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Abstract The temperature inside modern hard disk drives

(HDDs) can become as high as 100�C during operation.

The effects of such high temperatures on the slider’s flying

attitude and the shear forces on the slider and the disk are

investigated in this paper. General formulae for the shear

forces are derived, and the generalized Reynolds equation

is modified to take into account the temperature effect on

the mean free path of air as well as the air viscosity.

Numerical results are obtained for two different air bearing

surface designs. It is shown that the temperature changes

result in non-negligible changes in the slider’s flying height

and the shear forces. These changes could further induce

changes in the deformation and instability of the lubricant

layer and thereby affect the reliability of the HDDs.

Keywords Air bearings � HDD reliability �
Temperature effect

1 Introduction

In modern hard disk drives (HDDs), the temperature inside

the HDDs can rise to as high as 100�C. Since the temper-

ature is related to the gas molecules’ speed [1], the

temperature increase affects the motion of the air molecules

in the head-disk interface (HDI), which is the gap between

the slider and the disk in the HDDs as shown in Fig. 1. Due

to its dependence on the motion of the air molecules, the

slider’s flying performance is affected by the temperature

change as well. In this paper, we focus on two important

issues of HDD slider’s flying performance at steady state:

the slider’s flying attitude and the shear forces on the slider

and the disk. The slider’s flying attitude, including the sli-

der’s flying height, pitch and roll angles, is related to the

capacity of the HDDs. According to Wallace’s equation [2],

the capacity of a HDD is inversely related to the slider’s

flying height at the read–write element, which is located at

the trailing edge of the slider. Thus, a lower flying height

and a more stable flying attitude of the slider are critical to

the increase of the HDDs’ capacity. The shear forces on the

slider and the disk are related to the reliability of HDDs. As

shown in Fig. 1, the magnetic disk, which is used to store

the data, is actually covered by a thin layer of lubricant,

which serves to reduce the possibility of the slider’s contact

onto the disk. The shear force on the lubricant has been

shown to be the dominant factor determining the deforma-

tion and instability of the lubricant layer [3, 4]. This

deformation and instability serve as a mechanism for the

transfer of the lubricant from the disk to the slider [5], which

increases the likelihood of the slider’s impact on the disk

and can result in wear of the disk as well as the loss of data

stored on the disk.

Cha et al. [6] numerically solved the classical Reynolds

equation for a slider with a minimum flying height around

60 nm, and they qualitatively argued that an increase in

temperature induced increases in both the mean free path k
and the air viscosity l. The increases in k and l led to

opposite effects on the slider’s flying height and finally

resulted in a small change in the slider’s flying height. Their

experiments confirmed this qualitative argument and

showed that the flying height only changed by 1 nm when

the temperature increased by 20�C. Since the minimum

flying height of the slider in the current HDDs is \10 nm

and is being reduced to \5 nm, the classical Reynolds
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equation is no longer applicable, and a change of 1 nm or so

in the slider’s flying height, if it exists, is no longer a neg-

ligible change. Zhang et al. [7] also studied the temperature

effect on the slider’s flying height when investigating the

effect of humidity on the slider’s flying performance at

different temperatures. They, however, did not provide any

details on how they included the temperature effect into

their simulations. Even less work has been done on the shear

forces on the slider and the disk when compared to studies

on the temperature effect on the slider’s flying attitude. In

the current air bearing surface (ABS) design program, the

hard sphere (HS) model for air molecules is used to study the

temperature effect on the slider’s flying performance, and

the analytical results based on the first-order slip theory are

used to calculate the shear forces on the slider and the disk.

Since the HS model can at most give qualitative results for

the temperature dependence of air viscosity and the mean

free path of air molecules, more refined models are needed.

At the same time, the air gap thickness in the HDI is com-

parable or even less than the mean free path, and the first-

order slip theory does not hold in the entire HDI. Thus, a

study of the temperature effect on the slider’s flying per-

formance and interface shear is needed.

