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Abstract Many image processing problems require the en-
hancement of crossing elongated structures. These prob-
lems cannot easily be solved by commonly used coherence-
enhancing diffusion methods. Therefore, we propose a
method for coherence-enhancing diffusion on the invertible
orientation score of a 2D image. In an orientation score,
the local orientation is represented by an additional third
dimension, ensuring that crossing elongated structures are
separated from each other. We consider orientation scores
as functions on the Euclidean motion group, and use the
group structure to apply left-invariant diffusion equations on
orientation scores. We describe how we can calculate regu-
larized left-invariant derivatives, and use the Hessian to es-
timate three descriptive local features: curvature, deviation
from horizontality, and orientation confidence. These local
features are used to adapt a nonlinear coherence-enhancing,
crossing-preserving, diffusion equation on the orientation
score. We propose two explicit finite-difference schemes
to apply the nonlinear diffusion in the orientation score
and provide a stability analysis. Experiments on both arti-
ficial and medical images show that preservation of cross-
ings is the main advantage compared to standard coherence-
enhancing diffusion. The use of curvature leads to improved
enhancement of curves with high curvature. Furthermore,
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1 Introduction

Image-processing problems often demand enhancement of
elongated structures, such as lines, contours, and oriented
textures, in noisy images. Many methods for enhancing
elongated structures are based on nonlinear anisotropic
diffusion equations on the image, i.e. adaptive diffusion
processes where an unequal amount of diffusion is applied
in different directions. This idea was pioneered by Nitzberg
and Shiota (1992) and Cottet and Germain (1993). Later
on, Weickert proposed edge- and coherence-enhancing dif-
fusion filtering (Weickert 1998, 1999), which uses the struc-
ture tensor to steer the diffusion. Afterwards, various pub-
lications appeared inspired by these methods. For example,
Manniesing and Niessen (2005), Manniesing et al. (2006)
proposed to steer the diffusion using the vessel resemblance
function, which is based on the Hessian instead of the struc-
ture tensor, and Tschumperlé (2006) proposed to include
curvature into the diffusion process in order to improve en-
hancement of curved structures.

Many image processing problems, especially medical
ones, require the algorithm to handle crossing and bifur-
cating line structures appropriately. This is for example
important for High Angular Resolution Diffusion Imaging
(HARDI) (Tuch et al. 1999), which is an extension to Dif-
fusion Tensor Imaging (DTI), where a richer representation
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(a) Original

Fig. 1 Example of a microscopy image with crossing collagen
fibers, showing the problems occurring at crossing. With the standard
coherence-enhancing diffusion method, cf. Weickert (1998), abbrevi-
ated as CED, crossing elongated structures are not preserved. The

(a) Image

(b) Orientation score

Fig. 2 Illustrations of orientation score construction from images.
(a) Image with crossing lines. (b) Sketch of the corresponding three-
dimensional orientation score. Since the lines have different orienta-
tions they are separated in the orientation score. Notice that the orienta-

for angular data is used, such that crossing fibers can be dis-
tinguished. Other examples include microscopy images of
for instance collagen structures, X-ray fluoroscopy images
with catheters (Franken et al. 2006), and MRI images of bi-
furcating blood vessels. At a position with a crossing, meth-
ods like coherence-enhancing diffusion do not enhance the
elongated structures appropriately, as illustrated in Fig. 1(b).
One would resolve this problem if one diffuses anisotropi-
cally in the directions of the different oriented structures, in-
dependent on the angles and number of elongated structures
that cross. An interesting approach to handle crossing elon-
gated structures is proposed by Scharr (2006). The method
is similar to coherence-enhancing diffusion, but the gradient
operator in both the structure tensor and the diffusion PDE
is substituted by the second order jet operator. However, the
drawback of this method is that the order of the PDE is high,
and gets even higher if one wants to deal with crossings of
more than two curves. Furthermore, it is only suitable to
handle “X-junctions”, i.e. 2 curves that cross with a large
angle.
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(b) Standard CED

(¢) Our method

method described in this paper is able to handle crossings appropri-
ately. The parameters that are used to obtain these images are given in
Sect. 8

(c) Image (d) Orientation score

tion dimension, which is displayed vertically, is actually 2 -periodic.
(¢) Image with a circle. (d) The corresponding response in the orienta-
tion score is confined to a spiral

In this paper we try to resolve the problem of crossing
elongated structures by using orientation scores of images.
An orientation score of a two-dimensional image is a three-
dimensional function on spatial position (x, y) and orienta-
tion 0, i.e. a function on the 2D Euclidean motion group,
which provides an overview of all local orientations in
the corresponding image. This is illustrated in Fig. 2. The
concept of orientation scores first occurred in the field of
perceptual grouping (Walters 1987; Heitger and von der
Heydt 1993; Mumford 1994; Williams and Jacobs 1997;
Zweck and Williams 2004) and is also applied for seg-
menting crossing structures (Chen et al. 2000; August 2001;
Van Ginkel 2002) and estimating local orientation (Felsberg
et al. 2006). The main advantage of using an orientation
score is that crossing curves are separated (see Figs. 2(a)
and (b)), since at the position where two lines cross they
have a different orientation. This means that it is not needed
anymore to take special care for crossings e.g. by explicitly
detecting them. Figure 1(c) shows a typical result that can
be obtained using orientation scores.
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Kalitzin et al. (1997) proposed the invertible orientation
score, which makes it possible to reconstruct the original
image from the orientation score in a well-posed way. The
invertibility of the transformation is essential in order to use
orientation scores (OS) for image processing and enhance-
ment, using the following chain of operations

Image to OS — Process OS — OS to image.

An example of a simple orientation score processing oper-
ation is to take a certain power or taking nonlinear com-
binations of derivatives in the orientation score, leading to
enhancement of lines in the reconstructed image (Kalitzin
et al. 1997).

Duits et al. (2004, 2007), Duits (2005) developed a the-
ory on the robustness of the invertible orientation score
transformation, which is a multi-orientation wavelet trans-
form. In wavelet literature, several authors have investigated
wavelet transforms that are both multi-orientation and multi-
scale. The curvelet transform (Candes and Donoho 1999a,
1999b; Starck et al. 2002) is a discrete multi-scale and multi-
orientation wavelet transform. Antoine et al. propose con-
tinuous directional wavelets (Antoine and Murenzi 1996;
Antoine et al. 1999) and establish the wavelet theory on the
similitude group. The orientation score wavelet transform
leaves out scaling, while it is still possible to obtain a stable
image reconstruction.! In fact, an orientation score wavelet
picks up all scales simultaneously, i.e. all scales within a
reasonable range determined by the sampling and the size
of the image. A practical advantage is the reduction of stor-
age requirements.’

The notion of scale does come into play in orientation
scores when considering processing operations on orien-
tation scores. Instead of applying soft thresholds on the
wavelet domain, which is common practice in wavelet lit-
erature, Duits (2005) explicitly employs the group struc-
ture in the wavelet domain by considering left-invariant
convection-diffusion equations on the orientation score,
which can be regarded as scale spaces on the Euclidean
motion group. The linear left-invariant convection-diffusion
equation correspond to stochastic processes for enhance-
ment and completion of curves (Duits 2005; Van Almsick

The admissibility constraint in the wavelet theory on the similitude
group (Antoine et al. 1999) can not be satisfied by proper wavelets in
the Euclidean motion group. Therefore, we need a totally different ad-
missibility constraint to construct proper wavelets in case of the Euclid-
ean motion group (Duits et al. 2004), which will be briefly addressed
in this paper.

2 Another reason to leave out scaling is that the admissibility con-
ditions for multi-scale multi-orientation wavelet transforms (Antoine
et al. 1999) require the oriented wavelet to oscillate along its radial di-
rection, which is an undesirable effect that will cause problems for the
diffusion processes in the wavelet domain that we will aim at in this
paper.

2007). The major differences with the earlier work in this
area, i.e. the approach for curve enhancement by Citti and
Sarti (2006) and curve completion by Mumford (1994) and
Zweck and Williams (2004), is that the invertibility of the
orientation score is used. Furthermore, the linear evolution
equations are solved by means of an SE(2)-convolution on
the orientation score with the corresponding Green’s func-
tion, which have been derived by Duits and van Almsick
(2008), Duits and Franken (2007, 2009a).

This paper goes one step further and describes nonlin-
ear diffusion equations on the two-dimensional Euclidean
motion group to enhance crossing elongated structures. The
method is comparable to edge- and coherence-enhancing
diffusion, with the difference that the orientation is explic-
itly encoded in the domain on which diffusion is applied.
We describe how to make the diffusion tensor adaptive to
three features that describe the local structure in the orien-
tation score: orientation confidence, curvature, and devia-
tion from horizontality. These features are estimated using a
Hessian matrix and they establish a gauge frame for the dif-
fusion process at each position in the domain of the orien-
tation score. The idea of a gauge frame in image processing
(Florack et al. 1993) is to define, at each spatial position in-
dependently, a data-dependent orthogonal coordinate frame
that spans the tangent space, such that the basis vectors are
in alignment with some local feature of interest in the image.

This paper extends earlier work presented at conferences
(Franken et al. 2007a, 2007b) with new results, particularly
the gauge frame, stability bounds of the numerical schemes,
and the concept of deviation from horizontality. In this pa-
per we focus on the applied image processing and algorith-
mic part of our work. The essential mathematical theory will
be presented in such a way that it should be understandable
without too many prerequisites. In the companion papers
(Duits and Franken 2009a, 2009b), which are written by the
same authors, we focus on the mathematical theory and un-
derlying differential geometry of both linear and nonlinear
left-invariant diffusion equations on orientation scores.

1.1 Structure of the Paper

This paper starts with the introduction of orientation scores
in details in Sect. 2. We will provide the necessary theory:
group structure, left invariance, the tangent space at group
elements, the left-invariant diffusion equation, and the gauge
frame. Then, in Sect. 3 we describe how to construct invert-
ible orientation scores in practice, and in Sect. 4 we describe
how to operationalize regularized derivatives in orientation
scores. All these results are used for the next step in Sect. 5:
estimating local features in orientation scores. These fea-
tures are used next in Sect. 6 to come to a nonlinear diffusion
model, which corresponds to coherence-enhancing diffusion
in the orientation score domain. Then, in Sect. 7 we describe

@ Springer



256

Int J Comput Vis (2009) 85: 253-278

the numerical schemes that are used, including an analysis
on stability. Finally, in Sect. 8 we show experimental re-
sults on the quality of curvature estimation and results of
the coherence-enhancing diffusion in the orientation score,
and we draw conclusions in Sect. 9.

