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Abstract Spatially restricted gene flow and result-

ing spatial genetic structure are generally considered

as being the primary controlling factors in the

dynamics of biparental inbreeding depression in a

wide range of plant species. However, wind-polli-

nated angiosperm trees have not been studied

adequately in this respect. The present study analyses

the relationships among parental genetic similarity,

outcrossing distances, progeny vigour and mortality

in Polylepis australis (Rosaceae), a wind-pollinated

treeline species endemic to Argentina. We investi-

gated whether spatial genetic structuring occurs in

anthropogenically fragmented P. australis woodlands

of the Córdoba Mountains. We also performed a

controlled crossing experiment using pollen collected

from different distances. Genetic variability (using

RAPD-PCR), vigour (N-metabolism capacity) and

mortality of the resulting progeny were contrasted

with progeny from unmanipulated flowers. We found

a continuous decrease in parental genetic similarity

with spatial distance among mates and an increase in

N-metabolism capacity in the progeny produced from

pollen at increasing distances, as well as a very high

mortality of seedlings resulting from short-distance

crosses. Additionally, our results suggest that there is

still fragment connectivity in P. australis through

long-distance pollen-mediated gene flow.
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Introduction

Restricted gene dispersal through both seeds and

pollen may lead to genetic isolation by distance

(Wright 1946; Turner et al. 1982). Under such

circumstances, the relatedness between individual

plants would decrease with increasing distance

between mates (e.g. Wright 1946; Turner et al.

1982; Sokal and Wartenberg 1983). Inbreeding is the

crossing between closely related individuals, leading

to an increase in the frequency of homozygotes and a

decrease of heterozygotes. Crosses between neigh-

bouring plants may lead to biparental inbreeding

depression, defined as a reduction in the fitness of the

sexual offspring from related parents relative to the

sexual offspring from unrelated parents (Levin 1981;

van Rossum and Triest 2007).

Spatial clustering of genotypes and biparental

inbreeding in natural populations has been demon-

strated in various animal-pollinated forest trees (e.g.

Garcia Collevatti et al. 2001; Tsumura and Muham-

madk 2001; Lemes et al. 2007) and for a number of

conifers (e.g. Mitton et al. 1997; Epperson and Chung

2001; Krakowski et al. 2003; Wang et al. 2004).

However, studies that properly demonstrate biparen-

tal inbreeding depression in tree species are very rare

in the available literature (Koptur 1984; Stacy 2001;

Hirayama et al. 2005) and even less is known on

biparental inbreeding depression in wind-pollinated

woody angiosperms.

Inbreeding depression is frequently cited as being

a consequence of anthropogenic forest fragmentation

in species with a long evolutionary history of large

continuous populations (Stacy 2001). Consequently,

it is crucial to gather knowledge on reproduction

processes and on gene flow in order to conserve their

genetic resources (Kundu 1999).

The wind-pollinated woody species of the genus

Polylepis are endemic to the South American high

mountains. The once extensive forests of these

mountains are today mostly restricted to relict stands

due to anthropogenic fires, browsing by livestock and

deforestation (Ellenberg 1958; Kessler 1995a; Cingo-

lani et al. 2008; Coblentz and Keating 2008).

Protection of the high-mountain Polylepis woodlands

of South America has been given high priority by the

World Conservation Monitoring Center because they

belong to one of the most threatened woodland

ecosystems in the world (UNEP-WCMC 2004).

Polylepis australis, the southernmost Polylepis spe-

cies, is endemic to the mountains of Argentina. Due

to three centuries of human intervention, such as

domestic grazing and fires, many regions previously

occupied by P. australis woodlands now comprise

only small woodland fragments and/or isolated

Polylepis trees (Renison et al. 2006; Cingolani et al.

2008), which often show poor recruitment (Renison

and Cingolani 1998) and inferior seed viability

(Renison et al. 2004).