In this paper, we modify the generalized Reynolds

equation, which is derived from the Boltzmann equation,

by using a variable soft sphere (VSS) model for the air

molecules to include a temperature effect on the mean free

path and air viscosity. The formulae for the shear forces are

also derived and serve as a basis for the study on how

temperature increase affects the shear forces on the slider

and the disk. This paper is organized as follows. The for-

mulae for the shear forces on the slider and the disk are

derived in Sect. 2. In Sect. 3, we review and modify the

generalized Reynolds equation. Numerical results are pre-

sented and discussed in Sect. 4. Finally, a summary and

conclusion are given in Sect. 5.

2 Shear Forces on the Slider and the Disk

In current HDDs, the slider’s minimum flying height is

around 10 nm, and the thickness of the air gap in the HDI, h,

ranges from several nanometers to several micrometers.

Since the mean free path of air is around 65 nm, the air in the

HDI is rarefied, and the Knudsen number in the HDI, defined

as Kn = k/h, changes from \0.1 to [10. It is generally

known that continuum theory, even supplemented with slip

boundary conditions, applies only when the Knudsen num-

ber is\0.1 [8]. Thus, continuum theory cannot describe air

flow in current HDIs, where kinetic theory is needed.

Flow of a rarefied gas is described by the Boltzmann

equation, which, for a steady problem with no external

forces, such as the present one, reduces to [1]

ni

of

oxi
¼ Jðf ; f Þ; ð1Þ

where f is the velocity distribution function of the gas

molecules, xi are Cartesian coordinates, and ni are the

molecular velocity with i ranging over 1, 2, 3, and the

summation convention is used. J(f, f) is a complicated

integral whose exact form is not of concern here.

In view of the complexity of the Boltzmann equation,

Eq. 1, Bhatnagar, Gross and Krook [9] proposed a model

equation, namely the BGK–Boltzmann equation, by using

m(fe-f) to replace the right hand side of Eq. 1. Here m is a

collision frequency that is related to the mean free path of

the gas, and fe is a local Maxwellian which has the same

form as the Maxwellian distribution function but with its

parameters determined by f. Despite its simple form, the

BGK–Boltzmann equation is a nonlinear equation because

of the appearance of f in fe. When the velocity of the flow is

much less than the average thermal velocity of the gas, the

BGK–Boltzmann equation can be linearized by substitut-

ing / = f/f0-1 into the BGK–Boltzmann equation, i.e.

Eq. 1 with its right hand side replaced by m(fe-f), and

retaining only linear terms. Here f0 is the Maxwellian

distribution at the ambient state:

f0 ¼
q0

ð2pRT0Þ3=2
exp � nini

2RT0

� �
; ð2Þ

where q0, T0 are the ambient density and the ambient

temperature, respectively, and R is the specific gas

constant. The linearized BGK–Boltzmann equation for a

steady flow of an isothermal gas is

ni

o/
oxi
¼ m �/� 1þ q

q0

þ nivi

RT0

� �
: ð3Þ

The corresponding boundary condition accompanying

Eq. 3, after it is linearized, is [10]

/ðxi; niÞ ¼ ð1� aÞ/ðxi; ni � 2njnjniÞ

� a
2
ffiffiffi
p
p

ð2RT0Þ2
Z

nknk\0

njnj/ exp � nknk

2RT0

� �
dn;

ð4Þ

where a is the accommodation coefficient and ni is the

outward unit normal to the boundary. Fukui and Kaneko

Air Bearing 
Surface

Lubricant Layer
Disk

Slider

Air Trailing Edge

Fig. 1 The HDI is composed of a slider, a disk, and the air gap in

between. A layer of lubricant covers the disk and serves to reduce

possible impact of the slider on the disk
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[11] showed that for the air flow in the HDI, a solution

