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Abstract Genetically modified crops undergo

extensive evaluation to characterize their food, feed

and environmental safety prior to commercial intro-

duction, using a well-established, science-based

assessment framework. One component of the safety

assessment includes an evaluation of each introduced

trait, including its source organism, for potential

adverse pathogenic, toxic and allergenic effects.

Several Pseudomonas species have a history of safe

use in agriculture and certain species represent a

source of genes with insecticidal properties. The

ipd072Aa gene from P. chlororaphis encodes the

IPD072Aa protein, which confers protection against

certain coleopteran pests when expressed in maize

plants. P. chlororaphis is ubiquitous in the environ-

ment, lacks known toxic or allergenic properties, and

has a history of safe use in agriculture and in food and

feed crops. This information supports, in part, the

safety assessment of potential traits, such as

IPD072Aa, that are derived from this source organism.
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Introduction

Genetically modified (GM) crops were first commer-

cialized in the mid-1990s and currently are planted on

over 90% of corn, cotton and soybean acres in the

United States (USDA-NASS 2017). GM crop adop-

tion continues to increase globally, due to their

economic and sustainability benefits (Anderson et al.

2016; ISAAA 2016). Most commercial GM crops

containing insect protection traits currently rely on

genes derived from Bacillus thuringiensis (Bt) to

provide selective protection against economically

important pests. The safety of Bt as a source of

insecticidal genes for GM crops is well established

(Box 1). Bt was initially developed as a microbial

pesticide spray and has a history of safe use in

agriculture when applied, as intended, on food and

feed crops (US-EPA 1998). Bt is ubiquitous in the

environment (Schnepf et al. 1998), non-toxic to

mammals and does not have pathogenic or allergenic

properties (US-EPA 1998).

Pseudomonads are rod-shaped, aerobic, gram-neg-

ative bacteria. Certain Pseudomonas species have

previously been reported to have entomopathogenic

properties and represent a promising source of insec-

ticidal genes for use in GM crops (Kupferschmied

et al. 2013). A gene, ipd072Aa, from Pseudomonas

chlororaphis, which encodes the IPD072Aa protein,

has recently been reported to confer protection against

certain coleopteran pests when expressed in maize

plants (Schellenberger et al. 2016).
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The safety assessment framework for GM crops is

well established and has been adopted globally to

evaluate a variety of trait types, including those for

insect protection (Codex Alimentarius Commission

2009; EFSA 2006; FAO/WHO 1991). The assessment

includes, in part, an evaluation of each introduced

trait, including its source organism, for potential

adverse pathogenic, toxic and allergenic effects (De-

laney et al. 2008). This paper provides an assessment

of the safety of P. chlororaphis as a gene source for

GM crops. Like Bt, certain species of Pseudomonas

including P. chlororaphis are ubiquitous in the

environment, have a history of safe use in agriculture

as seed treatments, foliar-applied biopesticides and as

a gene source for GM crops, and lack known

pathogenic, toxic or allergenic properties. This infor-

mation supports, in part, the safety assessment of

potential traits, such as IPD072Aa, derived from this

source organism.

Ubiquity in the environment

The genus Pseudomonas has been well studied and is

estimated to contain over 100 species and 10 sub-

species (Gomila et al. 2015; Peix et al. 2009).

Sequence analysis of conserved housekeeping genes

has provided information on the phylogenetic relat-

edness of Pseudomonas species within the genus

(Anzai et al. 2000; Garrity et al. 2005; Gomila et al.

2015; Moore et al. 2006). Pseudomonas species have

been classified into 7 groups: P. syringae, P. chloro-

raphis, P. fluorescens, P. putida, P. stutzeri, P. aerug-

inosa and P. pertucinogena (Anzai et al. 2000; Fig. 1).

P. chlororaphis contains four subspecies: P. chloro-

raphis subsp. aurantiaca, P. chlororaphis subsp.

aureofaciens, P. chlororaphis subsp. chlororaphis

and P. chlororaphis subsp. piscium (Burr et al. 2010).

Most Pseudomonas species, including P. chloro-

raphis, are ubiquitous in the environment, have

widespread distribution in soil and water (Peix et al.

2009) and perform a range of economic services and

ecological functions. Some Pseudomonas species

inhabit the rhizosphere, are associated with plant roots

and provide benefits to the plant by competing with

soil-borne plant pathogens and protecting against

fungal pests (Anderson and Kim 2018; Kupferschmied

et al. 2013; Mauchline and Malone 2017). P. chloro-

raphis, specifically, has been reported to promote

plant growth, stimulate microbial communities and

protect plants by producing compounds (e.g., phena-

zine-type antibiotics, hydrogen cyanide, chitinases

and proteases) that inhibit fungal growth (EFSA

2015b), insects and nematodes (Anderson and Kim

2018). Other Pseudomonas species protect plants by

preventing colonization by deleterious microorgan-

isms (Mendes et al. 2011).