2 Theory of Orientation Scores

In this section we will describe the theory that is essential
for the rest of the paper. We will introduce invertible orien-
tation scores in more detail. Then we will explain the essen-
tial parts of the group theory and differential geometry that
we will need to understand and describe the algorithm. The
theory is written in such a way that it should be understand-
able without too much prerequisites from these fields. For
more theoretical underpinning and mathematical details we
refer to our other publications (Duits and van Almsick 2008;
Duits et al. 2007).

2.1 Orientation Scores

In mathematical terms, an image f is a mapping f :
R? — R, which has compact support on the image domain

5 10 15 20 25 *

()

Fig. 3 (a) Example of an image (128 x 128 pixels) with concentric
circles. (b) Sketch of an iso-surface of the absolute value of the cor-
responding orientation score cf. (d), showing that the circles become
spirals and all spirals together span a helicoid-shaped plane. (c) Real
part of the orientation score U displayed for 4 different orientations.
(d) The absolute value |Uy| yields a phase-invariant response dis-
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Q =10, X] x [0, Y], with image dimensions X,Y € RT. If
one considers elongated structures (e.g., lines, edges, ori-
ented texture patterns) in images, the position in the domain
RR? is not very descriptive, one only knows the position rela-
tive to the horizontal and vertical axes. The codomain is not
very descriptive either, since a single grayvalue itself does
not give any information on orientation. In an orientation
score we add a dimension to the domain, namely orienta-
tion, meaning that an orientation score U is defined as a
function R?2 x T — R or C, where R? corresponds to the
spatial (image) domain and T is the orientation domain, i.e.
T = {¢!?|0 € R}. As a result, the position in the new do-
main contains the three essential features to locally describe
an oriented structure, namely orientation and horizontal and
vertical position, see Figs. 3(a, b).

Instead of extending the domain one could think of ex-
tending the codomain to describe oriented features, i.e. cre-
ate a function R> — T x R. The latter approach is substan-
tially different, since each spatial position only maps to a
single orientation, while in an orientation score each com-
bination of spatial position and orientation maps to a scalar.
The practical advantage of our approach is manifest: we can
transparently handle crossings and bifurcations.

0 - - 0

(8) (h)

played for 4 orientations. (e) Real part of the kernel cf. (45), used to
generate (c) and (d), with & = 0 and parameter values k =2, ¢ = 8,
t =400, s = 10, sy = 64. (f) Imaginary part. (g) Fourier transform of
the kernel depicted in (e) and (f). (h) My, (see (6)), which can be seen
as the Fourier transform of the effective operation if no correction is
applied, i.e. if reconstruction equation (11) is used
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On the image domain, it is straightforward to develop im-
age processing operations that are translation invariant, i.e.
operations which commute with a translation of the image.
One can also create rotation invariant operations, meaning
that the operator commutes with rotation of the image. How-
ever the number of possible rotation invariant operations on
images directly is limited to, for example, isotropic filtering
or gauge coordinates (Florack et al. 1993). With invertible
orientation scores, however, it is possible to develop opera-
tions that are sensitive to oriented structures and at the same
time both translation and rotation invariant, i.e. Euclidean
invariant.

The observations on invariances lead to an important con-
sideration in our framework: the domains of both images and
orientation spaces are Lie group manifolds. An image f is
a mapping from the group elements of the translation group
R? to the real numbers. Analogously, an orientation score
U is a mapping from the group elements of the Euclidean
motion group SE(2) =R? x T. The properties of this group
will be treated in the next subsection.

2.2 The Euclidean Motion Group

The Euclidean motion group SE(2) = R? x T is parameter-
ized by the group elements g = (x, #) where x = (x, y) € R?
are the two spatial variables that label the domain of the im-
age f, and 6 mod2rx is the orientation angle that captures
the orientation of structures in image f. We will use both
short notation g and explicit notation (x, ) for group ele-
ments. The group product and group inverse of elements in
SE(2) are given by

28 =x,0)x,0)=(x+Ryx,0 +6 mod2r),

—sin0>, n

cosf

sinf

with Ry = ( cos 6

g =(-R;'x, —0).

The Euclidean motion group is not commutative, i.e. in gen-
eral g g’ # g’ g. Note that the translation and rotation part
are not independent of each other as a rotation matrix Ry
appears in the translation part. In the notation R? x T this
is reflected by the symbol “x” for the semi-direct prod-
uct, instead of the symbol “x” that denotes the direct prod-
uct.

To map the structure of the group to orientation scores
and images, we need a so-called representation. A repre-
sentation is a homomorphism of the form R : G — B(H)
where H is a Hilbert space and B(H) is the space of
bounded linear operators A : H — H. A representation
maps a group element to an operator, i.e. R = (g = Ry),
such that e — Z (identity element maps to identity opera-
tor), gh = R¢Ry, (group product is preserved), and conse-
quently g~! > (Rg)_1 (inverse is preserved).

Two group representations of SE(2) are important in this
work: on images Lo (R?) and orientation spaces L, (SE(2)).
They are defined by

f eLa(RY), )

ye Rz, and

U /)(y) = FR, (y —x)),
where g = (x,60) e SE(2),

(L U)h)=U(g™'h), U €la(SEQ)), g.h€SEQ).(3)
The representation L, is the left-regular representation,
since the multiplication takes place on the left side.

2.3 Invertible Orientation Scores

In this section we briefly discuss the theory of invertible ori-
entation score transformations. A more mathematical treat-
ment of invertible orientation scores can be found in the
work by Duits et al. (2007), who developed a generalization
of the wavelet theory.

An invertible orientation score is obtained by correlating
the image with an anisotropic kernel

Uy (x.0) = W7 % )3 = /R VRS (K —0) f (),
)

where ¥ € L, (R?) is the correlation kernel with orientation
6 =0, i.e. aligned with the horizontal axis in our conven-
tion. The correlation kernel is related to the convolution ker-
nel by 1/7(x) = ¥ (—x). The overline denotes complex con-
jugate, and I/IG(X) =¥ (R, 1X) where Ry is the rotation ma-
trix. Note, that (4) can also be expressed using represen-
tation U cf. (2), making the group structure explicit, i.e.
Ug(x,0) = UV, [, w2y Where (-, ), w2 denotes the
IL-inner product.

The exact reconstruction equation accompanying (4) is
given by

2
f:}‘—1|:M¢1]:|:x}—>/0 (&%Uf(.,e))(x)deﬂ, )

where F denotes the unitary Fourier transform on R? and
My : R?> — R* is calculated by

= [ FE = [ e, ©

This function can be seen as a measure for stability of the
inverse transformation: the number My (w) specifies how
well frequency component @ is preserved by the cascade of
construction and reconstruction, if the “compensation term”
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M7;" would not be included in the reconstruction equa-
tion (5). It can be verified that the construction/reconstruc-
tion equations (4) and (5) fulfill the following Plancherel’s
formula

LFIE g2y = 113, @)
where the norm || - [ a,, on the orientation score domain is
defined as

) 2 2w 5 1
10k, = [ [ 1@ 0 R e, ®)

where Fp> denotes the Fourier transform on the spatial co-
ordinates only. Note that we have LLp-norm preservation,
ie. ||f||]i2(R2) = 1Usl3, = 1UfIIE,seqy- if and only if
My =1.

Theoretically, reconstruction is well-posed as long as
0 <é < My (w) < oo where § is arbitrarily small. In prac-
tice, to prevent numerical problems, it is better to aim at
My (w) ~ 1 for |@|| < ¢, meaning that all frequency compo-
nents within a ball of radius g are preserved. This is a natural
choice for bandlimited images: because of finite sampling
we can assume images to be bandlimited anyway, where
the bandwidth coincides with the well-known Nyquist fre-
quency.

Invertible orientation scores were first proposed by
Kalitzin et al. (1999). They propose a specific choice for
an oriented wavelet which falls in class of proper wavelets
(Duits et al. 2007). This kernel, however, has practical dis-
advantages, which are explained in details in Duits (2005,
p- 141, Sect. 4.6.2). The oriented wavelets we use in this
paper are also proper wavelets, but are of an essentially
different type (Duits 2005, p. 141, Sect. 4.6.1). The idea
is that if My ~ 1 we can approximate the reconstruction
by

2
f(X)’A*/0 W« Us(-,0)) (x)do. )]

We can even further simplify the reconstruction for a spe-
cial class of filters i that satisfy

2 2
My = [T s [ |F 0] 0, (10)

where the reconstruction formula simplifies to integration
over the orientation dimension

2
fx) f«e/ Uy (x,6)d6, (11)
0

which has the practical advantage that the computation time
of the reconstruction procedure is significantly reduced.
Duits et al. (2007) first proposed proper wavelets that fulfill
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the latter reconstruction equation. We will use this type of
kernel and introduce one particular choice in more detail in
Sect. 3.

2.4 Left-invariant Operations in Orientation Scores

We want to perform operations on orientation scores of im-
ages, in order to enhance the corresponding image. Analo-
gously to the fact that the Gabor transform of a signal makes
it easier to perform operations that manipulate local frequen-
cies, the orientation score transform makes it easier to apply
anisotropic operations on locally oriented structures, in such
a way that each orientation on each position can be manipu-
lated separately.

A lot of choices for operations on orientation scores ex-
ist, but not all of them are sensible. As already mentioned
in Sect. 2.1, we want to ensure that the effective opera-
tion on the image is Euclidean invariant. It can be shown
(Duits 2005, Theorem 2.1, p. 153) that this is only the case
if the operator & : Ly (SE(2)) — L>(SE(2)) that is applied
to the orientation score is left-invariant. An operator ® is
left-invariant iff £, ®U = &L U, for all g € G and for all
U € L2(SE(2)), where L is defined in (3). In other words,
left-invariance means that the operator commutes with the
left-regular representation £ of the group.