Decreased seed development might result from

either post-zygotic self-incompatibility or early acting

biparental inbreeding depression. However, several

authors report that effects of biparental inbreeding are

more pronounced in fitness components of the seed-

lings rather than in earlier life stages (e.g. Waser and

Price 1994; Trame et al. 1995). In accordance, a

previous study on P. australis showed no significant

differences in seed germination following hand out-

crosses with pollen from varying distances (Seltmann

et al. 2008). Thus, we tested if distances between

pollen donors and recipient plants influenced progeny

vigour (measured as N-metabolism capacity) and

mortality (proportion of dead seedlings) by combining

pollination experiments with molecular genetic stud-

ies on seed and seedling progenies, and measurements

of progeny vigour and mortality.

Our objectives were: (1) to examine whether there

is an association between genetic similarity and

distance between trees, (2) to determine whether

outcrossing distances influence genetic variability, N-

metabolism capacity and mortality of the progeny in

hand pollinations, (3) to compare genetic variability,

N-metabolism capacity and mortality of the progeny

from hand pollination with progeny from unmanip-

ulated flowers and (4) on the basis of our results,

discuss what scenarios of gene flow are most likely to

be occurring in the Córdoba Mountains. This is

especially important because gene flow is one of the

key factors determining species responses to frag-

mentation (Burczyk et al. 2004).
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Materials and methods

Study species and area

The genus Polylepis R. & P. (Rosaceae, Sanguisor-

beae), endemic to the South American high mountains,

isdistributedfromsouthVenezuela tocentralArgentina

and is represented by about 28 species (Simpson 1979;

Simpson 1986;Kessler1995a,1995b;Schmidt-Lebuhn

et al. 2006). The small to large, wind-pollinated trees

and shrubs (Simpson 1986) constitute the potential

natural vegetation of a large part of the high Andes and

other South American mountains up to 5,000 m a.s.l.

(Ellenberg 1958; Kessler 1995a; Cingolani et al. 2008).

In the Córdoba mountains of central Argentina (318
340 S, 648 500 W), stands of P. australis are located

between 900 and 2,900 m a.s.l. (Marcora et al. 2008).

The main flowering phase occurs between September

and October. The anemophilous flowers are arranged

in racemiform pendulous inflorescences that are

produced annually. Self-pollination is prevented by

protogyny. Fruits are single seeded nutlets (mean mass

5 mg) enclosed in a turbinate and winged receptacu-

lum and are dispersed between January and March.

The Córdoba mountains are characterised by a

mean annual temperature of 8�C and a mean annual

precipitation of 840 mm (Cabido et al. 1987). The

present-day vegetation consists of a mosaic of

tussock grasslands, grazing pasture, granite outcrops,

eroded areas with exposed rock surfaces and P. aus-

tralis woodlands or scrublands (12% of the surface;

Cingolani et al. 2004). Pollination treatments were

performed in two woodland fragments within the

Yuspe river basin that has been highly impacted by

human activities and has an average of 3% woodland

and scrubland cover—well below the estimated

potential of 52% and average present cover of 12%

for the entire Córdoba Mountains (Cingolani et al.

2004, 2008; Renison et al. 2006). The two selected

forest fragments were separated by a distance of 1 km

(fragment 1: S31�2400900; W64�402100, 1,990 m a.s.l.,

fragment 2: S31�2403900; W64�4802800, 2,220 m a.s.l.).

Both fragments were situated in deep ravines along

small streams, where impact of fires and livestock

was less severe than in the surrounding matrix and

forests have virtually disappeared during the past

400 years (Cingolani et al. 2008). Because of the

rough topography, tree numbers are hard to estimate,

but each fragment comprises a total of [1,000 trees.

Pollination treatments, seedling cultivation

and mortality

Seeds of P. australis were obtained by the following

pollination treatments that were conducted simulta-

neously in 20 randomly selected P. australis focal

females within the two woodland fragments: (1) no

experimental manipulation (open pollination OP). (2)

Hand cross-pollination (HCP) with pollen belonging

to three distance classes: (i) HCP-1, within a fragment

of trees—pollen donors were situated within 20 m of

the focal female; (ii) HCP-2, between closely sepa-

rated fragments—pollen donors were situated 1 km

away; (iii) HCP-3, between widely separated frag-

ments—pollen donors were situated 30 km away.