satisfying Eq. 3 and compatible with the boundary

condition Eq. 4 can be expressed as

/ ¼ 1

p0

dp

dx1

x1 þ
n1ffiffiffiffiffiffiffiffiffiffi
2RT0

p /1ðx2; n2; niniÞ; ð5Þ

with /1 determined by

kffiffiffiffiffiffiffiffiffiffi
2RT0

p n2

o/1

ox2

¼
ffiffiffi
p
p

2
�/1 þ 2

Uffiffiffiffiffiffiffiffiffiffi
2RT0

p
� �

� k
p0

dp

dx1

; ð6Þ

and

/1j
n2 [ 0
disk ¼ ð1� adiskÞ/1j

n2\0
disk þ 2adisk

Uffiffiffiffiffiffiffiffiffiffi
2RT0

p ; ð7Þ

/1jn2\0
slider ¼ ð1� asliderÞ/1jn2 [ 0

slider ; ð8Þ

where the x1 direction is parallel to the disk, the x2 direction

is perpendicular to the disk, p is the local pressure, dp/ dx1 is

the local pressure gradient, l is the length of the slider, and U

is the disk speed. From Eq. 5 and kinetic theory [10], it can

be shown that the shear force on the slider or the disk is a

linear combination of contributions from the Couette and

Poiseuille flow components.

For plane Poiseuille flow driven by a pressure gradient

dp/dx1 and existing between two plates separated by a

distance h, the momentum conservation equation, which is

one of the first three moments of Eq. 1 with respect to ni,

can be simplified to

� dp

dx1

þ or12

ox2

¼ 0: ð9Þ

where r12 is one component of the stress tensor.

Integrating Eq. 9 from the lower plate to the upper plate

and using the symmetry of plane Poiseuille flow with

respect to the center line, we get

r12jupper plate ¼ �r12jlower plate ¼
h

2

dp

dx1

: ð10Þ

For plane Couette flow existing between two plates

separated by h and with the lower plate fixed and the upper

one moving at speed U, Sherman’s interpolation formula

can be used [12]. This formula is based on an interpolation

scheme between two limits: continuum flow and free

molecular flow, and it has been shown to be consistent with

experiments. For plane Couette flow of a continuum fluid,

the shear force on the lower plate is

Fcon ¼ l
U

h
; ð11Þ

while for plane Couette flow of a free molecular gas for

which the gas is so rarefied that the collisions between any

two molecules are negligible, the shear force on the lower

plate is [13]

Ffm ¼
1

2
qU

ffiffiffiffiffiffiffiffi
2kT

pm

r
: ð12Þ

where l is the dynamic viscosity, m is the mass of the air

molecule, and k is the Boltzmann constant. Then according

to Sherman’s formula, the shear force on the lower plate in

plane Couette flow of an arbitrarily rarefied gas is

Fc ¼Ffm 1þ Ffm

Fcon

� ��1

¼1

2
qU

ffiffiffiffiffiffiffiffi
2kT

pm

r
l

lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
qh2kT

pm

q :
ð13Þ

Thus, the shear forces on the slider and the disk are:

swjdisk ¼ Fc �
h

2

dp

dx1

; ð14Þ

swjslider ¼ �Fc �
h

2

dp

dx1

: ð15Þ

Before we can use these two formulae to calculate the

shear forces, we need to know the pressure field and the

viscosity. The first one, i.e., the pressure field, can be

obtained from the generalized Reynolds equation while the

second one can be modeled using the VSS model for air

molecules.

3 The Generalized Reynolds Equation and the Variable

Soft Sphere Model

3.1 The Generalized Reynolds Equation

The classical Reynolds equation, which is derived from

continuum theory, does not apply to air flow in the entire

HDI, and the Boltzmann equation or its equivalent is

needed. Under the same assumptions as in the classical

Reynolds equation, i.e., the thickness of the air gap in the

HDI is much less than the length and the width of

the slider, and the air flow in the direction perpendicular to

the disk is negligible, Fukui and Kaneko [11] started with

the linearized Boltzmann equation, Eq. 3, and derived a

generalized Reynolds equation for a steady flow in the

HDI:

b

l

� �2
o

oX1

QpPH3 oP

oX1

� �
þ o

oX2

QpPH3 oP

oX2

� �
¼ Kb

oPH

oX1

;

ð16Þ

where b is the width of the slider, l is the length of the slider,

X1 = x1/l, X2 = x2/b, P = p/p0 is the nondimensinal pres-

sure, p is the air pressure, p0 is the ambient pressure, H = h/

h0 is the nondimensinal air gap thickness, h is the air gap

thickness, h0 is the minimum air gap thickness, Qp is the
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nondimensional mass flow rate of the Poiseuille flow com-

ponent, Kb = 6l Ub2/(pa h0
2l) is the bearing number, l is the

air viscosity at the ambient state, and U is the disk speed.