Figure 4 illustrates left-invariance in two different ways:
for tangent vectors and for differential operators. In Fig. 4(a),
it is shown how a tangent vector X, = céex +cey + c9e9 €
T,.(SE(2)), which is tangent to a curve y : R — SE(2) at
unity element e, can be “transported in a left-invariant way”
to a tangent vector X, € T, (SE(2)) which is tangent to the
curve gy at position g. Here, the curve gy is the origi-
nal curve y that is left-multiplied with g = (x,6) € SE(2),
so that the curve is translated over x and rotated over
6. The tangent space at the unity element is spanned by
T.(G) = span{ey, ey, €5 }. We transport this basis vectors in
a left-invariant way, i.e. X, = (L)« X, is the push-forward
of left-multiplication, as illustrated in the figure. We get the
following basis for the left-invariant vector fields at group
element g

{e:(g).e;(g),e9(g)}

= {cosfe; +sind ey, —sinf e, +cosbd ey, e} (12)

This basis for tangent vectors in g has the property that
X = cgeg + c'e, + c?eq for all g, so the vector compo-
nents (cf, ¢, ¢?) of X, and X, for all g are the same. Fur-
thermore, the basis vectors have a clear interpretation: eg is
always tangent to the orientation 6 and e, is always orthog-
onal to this orientation. For notational simplicity the depen-
dency on g is usually omitted further on, but it is important
to realize that e; and e, do depend on 6 of the group element

g =(x,0).
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(a) Left-invariance of tangent vectors to curves

Q
Q g R
e Ly [¢]
e® #(g) =
¢olL o) o L) e

Xg(¢) = Xe(po Lg)

((Lg)sXe)(0) €R

(b) Left-invariance of tangent vectors considered as differential operators

Fig. 4 Illustrations of the concept of left-invariance, from two differ-
ent perspectives: (a) considered as tangent vectors tangent to curves,
ie. Xg =c’ep(g) + cSes (g) + c'e,(g) forall g € SE(2), and (b) con-
sidered as differential operators on locally defined smooth functions,

In Fig. 4(b) it is shown how X, and X, can also be
viewed as differential operators, acting on a function U :
SE(2) — R, e.g. an orientation score. In the figure, the
codomain of U is the vertical R-axis. X, can be viewed as
an operator that calculates the derivative of U at g, i.e.

Xo(U) = (5 dglg + "dylg + P dpl)U
= (c*(cos 09, + sinBdy)
+ ¢"(—sinfd, + cos8dy) + ) U, (13)
gives a scalar on the horizontal R-axis on the bottom of the
figure. The same result can also be obtained by first translat-

ing and rotating U over g, i.e. U o Lg, such that the original
neighborhood €2, is shifted to neighborhood €2,. That is,

X;U)=X.(UoLy) = (c'sax—{—c”ay—i—cgag)(UoLg), (14)

so the direct relation between X, and X, is established by
the push-forward operator: X, = (Lg)+X,. Intuitively, the

ie. Xg =c%3lg + Sl + "9y, for all g € SE(2). The push for-
ward (Lg)s : Te(SE(2)) — T4(SE(2)) connects the tangent space at
the unity element 7, (SE(2)) to all tangent spaces T, (SE(2)). See the
text (Sect. 2.4) for details

push-forward operator allows to move tangent vectors to
tangent spaces at different group elements.

2.5 Tangent Spaces and Dual Tangent Spaces

For the subsequent theory in the paper we need to intro-
duce the tangent spaces T, (SE(2)) and dual tangent space
Tg* (SE(2)) in more detail. Furthermore, we need to define
inner products and norms on these spaces.

A vector in the tangent space T, (SE(2)) is denoted in
a basis-independent way by c535|g + coylg + c‘989|g €
To(SE(2)), with (c%,c",c%) € R3. We will consistently
use the left-invariant basis {0, d,, dg} further on, i.e. we
will work with the vector components ¢ = (%, ¢, T ex-
pressed in this basis. The physical dimensions of the vector
components are (length, length, 1) respectively.

Similarly, a covector is denoted by cgdé|, + c,dnl|, +
cpdf| € T;‘ (SE(2)), where d&, dn, and df span the basis of
the dual tangent space T; (SE(2)). The relation between the
tangent space and the dual tangent space is established by
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the Kronecker product

(dpg,aAg>=3pq with p, g € {€, 1, 6}, (15)

for example (df, d:) = 0 and (df, dg) = 1. For the basis-
dependent covector components we use the notation b=
(bg, by, bg) where the “hat” in the notation of b allows
to distinguish between vectors and covectors. The physi-
cal dimensions of the vector components are (1/length, 1/
length, 1) respectively.

The Kronecker product on covector components ¢ and
vector components b is defined by

(b, €) = bgct + byc" + by’ (16)

Note that the resulting number is dimensionless.

In R” vectors and covectors coincide, since an inner
product on vectors is defined as (¢, b) = >~/ >, 8ijc'b/
where §;; is the Kronecker delta function (§;; =1if i = j
and 0 otherwise). In the case of T, (SE(2)) it would be wrong
to use the same inner product, since the components &, cé,
and ¢ are dimensionally not the same. To correct for this we
introduce a parameter © with physical dimension 1/length
and define as inner product

(c,b), = w2 b + e + Y. (17)

The parameter 1 now ensures the result is dimensionless.
From this inner product we can calculate the Grammian ma-
trix

(9, 0e) (O, Iy (3¢, )
Gu=1 00 @ oy (@ d)u
(39, 0)p (39, )y (39, )y
w> 0 0
=10 w* 0o]. (18)
0 0 1

The Grammian matrix establishes the relation between the
components of vectors and covectors by ¢ = G,¢ and thus
also between the inner product and Kronecker product,
ie.

(c,b), = (G,e,b) = (¢, b). (19)

Consequently, the inner product between two covectors is
given by

@b), = (&, G, ") = u2cebs + p2enby +cobp.  (20)

From the inner product on 7, (SE(2)) we can now deduce
a norm on vectors and covectors in the regular way, i.e.
by

lely=+/(c.0)p and €]l =/(€ ). 21
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For a theoretical motivation of this left-invariant (and
not right-invariant) inner product on each tangent space
T, (SE(2)) see (Duits and Franken 2009b).

2.6 Left-invariant Derivatives

As mentioned in Sect. 2.4, {0g, 0y, dg} are left-invariant dif-
ferential operators, which are appropriate to use instead of
the set {0y, dy, dp}. They have a clear interpretation, since 0¢
is always the spatial derivative tangent to the orientation 6
and 9, is always orthogonal.

When constructing higher order left-invariant deriva-
tives, it is important to note that the order of applying the
derivatives matters, i.e. not all the left-invariant derivatives
{9, ¢, 0y} commute. The nonzero commutators (definition
[A, B]= AB — BA) are given by

[0, 0g] = 0y, [0, 0y] = —0¢. (22)

An important elementary left-invariant derivative opera-
tions is the gradient of an orientation score, which is given
by

oUu oU oU
dU = —d§ + —dn + —db. 23
0F &+ o N+ =g (23)
Note that this is a covector field, where the components are
obtained by the nabla operator

AU aU aU\T
VU = —,—,— . (24)
3& " oy 90

2.7 Horizontality

A curve ¢ : R — SE(2) in the orientation score, denoted by
its components as g () = (x(¢), y(¢), 0(t)), is horizontal at
t e Riff

(25)

0m24<ma)®0v7

dr ’ dr

where Z(x,y) = arg(x + i y). In words, horizontal curves
have the property that the direction of the curve Pp2q, i.e.
the curve projected to the spatial plane R?, coincides with
the orientation 6 of the curve in SE(2). Therefore, for all
tangent vectors ¢ = (cg ,cl, c‘g)T over the curve we know
that ¢ =0, i.e. an equivalent formulation for horizontality
of g is

(W eﬂ(q(t))>

dr "

. dx(@) dy(#)

2

= — = VteR.
% ( sin @ ” + cosf ” 0, te

(26)
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On a horizontal curve, d¢ is always the spatial derivative
tangent to the curve and 9, is always orthogonal to the
curve.

A curve (x(t), y(¢)) in an image would render a perfectly
horizontal response if the at each spatial position along the
curve the response in the orientation dimension would be a
8-spike, i.e. Us(x(1), y(t),0) = S(arg(LL 4 LWy _ gy,
In this case we can say that the curve renders an exactly
horizontal response in the orientation score. However, by
construction, cf. Sect. 2.3, the response in the orientation
score caused by a curve in the corresponding image always
exhibits some uncertainty in orientation. Therefore, in prac-
tice, the orientation score transformation cf. Sect. 2.3 ren-
ders orientation scores in which image curves render ap-
proximately horizontal responses.

2.8 Exponential Curves

An exponential curve is a curve y. : R — SE(2) for which
the components of the tangent vector expressed in the
left-invariant basis {eg, e;, €9} are constant over the entire
parametrization (if necessary after reparametrization of t),
ie.

d
g e = cFee (ve() + ey (ve() + e (ve(@),  (27)

for all t € R. These curves are analogous to straight lines in
R”, which also have a constant tangent vector relative to the
Cartesian basis {ey, ey }.

An exponential curve is obtained by an exponential map-
ping of Lie algebra elements, which explains why they are
called “exponential”. That is, an exponential curve passing
through the identity element e € SE(2) at t = 0 can be writ-
ten as

Fig. 5 Horizontal exponential X
curves in SE(2) for a range of
different curvature values,
shown from two different
perspectives. The left-sided
image shows that these curves
are circular arc when projected
onto the spatial plane

o

Vc(t) = exp(l‘ (Cs 8E |g=e + Cnaﬂ |g:e + ce 89 |g=e))
:eXp (t(csax +C"3)7+C980)), (28)
and an exponential curve passing through point go € SE(2)

can be obtained by left-multiplication with gg, i.e. go ve(t).
For the case ¢? # 0 this results in

X0 + z—i /L(tc‘), 6o) + i—; v(tca, 6p)
807e®) = | yo+ & v(tc?,60) + & u(tc?, 60) | -
tc? + 6o (29)
with  u(tc?, 69) = sin(tc® + 6y) — sin(6y),
v(tc?, 0y) = cos(tc? + 6p) — cos(6p).

These exponential curves represent spirals in SE(2). The ex-
ponential curves for the special case ¢ = 0 are

xo + tcf cos(By) — t ¢" sin(Bp)
80 ¥e(t) = | yo + 1 sin(6p) — t " cos(6) | . (30)
o

which are straight lines in SE(2) with constant orienta-
tion 6.

Horizontal exponential curves are exponential curves that
are horizontal cf. (25) for all # € R. They form the subset of
all exponential curves with ¢7 =0, see Fig. 5.

2.9 Curvature and Deviation from Horizontality

From the tangent vector ¢ = (c%, ¢, ¢?) of an exponential
curve we define two features with a clear geometrical in-
terpretation: curvature and deviation from horizontality, see
Fig. 6.

(5]
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K= c_sign(c
Ve 2+ 2

dp = arctan(<-)

(abv e9)ﬂ =0
:'a}c/tan

7
4
¢ dH JﬁDRQ C ©n

Fig. 6 Illustration of curvature and deviation from horizontality
(Sect. 2.9) and of the gauge frame (Sect. 2.11). Note that for vi-
sualization reasons, the lengths of the vectors are arbitrary. The
true lengths are given by |lcllg = llegllg = llezllg = lleylls = 1 and
l8cllp = 12alls = 1pll5 =

The curvature of an exponential curve in SE(2) that is
projected onto R? is given by

d2
k(1) = @(PRZV(I))

&t

T e+ ()2

—c"cos(t ¢? + 6p) — ¢ sin(t ¢ + 6p) G1)
X
¢t cos(t ¢? +6p) — ¢"sin(z ¢ + 6y),

where t must be the arc length parametrization in the spatial
plane, that is || %(]P’Rzy(t))n =1 for all # € R should hold.
The signed norm of the curvature vector is

c? sign(c‘? )
VEn?+(c5)?

