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phylloquinone intake was assessed using a food frequency 
questionnaire.
Results PIVKA-II and ucMGP levels were increased in 
27.5 and 77.1 % of HD patients in comparison with the 
reference ranges in apparently healthy controls, respec-
tively. In 45 % of cases, the increased PIVKA-II level was 
explained by insufficient phylloquinone intake for Pol-
ish population (recommended intake: >55 μg for women 
and >65 µg for men). Applying ROC analysis, we showed 
that vitamin K1 intake below 40.2 µg/day was associated 
with increased PIVKA-II levels. There was no correlation 
between vitamin K1 intake and plasma concentration of 
ucMGP, or between PIVKA-II and ucMGP.
Conclusions (1) Functional vitamin K1 deficiency is 
explained by low vitamin K1 intake in less than half of HD 

Abstract 
Purpose Functional vitamin K deficiency (both K1 
and K2) is postulated to be one of the most relevant links 
between chronic kidney disease and vascular calcifica-
tion in hemodialysis (HD) patients. Recommended dietary 
restrictions in HD patients superimposed on diversity of 
eating habits across the countries may affect the prevalence 
of functional vitamin K deficiency. The aim of this study 
was to determine the level of functional vitamin K defi-
ciency and its relation to vitamin K1 intake in HD patients 
in Upper Silesia in Poland.
Methods Protein-induced vitamin K absence or antag-
onist-II (PIVKA-II) and undercarboxylated matrix Gla 
protein (ucMGP) were assessed by ELISA in 153 stable, 
prevalent HD patients and 20 apparently healthy adults (to 
establish normal ranges for PIVKA-II and ucMGP). Daily 
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patients. (2) Undercarboxylated matrix Gla protein level is 
a poor surrogate for functional vitamin K1 deficiency.

Keywords Hemodialysis · Nutrition · PIVKA-II · 
Undercarboxylated MGP · Vitamin K intake

Introduction

Cardiovascular diseases (coronary artery disease, conges-
tive heart failure, arrhythmias or sudden cardiac death) 
are the main causes of morbidity and mortality in patients 
with chronic kidney disease (CKD). Increased mortal-
ity in hemodialysis (HD) patients often is associated with 
accelerated atherosclerosis and excessive vascular calci-
fication [1]. Increased risk of the development of cardio-
vascular calcification in patients with CKD can only partly 
be explained by the presence of established risk factors 
such dyslipidemia, hypertension, smoking habit or dia-
betes [2, 3]. Functional deficiency of proteins involved in 
the regulation of calcium metabolism is probably a crucial 
mechanism for this process [2]. A direct link between the 
decreased availability of vitamin K and vascular calcifica-
tion has been suggested by numerous studies [4–7]. The 
term ‘vitamin K’ refers to a group of compounds consisting 
of the plant form, phylloquinone (vitamin K1), the bacterial 
form, the menaquinones (MK, vitamin K2) and a synthetic 
form, menadione (vitamin K3), which is also an intermedi-
ate in vitamin K metabolism [8].

Recent studies indicate both low vitamin K intake and 
functional vitamin K deficiency among patients receiv-
ing renal replacement therapy [9–11]. Vitamin K intake 
is affected by low-potassium and low-phosphorus recom-
mended diet in HD patients. According to Cranenburg et al. 
[12], mean daily vitamin K1 intake in HD patients was 
118 μg and mean vitamin K2 intake was 21 μg. Most of the 
studies using HPLC methods showed undetectable or very 
low concentrations of menaquinones (especially MK-4) in 
HD patients [12, 13].

Deficiency of vitamin K, either due to diminished intake 
or the use of coumarin derivatives, results in undercarboxy-
lation of vitamin K-dependent proteins (VKDPs) [14]. This 
includes several proteins involved in the regulation of the 
process of calcification—matrix Gla protein (MGP) and 
osteocalcin (OC) [14, 15]. The optimal daily vitamin K 
intake required to activate VKDPs has not been determined; 
however, data from interventional studies on vitamin K sup-
plementation suggest benefits of this approach [7].

