Skip to main content
Log in

Theory of Multidimensional Delsarte–Lions Transmutation Operators. I

  • Published:
Ukrainian Mathematical Journal Aims and scope

We present a brief survey of the original results obtained by the authors in the theory of Delsarte–Lions transmutations of multidimensional spectral differential operators based on the classical works by Yu. M. Berezansky, V. A. Marchenko, B. M. Levitan, and R. G. Newton, on the well-known L. D. Faddeev’s survey, the book by L. P. Nyzhnyk, and the generalized de Rham–Hodge theory suggested by I. V. Skrypnik and developed by the authors for the differential-operator complexes. The operator structure of the Delsarte–Lions transformations and the properties of their Volterra factorizations are analyzed in detail. In particular, we study the differential-ga generalized de Rham–Hodge theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. J. Ablowitz and H. Segur, Solitons and Inverse Scattering Transform, Society of Industrial and Applied Mathematics, Philadelphia (1981).

    Book  MATH  Google Scholar 

  2. Yu. M. Berezanskii, Expansion in Eigenfunctions of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1965).

    Google Scholar 

  3. F. A. Berezin and M. A. Shubin, Schrödinger Equation [in Russian], Moscow University, Moscow (1983).

    MATH  Google Scholar 

  4. D. Blackmore, A. K. Prykarpatsky, and V. Hr. Samoylenko, Nonlinear Dynamical Systems of Mathematical Physics: Spectral and Differential-Geometrical Integrability Analysis, World Scientific, Singapore (2011).

    Book  MATH  Google Scholar 

  5. D. Blackmore, A. K. Prykarpatsky, and J. Zagrodzinski, “Lax-type flows on Grassmann manifolds and dual momentum mappings,” Rep. Math. Phys., 40, No. 3, 539–549 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. L. Bukhgeim, Volterra Equations and Inverse Problems [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  7. F. Calogero and A. Degasperis, Spectral Transform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations, Vol. 1, North-Holland Publ. Co., Amsterdam (1982).

    MATH  Google Scholar 

  8. S. S. Chern, Complex Manifolds, University of Chicago, Chicago (1956).

    MATH  Google Scholar 

  9. R. W. Carroll, Topics in Soliton Theory, North-Holland Publ. Co., Amsterdam (1991).

    MATH  Google Scholar 

  10. R. W. Carroll, Transmutation and Operator Differential Equations, North-Holland Publ. Co., Amsterdam (1979).

    MATH  Google Scholar 

  11. R. Carroll, Transmutation, Scattering Theory and Special Functions, North-Holland Publ. Co., Amsterdam (1982).

    MATH  Google Scholar 

  12. R. Carroll, Transmutation Theory and Applications, North Holland Publ. Co., Amsterdam (1986).

    MATH  Google Scholar 

  13. K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, Springer, Berlin (1989).

    Book  MATH  Google Scholar 

  14. N. Dunford and J. T. Schwartz, Linear Operators, Part 2. Spectral Theory. Self-Adjoint Operators in Hilbert Space, Interscience Publ., New York (1963).

    MATH  Google Scholar 

  15. B. N. Datta and D. R. Sarkissian, “Feedback control in distributed parameter gyroscopic systems: a solution of the partial eigenvalue assignment problem,” Mech. Syst. Signal Proc., 16, No. 1, 3–17 (2002).

    Article  Google Scholar 

  16. J. Delsarte, “Sur certaines transformations fonctionelles relatives aux équations linéaires aux dérivées partielles du second ordre,” C. R. Acad. Sci. Paris, 206, 178–182 (1938).

    MATH  Google Scholar 

  17. J. Delsarte and J. L. Lions, “Transmutations d’opérateurs differentielles dans le domain complexe,” Comment. Math. Helv., 52, 113–128 (1957).