In order to accomplish hand pollination, we

collected flowers from 8 to 10 different pollen donors

per distance class in the male phase and carefully

applied pollen to the receptive stigma using the anthers

themselves as pollen applicators. In order to achieve

comparable results on genetic diversity of the progeny,

attention was paid that the distance between pollen

donors was constant across treatments (15–20 m).

Except for the baseline OP, flowers were bagged in the

budding stage within pollen-proof bags (glassine shoot

bags, Seedburo Equipment Company, Chicago).

When flowers were receptive females, bags were

removed carefully, hand pollinations were performed

and inflorescences were subsequently enclosed in the

same bag. After fruit maturation, seeds were collected

and germinated in a climate chamber with a warm

white light source at a temperature of 20/10�C (12 h of

light/12 h of darkness). Resulting seedlings were

transplanted to individual flower pots of 10 cm

diameter immediately after germination and cultivated

in the greenhouse under the same conditions for the

following 40 days. A biweekly inspection of all

seedlings provided survival counts.

Genetic analysis (RAPD-PCR)

In order to analyse genetic similarity between focal

females and pollen donors (parent populations), we

randomly collected leaf tissue from five focal females

of one woodland fragment and from five pollen donors

from each of the three respective distance classes

-20 m, 1 and 30 km, representing a sample of the

same parental individuals used in the outcrossing

experiment. Due to the fact that all collected flowers
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from varying pollen donor trees were treated as one

‘‘unit,’’ it was not possible to assign each female to only

one pollen donor. However, based on the assumption

that all pollen donors donated pollen to the outcrossing

experiment, genetic comparisons were made between

all focal females and all potential pollen donors.

We used RAPDs in order to analyse the genetic

diversity. In spite of the often raised concern on the

reliability of RAPDs, they have been shown to yield

similar results as other anonymous marker systems

(Nybom 2004). RAPDs provided reliable genetic

diversity patterns when applied to P. australis, as

evidenced by a previous study where RAPD and ISSR

markers gave similar values of diversity (Julio et al.

2008). All seedlings that were not used for the

evaluation of N-metabolism capacity (see below) were

used as a source of plant material for studies on genetic

diversity of the progeny resulting from the different

pollination treatments (hereafter referred to as progeny

populations). Because of the high mortality of seed-

lings resulting from pollinations within a fragment

(HCP-1), genetic analysis could only be performed on

progeny resulting from pollination manipulations

between fragments (HCP-2 and HCP-3) and for OP,

which resulted in a total sample of 54 seedlings (n =

14 for HCP-2, n = 20 for HCP-3, n = 20 for OP).

Leaf tissue of parent plants and progeny was dried

for 24–48 h in silica gel, and genomic DNA was

extracted from *25 mg portions of the dried leaf

material following the protocol described by Qiagen

(2003). Amplifications of DNA were performed in

reaction volumes of 10 ll containing 0.8-ll DNA

(10 ng/ll), 0.6 ll of primer (Roth), 1 ll of each

dNTP (peqlab), 1 ll 109 buffer (Qbiogene), 0.1 ll

Taq Polymerase (5U/ll, Qbiogene) and 6.5 ll H2O.

PCR was carried out in an Eppendorf Mastercycler

gradient which was programmed for one cycle of

2 min at 94�C followed by 36 cycles of 12 s at 94�C,

45 s at 36�C and 120 s at 72�C with a final cycle of

7 min at 72�C. Separate PCRs were performed for

each primer pair. An initial screening of 40 RAPD

primers (Roth sets D, N) was performed in order to

test amplification profiles for polymorphism, read-

ability and reproducibility. This resulted in the

selection of 14 primers for use in the analysis.

DNA fragments were separated by electrophoresis in

2% agarose gels with a Tris–acetate–EDTA (TAE)

buffer system at 150 V for 150 min and stained with

ethidium bromide. DNA bands were then visualised

by UV light and documented using a video camera.