MGP is a calcification inhibitor expressed by vas-
cular smooth muscle cells in the vasculature. To obtain 
MGP function—inhibition of bone morphogenetic pro-
tein 2 (BMP-2), γ-carboxylation of its five residues with 
the presence of vitamin K as a co-factor is required [16]. 

The degree of carboxylation required for MGP function is 
not known. The uncarboxylated form of MGP (ucMGP) 
does not inhibit the process of vascular calcification; thus, 
plasma levels of ucMGP reflect the availability of vitamin 
K in the vessel wall [6]. The accumulation of ucMGP in 
atherosclerotic lesions and areas of calcification has been 
reported in several studies [16, 17]. According to Cranen-
burg et al. [2], the circulating fraction of ucMGP may be 
decreased in the presence of arterial calcification due to the 
increased ucMGP accumulation observed in calcified tis-
sues in HD patients; however, the exact mechanism of this 
process has not been described as yet.

A marker commonly used for the assessment of func-
tional vitamin K (mostly vitamin K1) deficiency is the 
plasma level of protein induced by vitamin K absence or 
antagonist-II (PIVKA-II). PIVKA-II is a liver-derived 
VKDP that reflects vitamin K status [2]. According to sev-
eral recent studies, half of HD patients have subclinical 
vitamin K deficiency, demonstrated by increased circulat-
ing levels of PIVKA-II. Lee et al. [18] showed that 73 % 
of patients with chronic renal failure had hepatic vitamin K 
deficiency with elevated PIVKA-II concentrations (>2 ng/
mL, mean value 4.48 ng/mL). Recommended dietary 
restrictions in HD patients superimposed on diversity of 
eating habits across the countries may affect the prevalence 
of functional vitamin K deficiency.

The aim of this study was to determine the level of func-
tional vitamin K deficiency and its relation to vitamin K1 
intake in HD patients in Upper Silesia in Poland.

Subjects and methods

A total of 153 stable, prevalent HD patients (93 men and 60 
women) were included in the study. Patients on HD therapy 
for less than 6 months, hospitalized patients, patients tak-
ing vitamin K antagonists and those with a previous his-
tory of gastrointestinal disturbances were excluded from 
the study. The study protocol was accepted by the local 
bioethical committee (KNW-2-015/N/3/K). Informed con-
sent was obtained from all individual participants included 
in the study. The study did not include training with a 
nutritionist and did not interfere with previous nutritional 
recommendations.

All HD patients were receiving dialysis three times per 
week for 3.5 to 5 h (11.7 ± 0.9 h weekly). HD patient char-
acteristics including causes of CKD, duration of HD therapy 
and Kt/V are given in Table 1. The control group consisted 
of 20 apparently healthy adults (10 men and 10 women) of 
similar age to the HD patients, with normal kidney function.

The study protocol involved obtaining additional blood 
samples while performing routine tests (blood count, urea, 
calcium, phosphate, sodium, potassium) before a midweek 
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HD session and after an overnight fast. Only patients on 
morning HD sessions were recruited.

Measurements

Protein-induced vitamin K absence or antagonist-II 
(PIVKA-II) and ucMGP were assessed by ELISA using 

commercially available kits (Cusabio, Wuhan, China) with 
intra-assay and inter-assay coefficients of variability below 
8 and 10 %, respectively (for both kits). Detection ranges 
for PIVKA-II and ucMGP were 0.312–20 and 0.156–10 ng/
mL, while the lower limit of detection was 0.078–0.039 ng/
mL (according to manufacturer), respectively. For ucMGP 
determination, 5000-fold dilution was used.