The solution of Eq. 16 relies on two parameters: the

bearing number Kb and the nondimensional mass flow rate

Qp. The bearing number depends on the air viscosity while

the mass flow rate Qp = Qp(D,a) is a function of the

accommodation coefficient a and the inverse Knudsen

number D ¼
ffiffiffi
p
p

h=ð2kÞ where k is the mean free path.

Since both k and l are functions of temperature, the change

in temperature affects the solution of the generalized

Reynolds equation as well.

3.2 The Variable Soft Sphere Model

To investigate the dependence of the slider’s flying per-

formance on the temperature, we need the formulae for the

mean free path and the air viscosity as functions of tem-

perature. These two formulae depend on the models used

for the air molecules. The simplest one is the HS model,

which regards the air molecules as rigid spheres with

interaction between each other happening only at collision.

One of the important quantities for collision is the angle v
[1], as shown in Fig. 2.

For the HS model, v = 2cos-1(b/(2d)) where d is the

radius of air molecules and b is the projected distance.

However, some macroscopic quantities calculated via the

HS model, such as viscosity, can at most qualitatively

agree with experimental results. The VSS model [14, 15]

serves to improve the deficiency in the HS model while

keeping its simplicity. It is an empirical model with an

empirical relation for d and v with parameters determined

by fitting the experimental results. In the VSS model,

d = dref(cr,ref/cr)
t and v = 2cos-1[(b/(2d))1/g] where cr is

the pre-collision relative speed between two pre-collision

molecules, t and g are two parameters used to fit experi-

mental results, and the quantities with a subscript ref

correspond to their values at a reference state. It can be

shown that the mean free path for VSS molecules is [1]

k ¼ kTrefffiffiffi
2
p

pd2
ref4p

T

Tref

� �xþ0:5

; ð17Þ

while the viscosity is

l ¼ 5ðaþ 1Þðaþ 2Þ
ffiffiffiffiffiffiffiffiffi
pmk
p

ð4k=mÞtTtþ0:5

16aCð4� tÞrrefc
2t
r;ref

¼ lref

T

Tref

� �x
ð18Þ

where k is the Boltzmann constant, x = t ? 1/2, p is the

air pressure, T is the temperature, r is the collision cross

section, and the quantities with a subscript ref correspond

to their values at a reference state.

4 Results and Discussion

Equations 16–18 involve several reference quantities. Here

we choose the following reference values [1, 16]:

Tref ¼ 0�C; lref ¼ 1:81� 10�5 Ns=m2;

dref ¼ 2:06� 10�10 m

m ¼ 5:6� 10�26 kg; p0 ¼ 1:013� 105 N=m2

The finite volume method (FVM) [17] is used to solve

the modified generalized Reynolds equation, Eq. 16, and it

gives the pressure field in the HDI. The shear forces on the

slider and the disk are then calculated with Eqs. 14 and 15.

Two designs of the ABS, which is the surface of the slider

facing the disk, are considered, and they are shown in

Fig. 3. These two sliders are both Femto sliders (with

length l = 0.85 mm and width b = 0.7 mm).

Figure 4 shows the change of the slider’s flying height at

the read–write element with temperature for the two ABS

designs. When flying over the inner track, slider A has a

flying height of 7.47 nm at 25�C, and it decreases to

6.02 nm when the temperature increases to 95�C. When

flying over the other two tracks, slider A has a higher flying

height and the increase in temperature leads to a smaller

change in the slider’s flying height. Similar trends occur for

slider B. When slider B flies over the inner track, its flying

height at the read–write element decreases from 5.59 to

4.08 nm when the temperature increases from 25 to 100�C.

b
d

cr
χ

Fig. 2 Collision between two air molecules with relative speed cr.

Here b is the projected distance, v is the angle after collision, and d is

the radius of air molecules
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Compared to slider A, slider B has a lower flying height,

and the temperature increase has more effect on slider B.

When both sliders fly at a height \10 nm, the temperature

change induces a non-negligible change in the slider’s

flying height, and the lower the slider’s flying height, the

more the flying height decreases with the temperature.