Gel pictures were analysed with the software RFLP-

SCAN PLUS Version 3.0 (Scanalytics); all bands

between 260 and 2,600 bp were scored.

N-metabolism capacity (15N uptake)

Due to the important role of N-metabolism in

biological and ecological systems, 15N stable isotope

techniques are used in a broad range of ecological

studies (e.g. Hofmann et al. 1997; Jung et al. 1997;

1999; Schulz et al. 2001; Russow et al. 2002). One

possible application of stable isotopes like 15N is their

use as tracers in detecting the destiny of N-atoms, and

on this basis, to determine the N-metabolism capacity

of plant material (e.g. Möcker et al. 1998; Jung et al.

1999; Sutter et al. 2002). As plant growth is

dependent on an adequate nitrogen supply in order

to form amino acids, proteins, nucleic acids and other

cellular constituents (López-Cantarero et al. 1997),

there is a potentially far-reaching influence of nitro-

gen metabolism on plant development, and nitrogen

limitation may have important consequences for

secondary metabolism and plant fitness (Stitt et al.

2002). There is also evidence that effective N-uptake

and active N-metabolism may be the crucial factors for

survival of tree seedlings at treelines (Weih and

Karlsson 1999a, b).

We subsequently applied the 15N tracer technique

to specify the N-metabolism capacity of the 6-week-

old P. australis progeny resulting from different

pollination manipulations using the level of 15N

uptake as a parameter of seedling vigour.

Two to three seedlings per maternal tree were

chosen (from 6 to 14 maternal trees per pollination

treatment), resulting in a total of 84 seedlings. Their

roots were washed carefully in distilled water. For the
15N tracer studies, roots were incubated in test tubes

with standard media with constant stable isotope

abundance (K15NO3 with 95 at.% 15N as a nitrogen

source) for 5 h. Thereafter, seedling roots were

sectioned and the plant material was frozen at -

22�C before 15N sample processing. Each of the 100-

mg plant material samples was then digested in 2-ml

concentrated H2SO4. The resulting (15NH4)2SO4

solutions were distilled using a modified Micro-

Kjeldahl apparatus in accordance with Faust et al.

(1981). The nitrogen amount was measured by

titration with 0.02 N H2SO4. Thereafter, the sample
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was reduced down to its pure ammonium salt by

boiling. For the emission spectrometric isotope

analysis of 15N (15N at.%), the nitrogen as ammonium

sulphate was dissolved in distilled water and 25 ml of

the solution was used. Isotope abundance was

determined by the 15N analyser system (NOI-7;

Fischer Analyseninstrumente, Leipzig, Germany),

performing five parallel measurements per sample.

Statistical analysis

Genetic analysis

Bands were scored as present or absent. Due to the

dominant nature of RAPD markers, we concentrated

on band-based analyses to describe genetic similarity.

In order to quantify the genetic similarity between

focal females and pollen donors for each distance

treatment, the proportion of bands shared between two

individuals was calculated as twice the number of

shared bands divided by the sum of all bands occurring

in the two individuals (Dice similarity coefficient),

according to Nei and Li (1979). Because the pollen

donors were counted as one unit, an average of the

Dice similarity coefficients per focal female was

calculated. In order to detect differences in genetic

similarity resulting from the different outcrossing

distances, a one-way ANOVA and Tukey’s HSD test

was performed using SPSS 12.0 (SPSS Inc. 2003).

In order to analyse genetic diversity of the progeny

populations, again a band-based approach was chosen.

We calculated mean Dice dissimilarity among indi-

viduals of a given group as a proxy for genetic

diversity. We tested differences among groups with a

customised Mantel test, where a matrix containing the

Dice dissimilarities was tested against a design matrix

where group membership and difference were coded

with 1 and 0, respectively (9,999 permutations). The

genetic variability of each progeny population was

also estimated as the proportion of polymorphic loci

related to all 135 bands scored, and the average gene

diversity over all loci was examined using TFPGA

ver.1.3 (Miller 1997). To this end, we had to assume

that populations were in Hardy–Weinberg equilibrium.