Table 1  Demographic and 
clinical characteristics of 153 
hemodialysis patients and 20 
controls (mean and 95 % CI)

NA non-applicable
a For patients with diabetes

Hemodialysis Controls

Subjects characteristics

 Age (years) 62 (59–64) 56 (52–60)

 Gender (male/female) 93/60 10/10

 Body mass index (kg/m2) 26.1 (25.2–26.9) 26.0 (24.5–27.1)

 Obesity (BMI ≥ 30 kg/m2) (n/%) 28/18.3 0

Primary cause of CKD (n/%)

 Diabetes 43/28.1 NA

 Hypertension 17/11.1 NA

 Nephrolithiasis 8/5.2 NA

 Autosomal dominant polycystic kidney disease (ADPKD) 10/6.5 NA

 Ischemic nephropathy 3/2.0 NA

 Glomerulonephritis 24/15.7 NA

 Interstitial nephritis 13/8.5 NA

 Other or unknown 35/22.9 NA

Co-morbidities (n/%)

 Hypertension 138/90.2 0

 Diabetes 57/36.3 0

 Coronary artery disease 84/54.9 0

 Stroke 12/7.8 0

 Past kidney transplantation 11/7.2 0

Dialysis parameters

 Time on dialysis (months) 48 (41–56) NA

 Residual diuresis (mL/day) 453 (374–531) NA

 Kt/V (per HD session) 1.21 (1.13–1.27) NA

 Ultrafiltration (L/week) 2.5 (2.3–2.6) NA

Pharmacotherapy (n/%)

 Antihypertensive 138/90.2 0

 No of antihypertensive drugs (n) 2.0 (1.8–2.2) 0

 Oral anti-diabetic 18/32.7a 0

 Insulin 37/67.3a 0

 Antiplatelet 79/51.6 0

 Statins 60/39.2 0

 Fibrates 0 0

 Oral phosphorous binders 127/83.0 0

 Carbonate calcium dose (g/day) 3.8 (3.4–4.3) NA

 Sevelamer hydrochloride 4/2.6 0

 Cinacalcet 18/11.8 0

 Cinacalcet dose (mg/day) 79 (60–98) NA

 Alfacalcidol 18/11.8 0
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We established the normal ranges for PIVKA-II and 
ucMGP as the values of the 95 % confidence interval 
around the mean in 20 apparently healthy adult subjects: 
0.37–0.66 ng/mL and 5.1–9.2 mg/mL, respectively.

Daily phylloquinone intake assessment

Daily phylloquinone, calciferol, calcium, phosphate, 
sodium, magnesium, iron and potassium, as well as energy 
and macronutrients intakes (fat, carbohydrates, protein, 
cholesterol, dietary fiber), were assessed on the basis of 
a Diet History Questionnaire II (DHQ)—a freely avail-
able food frequency questionnaire (FFQ) developed by 
staff at the Risk Factor Monitoring and Methods Branch 
(RFMMB). For a purpose of this study, a past year with 
portion size version of the questionnaire was used. Patients 
were asked 134 food item and eight dietary supplement 
past-year intake questions with questions included about 
portion size. Before receiving the FFQ, each partici-
pant was instructed orally about completing the form and 
printed instructions were also provided. FFQ records were 
reviewed for completeness.

Statistical analysis

Statistical analysis was performed with Statistica 10.0 
PL Stat Soft Corporation software (www.statsoft.com). 
The normality of quantitative variables distribution was 
checked by the Shapiro–Wilk test. Variables with skewed 
distributions (e.g., vitamin K1 intake) were logarithmically 
transformed for correlation analyses. Results are given as 
mean values with standard deviations or 95 % confidence 
intervals (95 % CI), or medians with interquartile ranges. 
For comparison of groups, we used the χ2 test (qualitative 
variables) and ANOVA, followed by Tukey’s test (quantita-
tive variables). The adequacy of statistical power of these 
analyses was controlled (>0.8). Correlation coefficients 
were calculated according to Pearson. The receiver oper-
ating characteristic (ROC) was used for the establishment 
of daily K1 intake resulting in increased plasma PIVKA-II 
levels (greater than established reference range for healthy 
individuals—95 percentile).

Values of p < 0.05 were considered to be statistically 
significant.