As shown in Eq. 16, the slider’s flying attitude is mainly

determined by two parameters: the mean free path, k,

which appears in the calculation of mass flow rate of the

Poiseuille flow component Qp, and the air viscosity at

the ambient state, l, which appears in the definition of the

bearing number Kb. These two parameters increase with

temperature, and they result in different changes in the

slider’s flying height: an increase in k decreases the slider’s

flying height while an increase in l increases the slider’s

flying height [6]. The final trend of the change of the flying

attitude with temperature is a net result of these two effects.

For the two ABS designs studied in this paper, the slider’s

flying height decreases with temperature as shown in

Fig. 4. The changes of the other two quantities of the sli-

der’s flying attitude, i.e., the slider’s pitch and roll angles,

are shown in Figs. 5 and 6. Since the pitch angle depends

on a balance of the moments of the pressures on the front

and rear parts of the sliders’ surface, the decrease in the

slider’s flying height with temperature leads to different

changes of the pressures on the front and the rear parts of

the ABS, which results in the final increase of the sliders’

pitch angle with temperature, as shown in Fig. 5. As for the

roll angle, it is determined by a balance of the moments of

the pressures on the left and right sides of the slider’s

surface. Since the ABSs of the two sliders are symmetric

with respect to the centerline, the changes of the pressure

with temperature are also symmetric about the centerline
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and thus do not lead to noticeable changes of the roll angle.

Although, for both slider A and slider B, the slider’s flying

height decreases with temperature it is not guaranteed that

this trend holds for all sliders, and opposite trends might

exist for some other sliders. When comparing the results of

slider A and slider B, we find that the effect of the tem-

perature on the slider’s flying attitude also depends on the

ABS designs. Thus, it might be possible to design a specific

ABS pattern to reduce the dependence of the slider’s flying

height on the temperature.

The shear forces on the slider and the disk are linear

combinations of contributions of the Couette and Poiseuille

flow components. Since the present problem has a large

bearing number which is an indication of the importance of

the Couette flow component compared to the Poiseuille

flow component, the Couette flow component dominates

the air flow. Thus only the shear forces due to the Couette

flow component are presented in Figs. 7 and 8. For most

regions on the ABS, the effect of temperature increase on

the shear force is negligible. The noticeable effect of the

temperature increase on the shear force appears at the

region near the read–write element, which is a combined

effect of the decrease in the slider’s flying height and the

increase in the slider’s pitch angle induced by the tem-

perature increase. Since the slider’s flying height and its

stability at the read–write element determine the HDDs’

capacity, changes of the shear force beneath the read–write

element could result in changes in the deformation and

instability of the lubricant, which may increase the possi-

bility of the slider’s contact onto the disk and affect the

reliability of the HDDs.

5 Summary and Conclusion

An approach to studying the effect of temperature change

on a HDD slider’s flying attitude and the shear forces on
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the slider and the disk is presented in this paper. Based on

the linearized Boltzmann equation and a similarity solution

proposed by Fukui and Kaneko, we show that the shear

forces are linear combinations of the contributions from the

Couette and Poiseuille flow components. The former con-

tribution is calculated through Sherman’s formula, which

interpolates the results for continuum flow and free

molecular flow and generates a general formula applicable

for an arbitrarily rarefied gas. The latter contribution is

calculated through a formula derived from the conservation

equations. These two formulae depend on the pressure

gradient and the mean free path. The generalized Reynolds

equation, proposed by Fukui and Kaneko and used to solve

for the air flow field in the head-disk interface, is then

modified to include the temperature effect on the mean free

path and the air viscosity. These modifications are based on

the variable soft sphere model, which is an empirical model

that gives results agreeing well with experiments. The

modified generalized Reynolds equation is solved using a

FVM, and the shear forces are calculated afterwards.

Numerical results are obtained for two slider designs, and

the results show that the temperature change induces non-

negligible changes in the slider’s flying height as well as the

shear force. Since these non-negligible changes are

dependent on the ABS designs, it may be possible to design

some specific ABS patterns to reduce the dependence of the

shear force and the slider’s flying height on the temperature.
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