Since the proportion of polymorphic loci is sample-

size dependent, we took random sub-samples of

n = 14 individuals for OP and HCP-3 to estimate this

parameter of genetic variability.

Seedling mortality and N-metabolism capacity

Proportions of seedling mortality were compared

with Pearsons chi-square test. Data on N-metabolism

capacity data were ln-transformed to achieve a

normal distribution of residuals. In order to contrast
15N uptake of the progeny resulting from the different

pollination manipulations, a Randomized Block

ANOVA with Scheffé test was performed regarding

‘pollination treatment’ as the fixed factor and ‘tree’ as

the block factor.

For seedling mortality, the magnitude of inbreed-

ing depression was calculated as the difference

between mortality of seedlings from within-fragment

crosses and the mortality of seedlings from between-

fragment crosses.

For N-metabolism capacity, we calculated the

severity of inbreeding depression as follows:

1—(15N uptake of 20 m crosses)/(15N uptake of

30 km crosses) and

1—(15N uptake of 1 km crosses)/(15N uptake of

30 km crosses) (modified following Barrett and

Kohn 1991).

Statistical analyses were performed using SPSS

12.0 (SPSS Inc. 2003) and NCSS 2001 (Hintze 2001)

software.

Results

Genetic analysis

The 14 primers used in the RAPD analysis of leaf

tissue of 20 parent trees and of 54 seedlings of the

progeny resulted in 135 polymorphic scorable bands

with each plant being distinguishable as a single

RAPD phenotype.

Genetic similarity between focal females

and pollen donors

Genetic similarity was highest in parental trees located

within a woodland fragment (HCP-1, mean Dice

similarity: 0.727 ± 0.025 SD; Fig. 1) and signifi-

cantly higher than those of parental trees separated

by a distance of 30 km (one-way ANOVA; df = 14;

P \ 0.05). The values of genetic similarity were very

similar for parental trees separated by a distance of 1

Plant Ecol (2009) 205:155–164 159
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and 30 km (HCP-2, mean: 0.699 ± 0.014; HCP-3,

mean: 0.689 ± 0.023; Fig. 1).

Genetic diversity of the progeny populations

All measures of genetic diversity, i.e. the mean Dice

dissimilarity, the proportion of polymorphic loci and

the average gene diversity reached highest values in

the progeny originating from open-pollinated flowers

(OP; Table 1). Considering the progeny populations

of hand-outcrossed flowers, the proportion of poly-

morphic loci and the average gene diversity were

slightly larger if pollen came from the more distant

donors. However, this was not the case for Dice

dissimilarity (Table 1). A Mantel test based on the

Dice dissimilarity values revealed that samples

within groups were significantly more similar than

samples belonging to different groups; the standard-

ised Mantel statistic (akin to a correlation coefficient)

was rM = 0.20 (P \ 0.0001).

Seedling mortality and N-metabolism capacity

Mortality was clearly highest in seedlings resulting

from outcrossings within a fragment (HCP-1: 86.3%)

and lowest in seedlings from outcrossings between

fragments (HCP-2: 63.9%; HCP-3: 66.4%), while

mortality was intermediate in seedlings resulting

from OP (76.6%) (Chi-squared test, v2 = 18.1; df =

3; P \ 0.001).

The pollination treatment (i.e. the outcrossing

distance) had a significant effect on the amount of
15N that was incorporated by the resulting progeny

(Randomized Block ANOVA; df = 3; P \ 0.01),

while there was no effect of the block factor ‘tree’

(df = 16; P = 0.83). The 15N uptake of the progeny

increased with outcrossing distance (Fig. 2). We did

not find any significant differences between OP and

outcrossings between widely separated fragments

(HCP-3), whereas seedlings resulting from outcros-

sings within a fragment (HCP-1) and from

outcrossings between closely separated fragments

(HCP-2) incorporated significantly less 15N.
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Fig. 1 Genetic similarity (proportion of bands shared, Dice

similarity coefficient) of focal females and pollen donors of

Polylepis australis from three different distance classes (HCP-

1: 20 m; HCP-2: 1 km; HCP-3: 30 km; n = 5 for focal females

and five pollen donors for each distance). The values plotted

are based on the mean genetic similarity of a focal female to its

five pollen donors. Different letters indicate significant

differences (Tukey’s HSD test, P \ 0.05)