Results

Plasma concentration of PIVKA‑II and ucMGP

The mean plasma concentration of PIVKA-II in HD 
patients was 0.59 (0.51–0.68) ng/mL (Table 2) and was 
not significantly different than in healthy subjects—0.51 

(0.37–0.66) ng/mL. Increased plasma PIVKA-II concentra-
tions (>0.66 ng/mL) were found in 42 of the HD patients 
(27.5 %). Additionally, plasma concentration of ucMGP 
in HD patients was significantly (p < 0.001) greater than 
in healthy subjects [17.9 (16.3–19.5) vs. 7.1 (5.1–9.2) mg/
mL]; increased levels (>9.2 mg/mL) were found in 118 of 
the HD patients (77.1 %).

Daily K1 intake

Median (interquartile range) K1 intake in HD patients was 
103 (43,221) µg (Table 3). No difference was found in 
vitamin K1 intake between men and women. However, the 
intake was lower than recommended for the Polish popula-
tion (at least 65 µg/day for men and 55 µg/day for women 
[15]) in 32 % of HD patients. The intake of vitamin K1 
was most strongly related to the consumption of protein 
(R = 0.560, p < 0.001), fiber (R = 0.664, p < 0.001) and 
magnesium (R = 0.601, p < 0.001). In addition, daily K1 
intake was proportional to the serum level of HDL choles-
terol (R = 0.196, p < 0.05).

Functional vitamin K deficiency and vitamin K1 intake

The subgroup of HD patients with increased PIVKA-II lev-
els was characterized by lower daily K1 intake (Table 3). 
The receiver operator curve (ROC) analysis revealed that 
increased plasma concentration of PIVKA-II was char-
acteristic of participants with a daily K1 intake of less 
than 40.2 µg per day (with 38.7 % sensitivity and 84 % 
specificity)—Fig. 1.

The second ROC analysis showed that HD patients with 
daily vitamin K1 intake over 98.1 µg/day are characterized 

Table 2  Biochemical characteristics of study groups (mean and 95 % 
CI)

Na not available

Hemodialysis Controls

Hemoglobin (g/dL) 10.7 (10.4–11.0) 14.6 (14.1–15.2)

Total cholesterol (mg/dL) 169 (160–178) 212 (194–229)

LDL cholesterol (mg/dL) 90 (84–95) 142 (125–157)

HDL cholesterol (mg/dL) 28 (26–29) 61 (52–70)

Triglycerides (mg/dL) 159 (142–177) 128 (103–153)

Calcium (mmol/L) 2.14 (2.10–2.19) Na

Phosphate (mmol/L) 1.77 (1.67–1.87) Na

Parathyroid hormone (pg/mL) 444 (374–515) Na

Creatinine (µmol/L) Na 78 (67–85)

ucMGP (mg/mL) 17.9 (16.3–19.5) 7.1 (5.1–9.2)

ucMGP >9.2 mg/mL (%) 77.1 5.0

PIVKA-II (ng/mL) 0.59 (0.51–0.68) 0.51 (0.37–0.66)

PIVKA-II >0.66 ng/mL (%) 27.5 10.0

http://www.statsoft.com
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by lower risk of increased PIVKA-II levels (with 65.0 % 
sensitivity and 51.2 % specificity). Approximately 25 % of 
patients with such an intake had increased PIVKA-II levels.

Functional vitamin K deficiency and ucMGP levels

The levels of ucMGP were similar in patients with and 
without functional vitamin K deficiency—17.2 (14.2–
20.2) versus 18.4 (16.5–20.3) mg/mL; NS. Additionally, 
there was no correlation between plasma concentration 
of ucMGP and PIVKA-II (R = −0.016, p = 0.85) and 
between ucMGP and daily K1 intake (R = 0.028, p = 0.77).

Discussion

The results of our study increase the knowledge concern-
ing the regional variability of the prevalence of functional 
vitamin K deficiency in HD patients and indicate the need 
for the standardization of methods used for its assessment.

