMA (0.842, 0.683, 0.125) (0.851, 0.633, 0.100) (0.851, 0.570, 0.100)

Wasserstein distance 0.781 0.794 0.824

between Hybrid AR (0.860, 0.987, 0.150) (0.886, 0.987, 0.150) (0.939, 0.987, 0.175)

complexity. Equivalently, one could show that our model re-
quires less complexity at equal performance levels.

In Table 1 we show the gait classification performance
using k-nearest neighbor on each of the three metrics, for
some values of k. It is clear that the added descriptive power
of our hybrid models combined with the proposed metric
on parameters distributions lead to better discrimination be-
tween human gait classes.

4 Discussion

We have presented a technique to perform classification in
the space of hybrid autoregressive models that we have used
to classify human gaits. We have shown that classification
based on a hybrid model yields significant improvements
over simple linear systems.

In order to achieve our results, we have devised a novel
(approximate) filtering and identification technique for hy-
brid AR models (this is inspired by a wealth of results avail-
able in the literature), and introduced a distance between
parameter distributions. This distance is not computable ef-
ficiently, so we had to resort to an approximation, which
nonetheless showed good performance in our experiments.

Our model has limitations. It can only capture station-
ary (quasi-periodic) gaits. Ideally we would like to recog-
nize transient actions, but doing so in a principled manner
is well beyond our scope here. We also assume, somewhat
optimistically, that temporal statistics are extracted for us
from images. This does not mean that we under-appreciate
the difficulty in detecting, localizing, and tracking humans in
video. On the contrary, the models we propose can be used
to support these tasks, eventually. Our inference techniques
rely on models that can be inferred from images, and we do
not assume that forces or higher-order temporal statistics are
available, which would be the case if we were analyzing data
for graphics or biomechanics.
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