Table 1 Estimates of genetic variability within the progeny

populations of Polylepis australis resulting from open polli-

nation (OP), from crosses between closely separated fragments

(1 km, HCP-2), and from crosses between widely separated

fragments (30 km, HCP-3)

Progeny population resulting from… OP HCP-2 HCP-3

Mean Dice dissimilarity 0.251 0.248 0.235

Proportion of polymorphic loci (%) 79.3 74.8 75.6

Average heterozygosity 0.285 0.258 0.266
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Fig. 2 N-metabolism capacity of Polylepis australis as mea-

sured by 15N uptake from seedlings resulting from open

pollination (OP) and from three different distance classes

(HCP-1: 20 m; HCP-2: 1 km; HCP-3: 30 km). The values

plotted are based on the mean 15N uptake of the progeny of

each maternal tree (two to three seedlings per maternal tree;

OP: n = 8 trees; HCP-1: n = 6 trees; HCP-2: n = 14 trees;

HCP-3: n = 13 trees). Different letters indicate significant

differences (Tukey’s HSD test, P \ 0.05)
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In case of seedling mortality, the magnitude of

inbreeding depression for within-fragment crosses was

20% compared to long-distance crosses and 22%

compared to crosses between closely separated frag-

ments. In case of N-metabolism capacity, inbreeding

depression compared to long-distance crosses was

14.1% for within-fragment crosses and 9.6% for

crosses between closely separated fragments.

Discussion

Our study provides evidence of a spatial genetic

structuring in P. australis, an increase in progeny

nitrogen metabolism capacity with increasing out-

crossing distances, and a high mortality in seedlings

resulting from hand crosses within a fragment. These

findings indicate significant biparental inbreeding

depression, especially in plants that are crossed with

nearby neighbours. Genetic similarity between focal

females and pollen donors may be regarded as the

underlying factor for the biparental inbreeding

depression revealed in this study. However, as

seedlings of long-distance crosses (30 km) showed

high fitness and low mortality despite relatively high

levels of genetic similarity of mates, biparental

inbreeding depression in P. australis should become

apparent only at very high levels of genetic similarity.

Our findings are in line with Trame et al. (1995)

who reported a negative relationship between genetic

similarity and spatial distance of parent plants as well

as a significant biparental inbreeding depression for

Agave schottii (Agavaceae). However, to our knowl-

edge there are as yet no studies that have tested this

relationship directly using genetic differences and

progeny vigour or which have clearly detected

evidence of the occurrence of biparental inbreeding

depression in wind-pollinated angiosperm trees.

As Seltmann et al. (2008) did not find any

difference in seed germination between crosses of

nearby and distant fragments, we conclude that

biparental inbreeding depression bears more signifi-

cance to progeny fitness and mortality than to

germination; a finding that is in line with the

assumptions of several authors like Waser and Price

(1994), Trame et al. (1995) and Hardner et al. (1998).

Correspondingly, coefficients of inbreeding depres-

sion were clearly higher in within-fragment crosses

than in crosses between nearby fragments, with the

former resulting in a very high mortality of seedlings.

Thus, mating between relatives may lead to inbred

progeny, which has reduced chances to become

established in the population.

However, results from the un-manipulated OP

treatment and the high genetic similarity observed

even for individuals 30 km apart indicate that there is

still long-distance pollen flow buffering inbreeding

depression under current levels of fragmentation.

This assumption is supported by the finding of low

genetic differentiation of P. australis in the Córdoba

mountains (0.001 B /st B 0.05; Julio et al. 2008)

and of other species of the genus (Schmidt-Lebuhn

et al. 2006). In accordance, Seltmann et al. (unpubl.)

found pollen dispersal distances of P. australis

ranging up to 80 km from the nearest population

and documented an exceptionally long period of

pollen viability (47% of viable pollen grains after

128 h following pollen release).