This scalar value can be intuitively interpreted: the curvature
is equal to the slope at which the curve in the orientation
score meets the spatial plane, see Fig. 6. For a horizontal
exponential curve we know that ¢” = 0 and the curvature
expression simplifies to

K= |[Ke]| sign(ic - e,) = (32)

c
K= (33)
Together with go € G, the curvature « fully describes a hor-
izontal exponential curve y.go(t)|cn—=o. For a non-horizontal
exponential curve, we also need the deviation from horizon-
tality dy given by

o
dyg = arctan(—), (34
e

i.e. dy is the angle that the projection of the exponential
curve onto R? makes with the horizontal direction e, see
Fig. 6.
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2.10 Left-invariant Diffusion Equation on SE(2)

The diffusion equation on R”, which is commonly used in
image processing, is given by

xeR" 1 >0,

{atu(x, )=V -DVu(x,1t), (35)

u(x,0) = f(x),

where f is the input image, u the evolving image, the V
operator is defined with respect to the spatial coordinates,
and the diffusion tensor D is a positive (semi)definite matrix
of size n x n. This diffusion equation is left-invariant with
respect to the translation group.

In the same way, we construct the left-invariant diffusion
equation for SE(2).

8,U(g.1) =V -DVU (g, 1)
=(2 0, o)

Deg Den Deo\ (9 (36)

Dy Dyy Dy || 0y | Ulg: 1),

Dgge  Dgy; Dgg/) \9
U(g,00=Uy(g),

where g € SE(2) and t > 0, V is defined in (24), and the
diffusion tensor D a positive (semi)definite 3 x 3 matrix. In
the linear case D is a constant matrix independent on g and .
The solution can be written as U(-, 1) = ¢/ VPVIU .

Although there is no inherent notion of isotropy in SE(2),
we can define an artificial, but practically useful, notion of
w-isotropic diffusion, which is defined as

U (g, 1) = (3;35 + 3y, + ;ﬁagag) Ug.1). (37)

The equation is “u-isoptropic” since [|0g|l, = |9yl =
w2119l w = . We use this convention for p-isotropy be-
cause it ensures that the result of a B-isotropic diffusion
process at time ¢ can be identified one-to-one with the stan-
dard isotropic diffusion process on the image (cf. (35)) at the
same time ¢ on the image. This makes it more convenient to
set parameter w. In the next section we will discuss useful
choices for the diffusion tensor D for anisotropic diffusion
on SE(2).

2.11 Gauge Frame for Anisotropic Diffusion in SE(2)

The idea of gauge coordinates in image processing (Florack
et al. 1993) is to define a data-dependent orthogonal coordi-
nate frame, for the tangent space Tx (RN at each position x,
such that the basis vectors are in alignment with some local
feature of interest in the image. The advantage of gauge co-
ordinates is that operations described in gauge coordinates
are automatically rotation invariant. The most commonly
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used gauge coordinates are determined by the gradient of
a 2D image, where one basis vector is fixed tangent and one
is fixed orthogonal to the direction of the gradient.

We apply the same idea to orientation scores. We want
to establish a p-orthogonal gauge frame {9,, dp, 0.}, where
p-orthogonality is defined as

Bp, 8y = 1*8pg,  P-q €fa,b,c). (38)

Since exponential curves provide a local description of the
structures we are interested in, i.e. curved elongated struc-
tures, one of the components of the gauge frame should be
established by the tangent vector ¢(g) of exponential curve
Ye(g)& at each position g € SE(2) with |le(g)llg = 1, ie.
(omitting dependence on g)

o = (53 +c"3y) + % dp. (39)

The other two components d;, and 9. should span the plane
orthogonal to d,, and therefore can not be uniquely defined.
We make an arbitrary, but unique choice by ensuring that
{04, 0p, 0.} coincide with the left-invariant coordinate frame
{0g, 0, Do} for the case of straight horizontal lines (« = 0
and dg =0), i.e.

da=10¢, Op=20y, 0c.=pudg, iffe=(1,0,0). (40)
In terms of « and dy, as defined in Sect. 2.9, this renders the
following gauge frame

04 ¢
W |=QL Ry, | 3 |. (41)
¢ 0
where
cosdy —sindyg O
ﬁdH =|sindg cosdg O],
0 0 1
n K (42)
N N
Q= 0 1 0
—x “
\/Mz_,_,(z \/uz_,_,(z

This gauge frame is illustrated in Fig. 6. Note that it actually
involves two rotations, since Qy,, is also a rotation matrix.

The class of SE(2)-diffusions that are of our interest can
now be expressed in the gauge coordinates as a diffusion
equation without mixed terms

;U (g, 1) = (04D3q0y + 0p Dppdp + 0: D¢ 0:)U (g, 1),
U, t=0=Uys(g).
43)

Note that it is only correct to choose Dy, = D, since 9p, and
d. are arbitrarily chosen p-orthogonal to the tangent vec-
tor d,. In left-invariant derivatives this equation can now be
rewritten as

atU(g1 t)
y Daa 0 0
= (8§ oy Mag) Ry Qi 0 Dy 0
0 0 Dy,
O
T pT
. QK,/,LRdH day U, 1). 44)
127

This diffusion equation will be used in the rest of the paper,
where we will make Dy, dependent on the local differential
structure of U. Figure 7 shows examples of Green’s func-
tions of linear evolutions of this type, for different values of
D,., Dpp, and k.

3 Design of an Invertible Orientation Score
Transformation

The previous section introduced the essential theory of ori-
entation scores. The forthcoming sections will be more prac-
tical, and describe how the basic concepts are used in our
algorithm. In this section we describe the practical design
of an invertible orientation score transformation, based on
(Duits 2005, Sect. 4.6.2).

The invertibility conditions described in Sect. 2.3 still al-
low for a lot of freedom in choosing kernels . To restrict
the possible choices, we first formulate some practical re-
quirements that our transform needs to fulfill:

1. The orientation score should be constructed for a finite
number (N,) of orientations. This requirement is obvious
from an implementational point of view.

2. It should be possible to achieve perfect reconstruction by
summing all orientations, i.e. f(X) = Z,N:O(; ! Ur(x,isg),
where sy is the orientation sample distance in radi-
ans, i.e. sp = %’Z if the periodicity of the orientation
score 2.

3. The kernel should be strongly directional and minimize
the uncertainty principle on the Euclidean motion group.
These requirements are fulfilled if the kernel is a com-
pactly supported convex cone in the Fourier domain (An-
toine and Murenzi 1996; Antoine et al. 1999).

4. The kernel should be polar separable in the Fourier do-
main, in order to design the radial and angular part sep-
arately: ¥ (x) = f(p)h(p) where f is the radial func-
tion and h the angular function, and @ = (wx, wy) =

(o cosg, psing).
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Dy, =0

Dy, =0

Fig. 7 Illustrations of Green’s functions for different parameter val-
ues, obtained using an explicit iterative numerical scheme (Sect. 7.2)
with end time ¢ = 70. (a) Shows the effect of nonzero «. Parameters
k = —0.04, Dpp =0, Dyg = 1, and p = 1. Left: Greens functions in
the spatial plane (i.e. all orientations are summed) where the super-

5. The kernel should be localized in the spatial domain,
since we want to pick up local oriented structures.

6. The kernel should have the quadrature property (Gran-
lund and Knutsson 1995). More details can be found in
Sect. 3.1.

These requirements are similar to the requirements in Van
Ginkel (2002), except for the reconstruction.

Based on these requirements we propose the following
kernel

¥ (x) = %f_l[wl—)

Bk (p mod 27r) — /2
56

> f(,o)}(x) Gs(x),  (45)

where N is the normalization constant, @ = (p cos ¢, p sin¢),
and B¥ denotes the kth order B-spline given by

B*(x) = (B! % BO) (x),

0 !1 if —1/2<x<+1/2, (46)

0 otherwise.

The function f (p) specifies the radial function in the Fourier
domain, chosen as the Gaussian divided by its Taylor series

@ Springer

imposed circular arc shows the expected curvature, Right: isosurface
in 3D. (b) Shows the effect of a nonzero Dpy. Parameters Dy, = 0.003,
k =0, Dgg =1, and p = 1. (c) Shows the effect of varying Dyy,. Para-
meters k = 0.06, D,, = 1, and u = 0.1. As Dy, increases from O to 1,
the resulting Green’s function becomes more and more isotropic

up to order g to ensure a slower decay, i.e.
1 2
Gi(p)=—=e .

q d i -1
£ (o) =Gi(p) (Z (;Gt(p@ ) ‘.’—,) ,
P p=0/ b 47
2t

i=0
The function G, in (45) is a Gaussian kernel with scale s,
which ensures spatial locality. Figure 3 shows an example
of this orientation score transformation.

3.1 Quadrature Property and Hilbert Transform

The kernel v defined in (45) is a quadrature filter, meaning
that the real part contains information about the locally even
(symmetric) structures, e.g. ridges, and the imaginary part
contains information about the locally odd (anti-symmetric)
structures, e.g. edges. That is, the kernel can be expressed as

Y (X) = Yeven(X) — i Yoad(X), (48)

where Yeven and ¥oqq are related to each other by the Hilbert
transform

Vodd = Hps [Veven]. (49)
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and where the Hilbert transform HHV{2 is defined as

YL UN(x,6)
=.7-'71[wr—> isign(w-v)FIU(, 0)](w)](x), (50)

where v specifies the direction in which the (in principle 1D)
Hilbert transform is performed. In an orientation score, this
direction is uniquely determined by v = e;, leading to the
following definition for the Hilbert transform on SE(2)
” )

se@UNx, 0) =Hp, "[U(, 6)](x). (5D

Because of the quadrature property of the filter, the orien-

tation score has the same properties and, consequently, the
imaginary part does not supply any additional information
that is not contained in the real-valued part. Therefore, to
save memory we only need to store the real-valued part from
Otom,ie.

Re[Uf]1(x,0) = (f * Yeyen) (%) (52)

The complex-valued orientation score is simply found by

Up = Wgven* ) =i (Wgga* 1)
=Re[Ur](x,0) — iHse)[Re[Ur]]. (53)

Moreover since V8., = w457 and wgdd = —wg(;:‘” , we have

the relation Uy (x,0 + ) = Uy (x,0).