There are only a few studies assessing vitamin K intake 
and status in HD patients in the literature [2, 5, 9, 18, 19]. 
A recent study by Holden and co-workers in 172 subjects 
with stage 3–5 CKD showed that the criteria for subclinical 
vitamin K deficiency were met by 6 % of the patients based 
on circulating K1 measurements, by 60 % based on OC car-
boxylation and by 97 % based on PIVKA-II levels [9]. In 
a population of 24 HD patients, Lee et al. showed elevated 
PIVKA-II concentrations in 73 %, while Schlieper et al. 

described abnormal PIVKA-II concentrations in 64 % of 
HD patients [5, 18]. In our study, functional vitamin K defi-
ciency was demonstrated by increased plasma PIVKA-II 
concentrations in 27.5 % of HD patients. Our data are more 
similar to those obtained by Nerlander et al. [19] who found 
vitamin K deficiency based upon PIVKA-II measurements 
in 14.6 % of patients (with 60 % of patients treated with 
warfarin). The observed variation of the obtained results 
is mostly related to the shortcomings in the methodology 
(probably limited specificity of antibodies to recognition 

Table 3  Energy, macronutrient, micronutrient and vitamin K1 intake in 109 HD patients, who returned filled questionnaire (mean and 95 % CI 
or amedian with 25 and 75 percentiles)

All
(N = 109)

PIVKA-II ≤0.66 ng/mL
(N = 75)

PIVKA-II >0.66 ng/mL
(N = 34)

Statistical significance

Energy intake

 Total (kcal/day) 1639 (1461–1817) 1573 (1378–1768) 1675 (1289–2063) NS

Macronutrients intake

 Carbohydrates (g/day) 207 (184–229) 198 (175–221) 213 (163–263) NS

 Proteins (g/day) 66 (58–73) 63 (51–82) 67 (51–82) NS

 Fat (g/day) 63 (55–71) 60 (51–70) 63 (47–80) NS

 Fiber (g/1000 kcal) 9.3 (8.8–9.9) 9.3 (8.6–10.1) 9.4 (8.6–10.3) NS

Micronutrients intake

 Sodium (g/day) 2.92 (2.62–3.22) 2.78 (2.46–3.10) 3.06 (2.41–3.72) NS

 Potassium (mmol/day) 62.9 (56.3–69.5) 60.8 (53.1–68.4) 63.6 (50.3–76.9) NS

 Calcium (mg/day) 591 (519–663) 573 (493–653) 598 (439–742) NS

 Magnesium (mg/day) 224 (202–248) 216 (192–240) 235 (183–286) NS

 Phosphorus (mg/day) 963 (856–1070) 919 (800–1038) 988 (762–1213) NS

Vitamin K1 intake

 Total (µg/day)a 103 (43–221) 106 (56–224) 71 (37–203) NS

 Daily intake <55 µg/day in men and <65  
µg/day in women (%)

34 27 45 0.08

Fig. 1  Receiver operator curve analysis showing the threshold daily 
intake for K1 resulting in increased plasma concentration of PIVKA-
II (>0.66 ng/mL)
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uncarboxylated and carboxylated proteins) for functional 
vitamin K assessment, including measurements of PIVKA-
II concentration with commercially available ELISA kits. 
We cannot exclude that some variation is related to diverse 
vitamin K intake related to traditional choices of food by 
specific populations.

In the present study, we utilized an ELISA kit from Cus-
abio. HD patients with increased plasma concentration of 
PIVKA-II (>0.66 ng/mL) had markedly lower daily vita-
min K1 intake (less than 40.2 µg/day) than recommended 
for the Polish population (>55 μg for women and >65 µg 
for men). However, among HD patients with increased 
PIVKA levels, 55 % had adequate dietary vitamin K1 
intake. Higher daily vitamin K1 intake (over 98.1 µg/
day) was needed to prevent vitamin K deficiency defined 
by increased PIVKA-II concentration. In a subgroup with 
greater intake, increased PIVKA-II levels were observed in 
a quarter of patients. These data suggest that other factors 
may also contribute to disturbed vitamin K1 metabolism 
in HD patients, leading to subclinical functional vitamin 
K1 deficiency: e.g., gut microbiota composition, impaired 
vitamin K absorption or disturbed metabolism. It should be 
stressed that numerous studies have found adequate vita-
min K intake in the majority of HD patients.