    MATH  Google Scholar 

  18. J. Delsarte and J. L. Lions, “Moyennes généralisées,” Comment. Math. Helv., No. 34, 59–69 (1959).

  19. G. de Rham, Variétés Différentielles, Hermann, Paris (1955).

    MATH  Google Scholar 

  20. G. de Rham, “Sur la théorie des formes différentielles harmoniques,” Ann. Univ. Grenoble, 22, 135–152 (1946).

    MathSciNet  MATH  Google Scholar 

  21. P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford Univ. Press, Oxford (1935).

    MATH  Google Scholar 

  22. N. Dunford and T. Schwartz, Linear Operators. Spectral Operators, Wiley-Interscience, New York (1971).

    MATH  Google Scholar 

  23. L. D. Faddeev, “Quantum inverse scattering problem. II,” in: VINITI, Series in Modern Problems of Mathematics [in Russian], 3, VINITI, Moscow (1974), pp. 93–180.

  24. L. D. Faddeev and L. A. Takhtadjyan, Hamiltonian Approach to the Soliton Theory, Nauka, Moscow (1986).

    Google Scholar 

  25. R. Gilbert and Y. Begehr, Transformations, Transmutations and Kernel Functions, Vols. 1, 2, Pitman, Longman (1992).

  26. C. Godbillon, Geometrie Differentielle et Mechanique Analytique, Hermann, Paris (1969).

    MATH  Google Scholar 

  27. I. C. Gokhberg and M. G. Krein, Theory of Volterra Operators [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  28. J. Golenia, Y. A. Prykarpatsky, A. M. Samoilenko, and A. K. Prykarpatsky, “The general differential-geometric structure of multidimensional Delsarte transmutation operators in parametric functional spaces and their applications in soliton theory. Pt 2,” Opuscula Math., No. 24 (2004).

  29. P. I. Holod and A. U. Klimyk, Theory of Symmetry [in Russian], Factorial, Moscow (2002).

    Google Scholar 

  30. E. Ya. Hruslov, “Asymptotics of the solution of the Cauchy problem for the KdV equation with step-like initial data,” Math. USSRSb., 28, 229–248 (1976).

  31. V. V. Katrakhov and S. M. Skripnik, “Method of transformation operators and boundary-value problems for singular elliptic equations,” Sovr. Mat. Fundament. Napr., 64, No. 2, 211–428 (2018).

    Google Scholar 

  32. B. G. Konopelchenko, Solitons in Multidimensions: Inverse Spectral Transform Method, World Scientific, Singapore (1993).

    Book  MATH  Google Scholar 

  33. I. M. Krichever, “Algebro-geometric methods in theory of nonlinear equations,” Russ. Math. Surveys, 32, No. 6, 183–208 (1977).

    Article  MATH  Google Scholar 

  34. P. Lax, “Integrals of nonlinear equations of evolution and solitary waves,” Comm. Pure Appl. Math., 21, No. 2, 467–490 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  35. B. M. Levitan, Theory of Operators of Generalized Translation [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  36. B. M. Levitan and I. S. Sargsian, Sturm–Liouville and Dirac Operators [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  37. V. B. Matveev and M. I. Salle, Darboux–Backlund Transformations and Applications, Springer, New York (1993).

    Google Scholar 

  38. B. M. Levitan, Sturm–Liouville Inverse Problems [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  39. J. L. Lions, “Opérateurs de Delsarte en probl`emes mixtes,” Bull. Soc. Math. France, No. 84, 9–95 (1956).

  40. J. L. Lions, “Quelques applications d’opérateurs de transmutation,” Colloq. Int. Nancy, 125–142 (1956).

  41. Y. B. Lopatynski, “On harmonic fields on Riemannian manifolds,” Ukr. Math. Zh., 2, No. 1, 56–60 (1950).

    MathSciNet  Google Scholar 

  42. Ya. B. Lopatinskii, Introduction to the Contemporary Theory of Partial Differential Equations [in Russian], Naukova Dumka, Kiev (1980).

  43. S. V. Manakov, “Method of inverse scattering problem and two-dimensional evolutionary equations,” Usp. Mat. Nauk, 31, No. 5, 245–246 (1976).