4 Regularized Derivatives

In Sect. 2.6 we described left-invariant derivatives. It is well
known in image processing that taking derivatives is an ill-
posed problem, which is made well-posed by adding regu-
larization. Gaussian derivatives are the most commonly used
regularized derivative operators. In our orientation score
framework we also need well-posed derivative operations.
To ensure that the left-invariance is preserved, we use left-
invariant diffusion described in Sect. 2.10 for the regulariza-
tion. Thus, left-invariant regularized derivatives on the ori-
entation score are operationalized by De’ AW where D is a
derivative of any order constructed from {9, d,, dg} and ¢’ A
accounts for the left-invariant diffusion. Note that the order
of the regularization operator and differential operators mat-
ters in this case, i.e. the diffusion should come first.

The exact and approximate analytic solutions for all heat
kernels given by ¢'A are described in (Duits and Franken
2009a). Here, for simplicity and computational efficiency
we restrict ourselves to the p-isotropic of (37), which can
be written as

W = ((a§ + ag) + ;ﬂag) W

=((22+02) +na3) w. (54)

Since the operators 0y, dy, and dy, commute, this equation
is the same as the diffusion equation in R except for the
2m-periodicity of the 6 dimension. Therefore the Green’s
function is a Gaussian

7x2+y2 02

1 _6°
Gls,[o(-xv %9) = —F—€ s 4t0a (55)

8y/m3t2t,

with #, = ¢ and 1, = p?¢. In this special case we can use stan-
dard (separable) implementations of Gaussian derivatives,
but we have to be careful because of the non-commuting
operators. A normal (i, j, k)th order Gaussian derivative im-
plementation for a 3D image f adheres to the right side of
the following equation

] 2,924 92 : 2 7 2 a2
L) ok ! U HNHI) £ — i ol O gl of v gkl Oz f. (56)

This equation is essential for the separability along the
three dimensions. We want to use the same implementations
to construct Gaussian derivatives in the orientation scores,
meaning that we have to ensure that the same permutation
of differential operators and regularization operators is al-
lowed. By noting that

9 5 gk B T @FH]) _ gigj e(@3+3]) gk 100}
& “0 &% 0 ’ (57)
k qi 9j toda+ts(32+32) k 1002 qi aj 1:(82+82)
80858,763"9 ST 7589e°98$8ne3 T

we conclude that we always should ensure a certain or-
dering of the derivative operators. That is, one should first
calculate the orientational derivative dg and then the com-
muting spatial derivatives {dg, d,}, which are calculated
from the Cartesian derivatives {0y, dy} using (13). The com-
mutator relations of (22) allow to rewrite the derivatives
in this canonical order. For instance, the derivative dgdg
can be calculated directly with Gaussian derivatives, while
dp0¢ must be operationalized with Gaussian derivatives as
0g0g + 0.

5 Local Features in Orientation Scores

In order to make the diffusion in the orientation score adap-
tive to local line structures in the orientation score, we need
to measure the local properties at each location (x, 6). In our
method we distinguish three local scalar-valued features at
each position g € SE(2) to which the diffusion is adapted.
The two features curvature k(g) and deviation from hori-
zontality dy(g) have already been introduced in Sect. 2.9.
The third important feature is orientation confidence s(g):
a scalar number indicating the confidence that locally an
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Fig. 8 Example of feature estimation in an orientation score. (a) Input
image f. (b) |Uys| at & =0, used for feature estimation. (¢) and (d) es-
timated tangent vectors at orientations § =0 and 6 = %—g The tangent
vectors are displayed as circular arcs to show the estimated curvature
as well as the deviation from horizontality. Note that the orientation and
curvature estimation is isotropic regions in the orientation score, since
the features are not well-defined there. (e) Orientation confidence s,
cf. (68) at = 0. (f) Dy, calculated using (72). In this artificial image
it leads to very sharp boundaries between isotropic diffusion (white

elongated structure is present. In Fig. 8 we show an example
of these three local orientation score features.

For curvature and orientation confidence we need an es-
timate for the tangent vector ¢(g) at each position g. There-
fore, after discussing which orientation score to use for fea-
ture estimation, we will propose a method to estimate the
tangent vector using first and second order left-invariant
regularized derivatives. This estimate can be used to cal-
culate curvature and deviation from horizontality with (32)
and (34) respectively. Finally, we will introduce a measure
for orientation confidence.

5.1 Obtaining a Phase-Invariant Feature Orientation Score

For the feature estimation, we do not directly use the
complex-valued orientation score Uy nor the real-valued
orientation score Re{U r}. We aim to treat edges and ridges
in a uniform manner, i.e. curvature, deviation from horizon-
tality, and orientation confidence should be estimated in the
same way and with the same quality independent on the lo-
cal phase of the orientation score. Therefore, we use the real-
valued orientation score W = |U /|, yielding a phase invari-
ant orientation score responding to both edges and ridges,
see Fig. 3(d).

There is one drawback of this approach: a very regular
goniometric pattern in an image, e.g. simply sin(x) (such as
the image in Fig. 3(a)), results in a flat plane response in W
(see Fig. 3(d)). This means that the tangent vector 9, tangent
to the curves is locally not well-defined. For this kind of
images, the problem is solved by forcing the deviation from
horizontality to zero, as will be described in Sect. 5.2.1, or
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area) and strongly anisotropic diffusion (black areas). (g) illustration
of «, where the curvature values are only indicated by the grayvalue in
the region where Dy, & 0, since outside of this region the values are ir-
relevant. Clearly, the displayed iso-«-contours, are situated on circular
arcs. (h) dy, where the deviation from horizontality values are again
only indicated in the region where Dy, ~ 0. Clearly, the displayed iso-
dy-contours, are orthogonal to the concentric circles in the image, and
the vertical line is the dy = 0O line

by using a different orientation score for feature estimation
in that case.

5.2 Tangent Vector Estimation

To estimate the tangent vector ¢(g) for all g € SE(2), we
find the (horizontal) exponential curve that locally at point
g fits best to the data. This local fit should not only be fea-
sible at the centerlines of curves, but also if we shift a bit
away from the centerline. At positions g in the orientation
score Uy where there is no orientation, however, the tangent
vector ¢(g) is not well-defined, and we should design the
nonlinear diffusion process such that it does not take unreli-
able estimates of ¢(g) into account.

If we follow an oriented structure in the orientation score,
the left-invariant gradient VW = (0, 0y, 9)TW at all posi-
tions should remain constant. For example on the centerline
of a curve the gradient remains zero, while the gradient will
have a small constant n-component if we are a little bit off
from the centerline. In other words, we formulate a min-
imization problem that minimizes over the “iso-contours”
of the left-invariant gradient vector at position go, leading
to

2
lellp=1¢,

. d
¢* = argmin H — (VW (gove())|,_o
¢ ds "

(58)

where ¢ = (¢f,¢", ¢?), the norm | - I, is defined in
Sect. 2.5, and goye(s) = goexp(s(c?dp + 59, + c"dy)), re-
call (28).
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The minimizing equation in (58) is a norm of a covector
and can be rewritten as

; 2
H 5 (VW (gore()) ls=0

n
= [ (VYW (goves)) e | 2 = IHWel,
=HWe, HWe), = M, HWe, M, HWe);
= (c. (HW)"M,(HW)o),, (59)
where M, = diag{1/u, 1/, 1} and (-, -); denotes the nor-

mal R3 inner product. The Hessian 7 which we implicitly
assume to be calculated at position g, is defined by

W 8,06W oW
HW =V(VW)=|3:0,W ;W 059, W |. (60)
W  9,00W W

The side condition ||c||,, = 1 can be rewritten as

el =M e, M, ")) = (¢, M %0)1. (61)
By FEuler-Lagrange minimization V|| (HW)c||,2L —
A1 = Vellell,) = 0 we get for the optimum c*

(HW)"™™, (HW)e* =AM, *c*. (62)
This can be rewritten as
M, HWM,)T (M, HWM,,) & = A&, (63)

where ¢* = M;lc* which amounts to eigensystem analysis
of the symmetric 3 x 3 matrix (M, HWM,,)T(M, HWM,,),
where one of the three eigenvectors gives ¢*. The eigenvec-
tor with the smallest corresponding eigenvalue is selected as
tangent vector ¢*, and the desired tangent vector ¢* is then
given by ¢* =M, c*.

Optionally, an can be
achieved by component-wise blurring of the matrix
M, HWM,)T(M,; HWM,,) before performing eigensys-
tem analysis, i.e. (63) is replaced by

increased noise-robustness

(Gpy.p0 ¥ MyHWM) T (M HWM,) ) & = A&, (64)

where p; and p, are the spatial and orientational scales re-
spectively. The post-blurring ensures that matrices that de-
scribe the local structure inaccurately, become more consis-
tent with the surrounding. This approach is similar to the
structure tensor where one applies post-blurring on the ma-
trices formed by the dyadic product of the gradient with
itself.

5.2.1 Enforcing Horizontality

An alternative is to force the curves to horizontality (see
Sect. 2.7), which is more robust in case of regular oriented
texture patterns. On non-horizontal curves, however, the ex-
pected results will be worse. Horizontality is imposed by
forcing ¢ to zero in (58). In the minimization term, (HWc¢)
can now be rewritten as

W 9pdyW

HWC|M=0 =HhorWenor = | 9600 W  FW .
W 090 W

(65)

Now the Euler-Lagrange equation gives

(MM HhorW Mu,hor)T (Mu Hhor w Mu.,hor) éﬁor =A é?;orv
(66)

where ¢ = My, hor€},. and My, hor = diag{1/u, 1}. This
amounts to eigensystem analysis of a symmetric 2 x 2 ma-
trix. The eigenvector corresponding to the smallest eigen-
value should be selected and the curvature is given by (33).
The deviation from horizontality is inherently zero in this
case. The fact that we have 2 x 2 matrices instead of 3 x 3
is a computational advantage of this approach.

5.2.2 Structure Tensor Approach

A closely related approach to the tangent vector estimation
described above, is to use the structure tensor instead of the
Hessian, as was proposed by Van Ginkel (2002) for the pur-
pose of curvature estimation. In this approach one simply
replaces the Hessian by the structure tensor, defined by

SW(x,6)

) AW\ (o W\" )
=Ro1Gp x| W] - |0,W (x,0)- R},
oW oW

(67)

where the derivatives are implemented by Gaussian deriv-
atives, and G, ,, denotes the Gaussian smoothing kernel
that is applied componentwise to the structure tensor. Ry
denotes the rotation matrix of (42) that makes the structure
tensor left-invariant. On the resulting structure tensors we
apply eigensystem analysis in exactly the same manner as
described above for (7:[ W)T(ﬂ W). In the algorithm by Van
Ginkel, horizontality is not enforced, although one could en-
force horizontality in this approach as well.