The fact that all estimates of genetic variability were

highest in seedlings resulting from OP may be explained

by the scenario that our open pollinated flowers may still

have received long distant as well as short-distant

pollen, and from many more than 10 donors.

It is suggested that population connectivity

through pollen-mediated gene flow may have sub-

stantial effects on the persistence of isolated

fragments, as gene flow into patches may serve to

mitigate the effects of inbreeding depression (Rich-

ards 2000). The large fecundity of P. australis and

the possibility of (even rare) long-distance pollen

flow events should ensure the production of a large

enough number of lowly inbred individuals. How-

ever, at the same time inbreeding depression provides

potential opportunities for purging deleterious alleles

and the resultant depression in fitness in future

generations (e. g. Wang 2000; Ward et al. 2005).

Nevertheless, we found that effective pollen

movement over substantial distances is essential for

maintaining seedling fitness. This is reflected espe-

cially by the finding of high mortality of seedlings

that were fathered by individuals of the same

woodland. In consequence, for the natural regenera-

tion of P. australis woodlands, even further increased

fragmentation of the remaining stands interrupting

pollen exchange due to ongoing land-use practices

would involve a potential for increased biparental

inbreeding and thus, decreased progeny fitness and

increased seedling mortality.
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Pollen-mediated gene flow may act to rescue

populations that are within the range of pollen

dispersal but may have no effect on completely

isolated populations (Richards 2000). In accordance,

recent research on several conifers supports that the

rate of inbreeding was higher in small, disjunct low-

density populations (mass-action assumption; Rajora

et al. 2000, 2002; Sorensen 2001). We conclude

therefore that conservation of the remaining P. aus-

tralis woodlands in Argentina should be aimed at

avoiding any complete isolation of fragments.

Spatial genetic structuring in populations of wind-

pollinated trees has been implicated in many conifer

populations (e.g. Epperson 1992, 2000; Epperson

and Chung 2001), and has been explained by

restricted seed and pollen dispersal. The finding of

higher genetic similarity of P. australis individuals

within a fragment and of near-situated fragments

indicates that clustering of related genotypes in

P. australis is not only caused by incomplete pollen

flow, but also by limited migration distance of seeds.

P. australis has gravity-dispersed and wind-dispersed

seeds that were never trapped more than 6 m away

from seeder trees, and seedlings were never found

more than 10 m away (Torres et al. 2008). However,

seed dispersal seemed to be more effective than

expected, as inbreeding depression occurred not only

within, but also among near-distant woodland frag-

ments. As these are located in the same river basin,

we presume that seeds may be transported over

substantial distances by water, leading to the occur-

rence of half-sibs in different nearby-woodland

fragments. Nevertheless, even moderate limits to

dispersal are known to cause spatial structuring of

genotypes and hence subsequent biparental inbreed-

ing (Epperson and Chung 2001).
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López-Cantarero I, Ruiz JM, Hernandez J, Romero L (1997)

Nitrogen metabolism and yield response to increases in

nitrogen-phosphorus fertilization: improvement in green-

house cultivation of eggplant (Solanum melongena Cv.

Bonica). J Agric Food Chem 45:4227–4231. doi:10.1021/

jf970213g

Marcora P, Hensen I, Renison D, Seltmann P, Wesche K

(2008) The performance of Polylepis australis trees along

their entire altitudinal range: implications of climate

change for their conservation. Div Distr 14:630–636.

doi:10.1111/j.1472-4642.2007.00455.x

Miller MP (1997) Tools for population genetic analysis

(TFPGA), a windows program for the analysis of allo-

zyme and molecular population genetic data. Version 1.3.

Department of Biological Sciences, Northern Arizona

University, USA, Flagstaff

Mitton JB, Latta RG, Rehfeld GE (1997) The pattern of

inbreeding in Washoe Pine and survival of inbred progeny

under optimal environmental conditions. Silvae Genet

46:215–219
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