    Google Scholar 

  44. V. A. Marchenko, Spectral Theory of Sturm–Liouville Operators, Naukova Dumka, Kiev (1972).

    MATH  Google Scholar 

  45. Ya. A. Mitropol’skii, N. N. Bogolyubov Jr., A. K. Prykarpatsky, and V. G. Samoilenko, Integrable Dynamical Systems: Differential-Geometric and Spectral Aspects [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  46. Ya. V. Mykytiuk, “Factorization of Fredholmian operators,” Math. Stud. Proc. Lviv Math. Soc., 20, No. 2, 185–199 (2003).

    Google Scholar 

  47. Ya. V. Mykytiuk, “Factorization of Fredholm operators in operator algebras,” Math. Stud. Proc. Lviv Math. Soc., 21, No. 1, 87–97 (2004).

    MathSciNet  Google Scholar 

  48. A. C. Newell, Solitons in Mathematics and Physics, Society for Industrial and Applied Mathematics, Philadelphia (1985).

    Book  MATH  Google Scholar 

  49. R. G. Newton, Inverse Schrödinger Scattering in Three Dimensions, Springer, Berlin (1989).

    Book  MATH  Google Scholar 

  50. J. C. C. Nimmo, Darboux Transformations from Reductions of the KP-Hierarchy, Preprint, University Glasgow (2002).

    Google Scholar 

  51. L. P. Nizhnik, “Integration of nonlinear multidimensional equations by the method of inverse scattering,” Dokl. Akad. Nauk SSSR, 254, No. 2, 332–335 (1980).

    MathSciNet  Google Scholar 

  52. L. P. Nizhnik, Inverse Scattering Problems for Hyperbolic Equations [in Russian], Naukova Dumka, Kiev (1991).

    MATH  Google Scholar 

  53. L. P. Nizhnik, “The inverse scattering problems for the hyperbolic equations and their applications to nonlinear integrable equations,” Rep. Math. Phys., 26, No. 2, 261–283 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  54. L. P. Nizhnik, “Inverse scattering problem for the wave equation and its application,” in: J. Gottlieb and P. Duchateau (editors), Parameter Identification and Inverse Problems in Hydrology, Geology and Ecology, Kluwer AP, Dordrecht (1996), pp. 233–238.

    Chapter  Google Scholar 

  55. L. P. Nizhnik and M. D. Pochynaiko, “The integration of a spatially two-dimensional Schrödinger equation by the inverse problem method,” Func. Anal. Appl., 16, No. 1, 80–82 (1982).

    Article  Google Scholar 

  56. J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press, Princeton (1955).

    MATH  Google Scholar 

  57. S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons. The Inverse Scattering Method, Springer (1984).

  58. V. Ovsienko, Bi-Hamilton Nature of the Equation u tx = u xy u y − u yy u x , Preprint arXiv:0802.1818v1 [math-ph] (2008).

  59. V. Ovsienko and C. Roger, “Looped cotangent Virasoro algebra and nonlinear integrable systems in dimension 2+1,Comm. Math. Phys., 273, 357–378 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  60. A. K. Prykarpatsky and D. Blackmore, “Versal deformations of a Dirac-type differential operator,” J. Nonlin. Math. Phys., 6, No. 3, 246–254 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  61. A. K. Prykarpatsky and I. V. Mykytiuk, Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects, Kluwer AP, Dordrecht (1998).

    Book  MATH  Google Scholar 

  62. A. K. Prykarpatsky, A. M. Samoilenko, and Y. A. Prykarpatsky, “The multi-dimensional Delsarte transmutation operators, their differential-geometric structure, and applications. Pt. 1,” Opuscula Math., 23, 71–80 (2003).

    MATH  Google Scholar 

  63. A. G. Reyman and M. A. Semenov-Tian-Shansky, Integrable Systems. Group-Theoretic Approach [in Russian], Institute of Computer Investigations, Izhevsk (2003).

    Google Scholar 

  64. A. M. Samoilenko and Ya. A. Prykarpats’kyi, Algebraic-Analytic Aspects of the Theory of Completely Integrable Dynamical Systems and Their Perturbations [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2002).

    Google Scholar 

  65. A. M. Samoilenko, Y. A. Prykarpatsky, and A. K. Prykarpatsky, “Generalized de Rham–Hodge–Skrypnik theory: differentialgeometric and spectral aspects with applications,” Ukr. Math. Bull., 2, No. 4, 550–582 (2005).