In the evaluation in Sect. 8.1 we will compare the Hessian
approaches with this structure tensor approach, since it is
the only alternative approach for tangent vector estimation
in orientation scores.
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5.3 Orientation Confidence

In a 3D image, a commonly used measure for orientation
confidence is the sum of the two second order derivatives
orthogonal to the orientation of the elongated structure,
which amounts to the sum of the two largest absolute eigen-
values of the Hessian matrix. In fact, this corresponds to the
Laplacian in the 2D subspace formed by the plane orthogo-
nal to the line structure.

In the orientation score we choose a similar approach. An
oriented structure in W = |U¢| renders a convex hill in the
intensity landscape of the orientation score, yielding nega-
tive second order derivatives in the plane orthogonal to the
tangent vector of the line. Therefore, as measure for orienta-
tion confidence s we take the Laplacian in the plane orthog-
onal to the line, yielding

s=—AortnW = — (e} HWeo1 + e, HWey), (68)

where e,; and ey are the two vectors that are orthonormal to
the tangent vector ¢ with respect to the inner product defined
in (17), i.e.

(c,e1)p =0, (c,e2)y =0, (€o1,€02), =0,

(69)

(eol,€1)pu =1, (en,€),=1.

Note that we added a minus sign in (68) in order to get a
positive value for oriented structures.

Note that one can also use the two other eigenvectors of
the matrix (M, HWM,)T(M, HWM,,). If &, and &, are
the eigenvectors orthonormal to the selected eigenvector ¢*
with respect to the (-, -); inner product then the orientation
confidence is given by

s =— (85, My HWM €01 + 85L,M, HWM,&0) . (70)

6 Nonlinear Diffusion in the Orientation Score
This section describes how to apply nonlinear coherence-

enhancing diffusion in the orientation score. The evolution

Fig. 9 Flow chart of the
CED-OS (Coherence Enhancing

equation we consider is the SE(2) diffusion equation ex-
pressed in gauge coordinates, cf. (43), where the coefficients
D,y =1 and Dpp = D, are nonlinearly dependent on the
features:

U (g, 1) = (3404 + 9 Dpp(U) (g, 1)0p

+ 0. Dpy(U)(g. 1)) U (g, 1),
U(g,t=0)=Ur(g).

(71)

Here, it should be emphasized that the derivatives 9, dp, and
d. are dependent on U (g, t), although this is not explicitly
indicated in the equation.

At positions in the orientation score with a high orien-
tation confidence, we only want to diffuse tangent to this
structure, so D, should be large and Dy, = D, should be
small. If there is no strong orientation, the diffusion should
be w-isotropic, so D,y = Dpp = D should be large. Notice
that in the resulting w-isotropic diffusion tensor for the lat-
ter case, the variables « and dyg drop out, which is desirable
since on non-oriented positions these local features are not
defined.

For the conductivity function Dy, (U) we have different
choices. We propose to use

exp(— X&) - 5(U)(g.1) >0,

Dpp(U)(g, 1) = .
1, otherwise,

(72)

where the nonlinear function is always between zero and
one, such that low values of s give Dp; & 1 and large values
give Dpp = 0. The parameter ¢ > 0 controls the behavior of
the nonlinear function.

Figure 9 shows how all different parts are connected. The
details of all building blocks are explained in the preceding
sections, except for the “SE(2) diffusion step”. The next sec-
tion will describe how we will numerically solve this step.

repeat teT“d times

| |
Diffusion in Orientation Score) 0S U(; | CED-0OS ! Uitena) | inverse OS
method image f—* . — — . | enhanced image
transformation| = Uy 1 | step | transformation
| |
CED-OS step
r-r-—-—-—-------"-"-"-"-"-"-"-"-"-"-"-"=-"=-"“"“~"=~"~"=~"=~"=~"=”"¥~>"¥~7"¥~7"¥=~*"=~”"=~”" =/ = |
|
U(t) ! Abs W(-t) | calculate |HW(:;t) | calculate |
B Hessian features |
|
! k()| | [du(t)
! |
! S’(~; t) |
! |
| D(-;t ]
! SE(2) diffusion step (i1) calculate |
| diffusion tensor I
|
| |
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7 Numerical Scheme for Nonlinear Diffusion

In this section we will propose two explicit finite differ-
ence schemes to solve diffusion equation (71). We restrict to
explicit schemes since implicit schemes are generally very
expensive for our 3-dimensional anisotropic case. Further-
more, our anisotropic PDE requires good rotational invari-
ance. Many efficient (semi)-implicit schemes with operator
splitting, e.g. the AOS (additive operator splitting) scheme
(Weickert 1999), are therefore discarded due to their poor
rotation invariance (see Fig. 10). The LSAS scheme (Welk
et al. 2006) has good rotational invariance and can be per-
formed in 3D, however it is inherently designed for isotropic
grids, which is problematic in our case since we do not have
a natural notion of isotropy. One could use the artificial no-
tion of p-isotropy and use LSAS but then one would be re-
stricted to the case sg = i, and there is no good reason for
this restriction.

7.1 Simple Explicit Finite Difference Scheme

We aim to develop a simple scheme for solving the nonlinear
diffusion PDE given by (71). It is obtained by rewriting the
PDE to 9y, dy, and dy derivatives, and using centered finite
differences to calculate the first order derivatives. For second
order accurate finite differences this yields

1
REE (Vroxtecd - Urx—en),

where k € N denotes the discrete time and [ € [0, N, — 1]
denotes the sampled orientation axis where 6 =1 - sg with
orientation sample distance sg. In time direction we use the
first order forward finite difference (U k1 _ gk )/t where T
denotes the time step. The advantage of this scheme is the
efficiency and good stability since the effective stencil size
is 5 in each dimension rather than 3 in most other simple ex-
plicit schemes. The drawback, however, is that oscillations
at the Nyquist frequency can occur, caused by the fact that a
concatentation of two first order centered differences gives
BfU = %(U(x—i—Zex, D —-2U, 1)+ U(x—2ey,1)),ie. the
closest neighboring pixels are not taken into account. The
latter problem can be resolved by adding some additional
coupling between neighboring pixels, for instance by using
a 3-pixel scheme to perform the isotropic part of the diffu-
sion (Weickert and Scharr 2002).

7.1.1 Stability Analysis

For the stability analysis, we consider the linear diffusion
equation (71) assuming constant Dy, and find an upper
bound for time step 7 such that the equation remains sta-
ble for all applicable cases. We restrict to the cases that
can occur in the nonlinear diffusion equation of Sect. 6, i.e.
Dpp = D¢e < Dgg = 1. In {0y, 0y, 09} coordinates, the dif-
fusion tensor components are given by

D,y = cos’(a) cos>(0) + Dpp (cosz(e) sin®(a) + sin2(9)> ,

1

Uk (x, 1) ~ ~ (Uk(x tey ) — Uk(x—e,, 1)) . (13) Dy, = Dpycosi(®) + (cosz(a) + Dy sinz(a)) sin2(9),
1

8@U x, )~ — (Uk(x [+1)— Uk(x —ey, ! — 1)) , Do, = —(Dpp — 1) cos(a) cos(f) sin(x), (74)
q

Fig. 10 Comparison of rotation Exact Scheme 7.1 Scheme 7.2 LSAS

invariance of different numerical
anisotropic diffusion schemes.
The input to all algorithms is an
image with dimensions 60 x 60
with a single Gaussian blob with
scale 0.9 pixels, linear diffusion
is applied with diffusion tensor
D = Ry diag(Dyx, Dyy) R, ',

7 =0.25, and end time ¢t = 35.
The exact solution is found
simply by convolving the input
image with the anisotropic
Gaussian kernel. Top row:

0 =0, Dxx =1, Dy, =0.0025.
Middle row: 0 =1 /4, Dy =1,
Dyy = 0. Bottom row:

Dy, = Dyy =1 (isotropic
diffusion)
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Doy = clj(Dhb — 1) cos(a) sin() sin(8),
Dyy = (1 — Dpp) cosz(a) cos(6) sin(0),
Doy = ql_z (Dbh cosz(a) + sinz(a)) ,

L The
12 4ic2
first order finite differences are defined in (73), rendering
the following stencils for the second order finite differences

that are applied in all three dimensions

whereq:%,sina: K =, and cosa =

24k

1
Sii = 1 (1 0 -2 0 1) ,
U (75)
Sijizj=2(0 0 0
10 -1

One numerical iteration can be written as

Uk = Uk 4t AU U = A+ tAUY)) U, (76)

M(U¥)

where M(U¥) is a square matrix with size equal to the total
number of “voxels” in the orientation score. The numerical
method is stable as long as the absolute values of all eigen-
values of M are <1. Using the Gershgorin circle theorem
(Gerschgorin 1931) we find that all eigenvalues are situated
in a circle with center C and radius R

T
C=1- E(DGQ + Dyx + Dyy)
T
R == (1Dgs] + |Dxx| + | Dyy] + 4 Do | + 4| Dy | (77
+4|ny|).

Stability requires —1 < C — R and C + R < 1. The first
inequality gives as bound for ©

t <4¢*{(1+¢%) + Dpp (1 +3¢7)
+ c0s(2a) (Dpp — (1 — g?)
+2q |(Dpp — 1) sin(Rr)| - (| cos 6] + | sinH])
+¢%1(1 = Dyp) sin(26) (cos(2a) + )]} (78)

Note that the second inequality C + R < 1 never holds as
(77) shows that C + R > 1. However it can safely be dis-
carded since A(U¥) is negative definite i.e. o (A(U%) <0,
where o denotes the spectrum of the matrix, implying
oMU*) =0 (1 +1AU*) =1+ 10 (AU¥)) < 1 for all
7> 0.

We want to find the case for which we get the lowest
upper bound for 7, to guarantee stability under all circum-
stances. For the sine and cosine terms in the denominator,

@ Springer

these worst case values are

cosRa) =1, for o = %;
sinRa) =1, for o =0; (79)
|cosf| + [sinf] = /2, f0r9=%.

Furthermore, for Dy, we have to set Dy, = 0 to get the
“worst case” for t, since degenerate anisotropic diffusion
is most critical concerning stability. Therefore, we find the
following upper bound for t, which guarantees stability for
allf, a,and 0 < Dpp <1,

< 4q2
T142V29+3¢2 -1 —q?

T (80)

For a typical value of g = %" = % this yields T < 0.60,
which is a fairly sharp upper bound if we consider our prac-
tical observations.

7.2 Left-invariant Explicit Scheme with Spline
Interpolation

The important property of the differential operators o, d;,
and Jg is their left-invariance. The performance of a nu-
merical scheme should therefore be more optimal if this
left-invariance is carried over to the finite differences that
are used. To achieve this we should define the spatial fi-
nite differences in the directions defined by the left-invariant
{ez, e,} tangent basis vectors, instead of the sampled {e,, ey}
grid. In effect, the principal axes of diffusion in the spatial
plane are always aligned with the finite differences as long
as we do not include dy # 0. The reason that we do not
consider deviation from horizontality is that this scheme be-
comes very expensive and complicated in that case.