According to Cranenburg et al. [12], mean dietary vita-
min K1 intake among HD patients in the Netherlands was 
118 μg/day (18–494) and for vitamin K2 was 21 μg/day 
(2–68). Those data are similar to values obtained in the 
present study (phylloquinone intake 103 [43–221] µg/day) 
with 32 % of patients not meeting recommended phylloqui-
none intake for the Polish population. It should be stressed 
that the food frequency questionnaire that was used in this 
study does not allow us to determine vitamin K2 intake. We 
have recently performed a study in 85 HD patients using 
a three-day food diary that showed mean vitamin K1 and 
MK-4 intake of 98.8 (90–108) and 28.5 (26.2–30.8) μg/
day, respectively [13].

Specific diet suggestions for HD patients (low-phospho-
rus and low-potassium diet) may lead to decreased intake 
of green vegetables (the main source of phylloquinone) and 
dairy products (the primary source for menaquinones) that 
can cause nutritional vitamin K deficiency. However, the 
compliance with dietary recommendations is usually low.

The process of γ-carboxylation with the participation 
of vitamin K allows MGP bioactivity to be used as a cal-
cification inhibitor. Our data failed to prove that func-
tional deficiency of vitamin K influences ucMGP levels 
in HD patients. Unexpectedly, plasma ucMGP concentra-
tions were significantly greater than in healthy subjects 
(17.9 [16.3–19.5] vs. 7.1 [5.1–9.2] mg/mL; p < 0.001). 
The sparse available published data on ucMGP concen-
trations in HD patients, published by a single group, are 
somewhat contradictory results. According to the data 

from the Heart and Soul Study, decreased serum ucMGP 
level is associated with reduced glomerular filtration rate 
[20]. Study by Cranenburg et al. showed markedly lower 
ucMGP concentrations in HD patients with the lowest val-
ues observed in a group with calciphylaxis compared with 
reference population [2]. In two subsets of HD patients 
(N = 40 and N = 120), the same group showed levels of 
ucMGP in HD patients (193 ± 65 and 173 ± 70 nM/L, 
respectively) were lower by about 50 % than in appar-
ently healthy subjects of the same age (441 ± 97 and 
424 ± 126 nM/L, respectively) [21, 22]. We cannot 
exclude that the differences found are the consequence 
of the methodology for ucMGP measurements used by us 
and by Schurgers’ group.

However, in line with our data, more studies have 
described elevated concentrations of dephosphorylated-
uncarboxylated MGP (dp-ucMGP) in HD patients [5–7, 
12, 23, 24]. It should be stressed that only ucMGP and dp-
ucMGP could be measured in plasma, and the function of 
phosphorylation of MGP is, as yet, unknown, though some 
data indicate that it may play a role in regulating the secre-
tion of proteins into the extracellular environment [25]. We 
did not determine dp-ucMGP concentrations, and this may 
be considered to be a limitation of our study.

MGP is produced by vascular smooth muscle cells and 
is subsequently γ-carboxylated in the presence of vitamin 
K. It is suggested that this process is more dependent on 
menaquinone than phylloquinone [16]. In line with this 
hypothesis, we have shown that ucMGP is not a surrogate 
marker of functional vitamin K deficiency, as we have 
observed similar values in a subgroup with normal and 
increased PIVKA-II levels.

The main limitation of the study was the lack of meas-
urement of phylloquinone levels in serum samples. We did 
not determine vitamin K2 intake due to limitations of the 
food frequency questionnaire. Additionally, due to a small 
number of subjects, vitamin K intake in the control group 
was not assessed, as it may not accurately reflect vitamin 
K1 intake in healthy Polish adult population.

In conclusion, we have shown that functional vitamin 
K1 deficiency is explained by low vitamin K1 intake itself 
in less than half of HD patients and that ucMGP level is a 
poor surrogate of functional vitamin K1 deficiency.
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