    MathSciNet  MATH  Google Scholar 

  66. A. M. Samoilenko, Y. A. Prykarpatsky, and A. K. Prykarpatsky, “The de Rham–Hodge–Skrypnik theory of Delsarte–Lions transmutations in multidimension and its applications,” Rep. Math. Phys., 55, No. 3, 351–370 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  67. Ya. A. Prykarpats’kyi, A. M. Samoilenko, and V. H. Samoilenko, “Structure of binary transformations of Darboux type and their application to soliton theory,” Ukr. Mat. Zh., 55, No. 12, 1704–1719 (2003); English translation: Ukr. Math. J., 55, No. 12, 2041–2059 (2003).

  68. A. M. Samoilenko, Y. A. Prykarpatsky, and A. K. Prykarpatsky, “The spectral and differential geometric aspects of the generalized De Rham–Hodge theory related with Delsarte transmutation operators in multidimension and its applications to spectral and soliton problems,” Nonlin. Anal., 65, 395–432 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  69. S. M. Sitnik, Buschman–Erdelyi Transmutations, Classification, and Applications, Preprint, arXiv:1304.2114v1 [math.CA] (2013).

  70. S. M. Sitnik, “Transmutations and applications. A survey,” in: Yu. F. Korobeinik and A. G. Kusraev (editors), Advances in Modern Analysis and Mathematical Modeling, Vladikavkaz Scientific Center, Russian Academy of Sciences, Republic of North Ossetia–Alania, Vladikavkaz (2008), pp. 226–293.

    Google Scholar 

  71. I. V. Skrypnik, “Periods of A-closed forms,” Dokl. Akad. Nauk SSSR, 160, No. 4, 772–773 (1965).

    MathSciNet  Google Scholar 

  72. I. V. Skrypnik, “Harmonic fields with singularities,” Ukr. Math. Zh., 17, No. 4, 130–133 (1965).

    Article  MathSciNet  Google Scholar 

  73. I. V. Skrypnik, “Generalized de Rham theorem,” Dop. Akad. Nauk Ukr. SSR, 1, 18–19 (1965).

    MathSciNet  Google Scholar 

  74. I. V. Skrypnik, “Harmonic forms on a compact Riemannian space,” Dop. Akad. Nauk Ukr. SSR, 2, 174–175 (1965).

    MathSciNet  Google Scholar 

  75. M. Spivak, Calculus on Manifolds. A Modern Approach to Classical Theorems of Advanced Calculus, Addison-Wesley Publ. Co., Massachusetts (1965).

    MATH  Google Scholar 

  76. M. A. Shubin, Pseudo-Differential Operators and Spectral Theory, Nauka, Moscow (1978).

    Google Scholar 

  77. R. Teleman, Elemente de Topologie si Varietati Diferentiabile, Bucuresti Publ. (1964).

  78. Kh. Trimeche, Transmutation Operators and Mean-Periodic Functions Associated with Differential Operators, Harwood AP, London (1988).

    MATH  Google Scholar 

  79. A. P. Veselov and S. P. Novikov, “Finite-gap two-dimensional Schrödinger operators. Potential operators,” Dokl. Akad. Nauk SSSR, 279, No. 4, 20–24 (1984).

    MathSciNet  Google Scholar 

  80. F. Warner, Foundations of Differential Manifolds and Lie Groups, Academic Press, New York (1971).

    MATH  Google Scholar 

  81. V. E. Zakharov and A. B. Shabat, “An exact theory of two-dimensional self-focusing and one-dimensional automodulation of waves in nonlinear media,” Zh. Eksp. Teor. Fiz., 61, No. 1, 118–134 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 70, No. 12, pp. 1660–1695, December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilenko, A.M., Prykarpatsky, Y.A., Blackmore, D. et al. Theory of Multidimensional Delsarte–Lions Transmutation Operators. I. Ukr Math J 70, 1913–1952 (2019). https://doi.org/10.1007/s11253-019-01617-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-019-01617-8

Navigation