For the numerical scheme we apply the chain rule on
the right-hand side of the PDE in (71) expressed in left-
invariant derivatives cf. (44) with dg = 0 (i.e., analogue to
1D: 0, (Do, U) =D 83U + (0 D) (0, U)). The left-invariant
derivatives are replaced by the finite differences defined in
Fig. 11. In time direction we use the first order forward fi-
nite difference. Interpolation is required at spatial positions
X £ e; and x % e;. For this purpose we use the algorithms
for B-spline interpolation proposed by Unser (1999) with
B-spline order 2. This interpolation algorithm consists of a
prefiltering step with a separable infinite impulse response
filter to determine the B-spline coefficients. The interpola-
tion images such as U kx £ ez) can then be calculated by a
separable convolution with a shifted B-spline. The examples
in Fig. 7 and all experiments in the next section are obtained
with this numerical scheme.

The main advantage of this scheme is the improved ro-
tation invariance, see Fig. 10. The drawback, however, is
the computational speed and the some additional blurring
caused by the interpolation scheme.
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Fig. 11 Illustration of the
spatial part of the stencil of the
numerical scheme of Sect. 7.2.
The horizontal and vertical
dashed lines indicate the
sampling grid, which is aligned
with {ey, e, }. The stencil points,
indicated by the black dots, are
aligned with the rotated
coordinate system cf. (12) with
0 =1lsg

OgU m L e i) - Ut — 1))
259
P3U % (U(x, L+ 1) — 2U(x, 1) + U(x, L — 1))

s

]
1 L I
U ~ — (U(x+e€,l) - U(xfeg,l))
FU ~ U(x+el€,l) —2U(x, 1) + U(x — els,z)
1
U ~ (U(x+e{'nﬁ ) — U(x — eir,l))

6,,2]U ~ U(x +e,];]., 1) — 2U(x, 1) + Ulx — e,’;}, 1

1
805U = E(U(x+e"g,l+l)7U(x+eé,l71)7U(xfeg,l+l)+U(xfe"§,l71))

4sg

7.2.1 Stability Bound

We derive a stability bound for this numerical scheme in
the same fashion as for the previous numerical scheme.
Again we restrict to the cases Dpp = Dpp < Dy = 1. In
{0g, 0y, 0g} coordinates, the diffusion tensor is given by

Dge = cosZ(oc) + Dpp sin2(oc),

Drm = Dbb,
1

Dps = —(Dpp — 1) cos(a) sin(a), (81)
q

Dy, = D¢y = 0,

1
Doo = — Dy cosz(a) + sinz(ot),
q

where ¢ = %2. The used stencils for the second order finite
differences are

L(-1 0 1
Si=(1 -2 1),  Syizi=7(0 0 0
0 —1

(82)

In this scheme, all off-center stencil positions are obtained
by second order spline interpolation, which has to be taken
into account in the stability analysis. In the matrix M (with
Ukt = MU k W k) this interpolation leads to more nonzero
off-diagonal terms since interpolation amounts to a linear
combination of a number of voxel values. Second order B-
spline interpolation does not preserve the global maximum
m = maxgese2)(U(g)), but we can find a factor 1 < x < 00
which gives an upper bound such that Uinterpolated (8) < X -m
for all g i.e. for an arbitrary interpolation. This factor x is
found as follows

x= Z 1C2(x + )| = V2. (83)

Ae[— 1/2 +1/21

1
(U(x+el£+1,1,+1) 7U(x+el£+l,l7

1)7U(x7el{1,l+1)+U(x7e1{1,l71>)

where C; is the cardinal spline (Unser 1999) corresponding
to the second order B-spline, which is in fact the net convo-
lution kernel that is used for spline interpolation.

Using Gershgorin circle theorem and taking into account
x = /2 we find for the circle center C and circle radius R

((Fer)e
C=1-2t(| —+1)cos™(a)

+ <Dbb + ) sin? () + Dbb),

(84)

R=21 ﬁDbb+f’(Dbb 1) cos() sin(a)
q

+ (Dbbq + «/§> cos*(a)
+ (Cl + «/EDbb> Sinz(a)>.

Stability requires —1 < C — R and C + R < 1. The first
equation renders as bound for t

. < q2{ (ﬁ (1= Dy)sinQa) | |

q
X (3Dpp + (1 — Dpp) cos(2ar) + 1))612

(1+~/_)

—1
+ Dpp 4+ (Dpp — 1) cosRa) + 1} . (85)

By inserting the “worst case values” for all sine and cosine
terms, see (79), and by setting isotopic diffusion Dpp =1,
which in this case is the worst-case for stability since it gives
the largest off-diagonal components in matrix M, we find the
following a upper bound for t, which guarantees stability for
all@ andw and 0 < Dy < 1

DU (86)
T 4440 +v2)g2

For a typical value of g = % = ”0/312 this yields 7 < 0.15,

which coincides with practical observations.
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8 Results

This section is divided in two parts. First we will quantita-
tively evaluate the quality of the curvature estimation, us-
ing a set of artificial test images. Then we will show results
of the coherence-enhancing diffusion in orientation score
(CED-OS) algorithm. We will qualitatively show the dif-
ferences between including curvature and/or deviation from
horizontality. We will also compare CED-OS with standard
coherence-enhancing diffusion on the image.

8.1 Curvature Estimation Experiments

For our experiments, we apply curvature estimation on an
image containing concentric circles (Fig. 12). This is a use-
ful test image since it contains a wide range of circle radii
(in this case from O to 50). The image is converted to an
orientation score by (45) using parameter values sg = /32,
k=2,qg=28,t=300, and s = 50. For the Hessian we use
ts =9, py =0.04, and u = 0.08. We compare our method,
with and without enforcing horizontality, with the structure
tensor approach (see Sect. 5.2.2 and (Van Ginkel 2002)),
with parameters t; = 2.5, p; = 7.5, and u = 0.08. The pa-
rameters are chosen such that the total amount of Gaussian
blurring is the same in both methods, i.e. the same neigh-
borhood is taken into account.

For the test images (Fig. 12) we do know the ground truth
orientation Gyye and curvature xyye. To evaluate the results,
for each spatial position we take the curvature estimate xeg
for the known orientation and compare it to the ground truth
curvature. In all experiments we display a density plot show-
ing 1/kes (vertical) against the true curvature 1/kye (hori-
zontal), and we show the error as function of 1/kye Where
the relative £,-error is defined as

1 al Kest.i — K 2
E _ - est, i true i 87
ror= |43 <4 (87)

; Ktrue
i=1

where i enumerates over all N estimates keg i, I € {1, 2,
..., N}, for which ke is the real curvature.

Fig. 12 Curvature estimation
test images
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Figure 13 shows the results on an image with concen-
tric circles. Clearly, the estimates of the structure tensor ap-
proach are too small over a wide range of the highest cur-
vature values. This causes a quite large error for higher cur-
vatures. Both of our approaches do not have this problem.
Comparing the two Hessian-based approaches, we observe
that the Hessian with enforced horizontality performs better.
This is caused by the fact that on this test image the gauge
frame {94, dp, 9.} is not always well defined on W = |U]|.
In images where lines do not occur in such regular sine-like
patterns, it is expected that both methods perform compara-
ble.

Figure 14 shows the effect of measuring the curvature at
positions where the deviation from horizontality is nonzero.
Instead of taking the curvatures at the true orientation Oye
we take the curvatures at 6y 4 /8 to study the quality of
the curvature estimation if we are not exactly at the right
orientation. Clearly, since in this case the curves are not ex-
actly horizontal, the Hessian approach that does not enforce
horizontality works best.

Figure 15 shows the curvature estimation in an image
with crossing curves. A slight decrease in performance can
be seen since the orientation score transform can not entirely
separate the responses of the different curves.

8.2 Coherence-Enhancing Diffusion in Orientation Scores

In this section we compare the results of coherence-enhanc-
ing diffusion in the orientation score (CED-OS), cf. (71)
with results obtained by the normal coherence enhanc-
ing diffusion (CED) approach (Weickert 1999). The CED
method solves diffusion equation on R2, cf. (35), where the
diffusion tensor is given by

D(x) = A1 e1(x) e (x)" + A2(x) e2(x) e2(x) ",

with Ay =«, and

a if p(x) = pa(x),

—C
a+ 1 —a)exp ((Ml(X)—uz(X))z

A2(X) = {

) otherwise,

(88)

(a)+noise
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Fig. 13 Curvature estimation Image (a)
results on image (a) and image 1/Kest Hessian 3x3 1/kest Hessian Horizontal 1/kest  Structure Tensor
(a) + noise (see Fig. 12) for the 50 50 50
three methods. For both images,
the first row shows the density 40 40 40
plot' of tru:?T curvature Krue 20 30 20
against estimated curvature Keg.
The second row shows the 20 20 20
relative £,-error, cf. (87) as 3
function of the different 10 10 10
1/k; 1/k 1/
curvatures 0 20 30 40 50 /e 0 20 30 40 50 /% 0 20 30 40 50 /e
Error Hessian 3x3 Error Hessian Horizontal Error  Structure Tensor
0.5 0.5 0.5
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
1/Ku 1/k 1/
10 20 30 40 50w 0 20 30 40 50 e 10 20 30 40 50N
Image (a)+noise
1/Kest Hessian 3x3 1/kest Hessian Horizontal 1/kest  Structure Tensor
50 50 50
40 40 40
30 30 30
20 20 20
10 10 10}
1/k 1/k 1/k
0 20 30 a0 so/km 10 20 30 40 50 /% 10 20 30 40 50 /e
Error Hessian 3x3 Error Hessian Horizontal Error  Structure Tensor
0.5 0.5 0.5
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 UW\N 0.1 \\#y 0.1
1/Kirue 1/Kirue 1/Kirue
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Fig. 14 The effect of deviating Image (a), deviation from horizontality
from horizontality on image (a) 1/Kest Hessian 3x3 1/Kest Hessian Horizontal 1/Kest  Structure Tensor
(see Fig. 12). For these graphs, 50 50 50
the curvature estimation results
are obtained at orientation 40 40 40
Orue +70/8 30 30 30
20 20 20
10 10 107
1/x - 1/k 1/
10 20 30 40 s0/ame 10 20 30 40 50 /% 10 20 30 40 s0 /e
Error Hessian 3x3 Error Hessian Horizontal Error  Structure Tensor
0.5 0.5 0.5
0.4 0.4 04
0.3 0.3 0.3
02 02 /\//‘\\/ 02
0.1 0.1 0.1
1/Kirue 1/Kirue 1/Kirue

10 20 30 40 50

where C > 0 controls the nonlinear behavior, 0 < o < 1

is a small parameter that ensures that the diffusion tensors

are positive definite, w1(x) and p,(x) are the eigenvalues
of the structure tensor with p1(x) > u2(x), and e; and e;
are the corresponding eigenvectors. The structure tensor is

10 20 30 40 50
given by

Sfx)=1G, « (

10 20 30 40 50

T
0:(f % Go)\ (9x(f *Go)
By(f*Ga)> ( ) -

dy (f*Go)
(89)
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Fig. 15 Shows curvature
estimation results on image (b) 1/Kest
(see Fig. 12) with crossing 50
elongated structures

Hessian 3x3

40
30
20

10} ./

1/k
10 20 30 40 50 /Mme

Error

0.6
0.5

0.4
0.3
0.2
0.1

10 20 30 40 50

Hessian 3x3

1/Kurue

Fig. 16 Shows the typical
different behavior of CED-OS
compared to CED. In CED-OS
crossing structures are better
preserved

Original

FFNEEN
INNNNN|

We use the LSAS numerical scheme (Welk et al. 2006) to
solve the diffusion equation numerically.

The following parameters are used for the orientation
score transformation (Sect. 3): k =2, ¢ =8, t = 1.6(%)2
where X is the number of pixels of the image in x-direction,
s = 200, and number of orientations N, = 32. These para-
meters are chosen such that the reconstruction is visually
indistinguishable from the original. All orientation scores
have a periodicity of . The original images have a range
of pixel values from 0 to 255. To ensure numerical stabil-
ity, in the experiments where we use the numerical scheme
of Sect. 7.1 we use T = 0.25 and for the numerical scheme
of Sect. 7.2 we use T = 0.1. Note that the resulting images
we will show of CED-OS do not represent the evolving ori-
entation score, but only the reconstructed image, i.e. after
summation over all orientations.

Figure 16 shows the effect of CED-OS compared to CED
on artificial images with crossing line structures. The up-
per image shows an additive superimposition of two im-
ages with concentric circles. Our method is able to preserve
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Image (b), crossing structures

1/kest Hessian Horizontal 1/kest  Structure Tensor

50 50
40 40
30 30
20 20
P
10} 10
1/k 1/k

0 20 30 40 50/ 10 20 30 40 so /e
Error Hessian Horizontal Error  Structure Tensor
0.6 0.6
0.5 05
04 04
0.3 03

02 02
oi| " 0.1

1
10 20 30 40 50 Mme

1
10 20 30 40 507N

+Noise CED-OS t =10 CED t =10

this structure, while CED cannot. The same holds for the
lower image with crossing straight lines, where it should be
noted that our method leads to amplification of the cross-
ings, which is because the lines in the original image are
not superimposed linearly. In this experiment, no deviation
from horizontality was taken into account, and the numeri-
cal scheme of Sect. 7.2 is used. The nonlinear diffusion pa-
rameters for CED-OS are: t; = 12, p; =0, © = 0.058, and
¢ = 0.08. The parameters that we used for CED are (see
Weickert (1999)): 0 =1, p=1,C =1, and @« = 0.001. The
images have a size of 56 x 56 pixels.

Figure 1 at the beginning of the paper shows the results
on a microscopy image of collagen fibres, where two ro-
tated version of the image have been superimposed for the
sake of illustration of our algorithm. These kind of images
are acquired in tissue engineering research, where the goal
is to create artificial heart valves (Rubbens et al. 2008). All
parameters during these experiments were set the same as
the artificial images mentioned above except for CED para-
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Fig. 17 Result of CED-OS and
CED on microscopy images of
bone tissue. Additional
Gaussian noise is added to
verify the behaviour on noisy
images

Fig. 18 Result of CED-OS and
CED on a microscopy image of
a muscle cell

(a) Original

Fig. 19 Shows the effect of
including curvature on a noisy
test image in CED-OS. At

t = 30 the effect is visible: the
circle with highest curvature is
blurred if no curvature is taken
into account

(a) Original

meter p = 6. The stopping time is = 30 and the image size
is 160 x 160 pixels.

Figures 17 and 18 show examples of the method on two
microscopy images, see Foolen et al. (2008), resp. Shaw et
al. (2008) for more information on the biomedical relevance
of these images. The same parameters are used as above ex-
cept for t; = 25 in Fig. 18. Clearly, the curve enhancement
and noise suppression of the crossing curves is good in our
method, while standard coherence enhancing diffusion tends
to destruct crossings and create artificial oriented structures.

Figure 19 demonstrates the advantage of including cur-
vature. Again, the same parameters and numerical scheme
were used. Clearly, at + = 30 the circle with highest curva-
ture is blurred if no curvature is taken into account. If cur-
vature is taken into account, the diffusion process adheres
much better to the spiral-shape of the circle in the orienta-
tion score. For the circles with smaller curvature, however,
there is no noticeable difference.

The effect of including deviation from horizontality is es-
pecially visible if we significantly lower the number of ori-
entation N,, because with a low number of orientations and

(b) +Noise

(d) CED ¢ = 30

(c) CED-OS t = 30 with

curvature

(d) CED-OSt=30 with-

out curvature

without dy, the elongated structures in the resulting images
show strong biases towards the angles / - with [ € Z, while
with dy this problem does not occur. In Fig. 20 this is il-
lustrated. We set N, =4, t;, =5, ps =0, u = 0.058, and
¢ = 0.1 and use the numerical scheme of Sect. 7.1. Clearly
we observe that 4 orientations is not enough without using
dy, since the orientations of the curves strongly bias towards
the sampled orientations. This problem is solved if we in-
clude dy, showing that even with only 4 orientations, we can
appropriately handle crossings of two lines. Figure 21 shows
the same effect on a microscopy image of bone tissue, where
the parameters were setto N, =4, 1, =2, pg = .5, u =0.11,
and ¢ =0.01.

This means that including deviation from horizontality
can make CED-OS more efficient, since we can get good re-
sults with a very low number of orientations. Note, however
that if one wants to handle crossings of more than 2 lines,
or if the angle between the crossing lines is small, it is still
necessary to increase the number of orientations.

Although CED-OS is clearly advantageous for handling
crossings, CED has the advantage that it is faster. In our C++

@ Springer
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Fig. 20 Shows the effect of
including deviation from
horizontality on a noisy test
image in CED-OS. At t =24
the result without deviation
from horizontality clearly shows
that the lines bias towards the
sampled angles 0, 7 /4, /2 and
3 /4. If we include deviation
from horizontality this problem
does not occur, and even with
N, = 4 we are able to handle
crossings correctly

(a) Original

Fig. 21 Shows the effect of
including deviation from
horizontality on a microscopy
image of bone tissue. Clearly,
with dy we are able to handle
crossings correctly even with
No=4

(a) Original

implementation, which is not fully optimized, a single itera-
tion of CED on 128 x 128 roughly took 0.004 seconds while
an iteration of CED-OS with the scheme of Sect. 7.1 and
with N, = 32 orientations took 0.5 seconds on a 2.4 GHz
single core CPU. The large difference in computation times
is caused by the fact that CED applies numerical diffusion
on a 2D dataset while CED-OS applies numerical diffusion
to a 3D dataset, resulting in a multiplication of algorith-
mic complexity with a factor N,. Furthermore, the LSAS
scheme that we used for CED is a very efficient scheme
and our CPU implementation was highly optimized, while
our current implementations for CED-OS can be optimized
much further.

9 Conclusions

In this paper we introduced nonlinear diffusion on invertible
orientation scores. Starting from a 2D image, we constructed
a three-dimensional orientation score using rotated versions
of a directional quadrature filter. Since an orientation score
is a function on the Euclidean motion group SE(2), we con-
sidered left-invariant diffusions adhering to the structure of
this group. Then, we introduced a gauge coordinate frame
that is used to formulate an anisotropic diffusion process that
is aligned with exponential curves in SE(2).

We showed how one can use normal Gaussian derivatives
to calculate regularized derivatives in the orientation score.

@ Springer

(b) +Noise (¢) CED-OS t=24 with (d) CED-OS t = 24
dev. from horizontality = without dev. from

horizontality

(b) CED-OS t = 24 with dev. from (c) CED-OS t = 24 without dev.
horizontality

from horizontality

These Gaussian derivatives are used to estimate a tangent
vector, which is tangent to the locally best fitting exponential
curve, on each position in the orientation score. Using this
tangent vector we calculate three features describing the lo-
cal structure in the orientation score: curvature «, deviation
from horizontality dy, and orientation confidence s. The fea-
tures x and dy uniquely determine the optimal gauge frame.
The nonlinear diffusion is aligned with this optimal gauge
frame and the orientation confidence s controls whether lo-
cally the diffusion is isotropic or anisotropic.

We proposed two explicit numerical schemes to apply
the nonlinear diffusion on the orientation score, and derived
sharp stability bounds for both of these schemes. The sim-
ple explicit finite difference scheme is efficient but is not
optimal concerning rotational invariance and oscillations at
the Nyquist frequency. The left-invariant explicit finite dif-
ference scheme with spline interpolation, on the other hand,
improves the left-invariance, but becomes very inefficient if
deviation from horizontality is included.

The experimental results show that the curvature esti-
mates are reliable. Furthermore we showed that we are in-
deed able to enhance elongated structures in images and that
including curvature helps to enhance lines with large curva-
ture. Especially at crossings our method renders a more nat-
ural result than coherence enhancing diffusion. The adapta-
tion of the diffusion to deviation from horizontality dyy helps
to get sharper results without orientational biases towards
the sampled orientations, especially if we lower the number
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of orientations N,. Therefore, including deviation from hori-
zontality enables a large reduction in computations and stor-
age. The diffusion shows the typical nonlinear scale-space
behavior when increasing time: blurring occurs, but the im-
portant features of images are preserved over a longer range
of time.

Some issues could be addressed in future work. The
numerical schemes that are proposed should be improved
concerning computational speed and quality. Furthermore,
it would be interesting to use the same approach to other
groups (Duits and Burgeth 2007) such as the Heisenberg
group, for the purpose of image enhancement via the Gabor
domain, or the similitude group to use multi-scale and multi-
orientation simultaneously. Finally, it is interesting to ap-
ply the same techniques in the 3D Euclidean motion group,
to enhance elongated structures in three-dimensional im-
ages. This is especially useful for enhancing and segment-
ing fibers in High Angular Resolution Diffusion Imaging
(HARDI) data. This is currently being investigated by the
authors of this paper (Franken 2008, Chap. 7).
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