Certain Pseudomonas species have been utilized in

a variety of applications, including the biological

control of phytopathogens (Walsh et al. 2001),

promotion of plant growth (Mercado-Blanco and

Bakker 2007), phosphate solubilization (Rodrı́guez

and Fraga 1999) and bioremediation of organic

compounds (Moore et al. 2006; Peix et al. 2009).

Many Pseudomonas species have a history of safe use

in agriculture and other sectors (EFSA 2015b; Montie

1998). For example, certain Pseudomonas species are

entomopathogenic and are being utilized as biopesti-

cides to provide plant protection against insect pests.

Insecticidal toxins in the genome of P. entomophilia

have been identified (Luiu et al. 2013), and P. fluo-

rescens has been shown to exert insecticidal activity

against aphids, termites and other agricultural pests

cFig. 1 Phylogenetic tree of the authentic Pseudomonas derived

from the similarities of the 16S rDNA sequence. Bootstrap

percentages of 80% or more are indicated at the branch points.

Escherichia coli (V00348) is used as the root organism.

Symbols: *previously P. coronafaciens; �previously P. aureo-

faciens. Reproduced with permission from Anzai et al. 2000, �
International Union of Microbiological Sciences

Box 1 Weight of evidence supporting the safety of Bacillus thuringiensis (Bt) as a source of insecticidal genes

Presence in the environment—ubiquitous, both in soil and on plants (Schnepf et al. 1998)

History of safe use in the field of agriculture—Bt products were initially developed as microbial pesticide sprays and have been

approved for use on multiple food and feed crops (US-EPA 1998)

Phylogenetic relatedness to known human pathogens—Bt is not closely related to known human pathogens

Known mammalian toxic, pathogenic or allergenic potential—Bt is not toxic to mammals and has no known pathogenic or

allergenic potential (US-EPA 1998)
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Table 1 Biopesticide products and genetically modified (GM) crops utilizing Pseudomonas spp. (Only naturally occurring strains of

Pseudomonas spp. are reported) or a related species as the donor source

Species (strain) Date first

approveda
Product names Use in agriculture

Pseudomonas syringae strains

ESC-10 and ESC-11

1990 and

1996

(US-

EPA)

Bio-Save� 10 LP and Bio-

Save� 11 LP

Biopesticide—post-harvest fungicide to prevent

contamination of stored fruits and potato (US-EPA

1999b, 2001a, 2009b)

Pseudomonas fluorescens strain

A506

1992 (US-

EPA)

FrostBanTM Biopesticide—provides protection from frost and

suppresses bacterial pathogens (US-EPA 1992b)

Pseudomonas aureofaciens

strain Tx-1

1999 (US-

EPA)

Bio-Ject� Spot-LessTM Biopesticide—foliar treatment for fungal pathogens

on golf course turf (US-EPA 1999a, 2000)

Pseudomonas chlororaphis

strain 63-28

2001(US-

EPA)

AtEzeTM Biopesticide—protection against fungal pathogens in

greenhouse ornamentals and vegetables (US-EPA

2001b, 2001d)

Pseudomonas sp. strain DSMZ

13134; closely related to

P. fluorescens)

2012

(EFSA)

Proradix� Biopesticide—protection against fungal diseases in

vegetables and flowers (Buddrus-Schiemann et al.

2010; EFSA 2012)

Pseudomonas fluorescens strain

D7

2014

(EPA)

D7� Biopesticide—suppression of certain invasive grass

species (US-EPA 2014)

Pseudomonas chlororaphis

strain MA 342

2016

(EFSA)

Cedomon� and Cerall� Biopesticide—protection against fungal pathogens

on cereals (EFSA 2017)

Pseudomonas chlororaphis

strain AFS009

2017

(EPA)

HowlerTM, HowlerTM

Technical, and HowlerTM

T&O

Biopesticide—fungicide for turf and ornamental

plants (AgBiome 2017; US-EPA 2017a)

Pseudomonas chlororaphis

strain G65

1995

(USDA)

Event 8338 tomatoes;

OECD Unique Identifier

CGN-89322-3

Gene donor for GM crop—Accd gene encodes the

1-amino-cyclopropane-1-carboxylic acid

deaminase (ACCd) enzyme which reduces ethylene

production and delays ripening (USDA-APHIS

1995).

Pseudomonas fluorescens strain

A32

2013

(USDA)

Soybean event FG72;

OECD Unique Identifier

MST-FGØ72-2

Gene donor for GM crop—Source of recombinant

DNA for GM crop; confers tolerance to

isoxaflutole (IFT) herbicides when expressed in

plants (USDA-APHIS 2013)

Delftia acidovorans (formerly

classified as Pseudomonas

acidovorans)

2014

(USDA)

OECD Unique Identifier

DAS-68416-4

Gene donor for GM crop—Source of recombinant

DNA for GM crop—confers tolerance to

aryloxyalkanoate herbicides when expressed in

plants (USDA-APHIS 2014b)

2014

(USDA)

OECD Unique Identifier

DAS-44406-6

Gene donor for GM crop—Source of recombinant

DNA for GM crop—confers tolerance to

aryloxyalkanoate herbicides when expressed in

plants (USDA-APHIS 2014a)

2015

(USDA)

OECD Unique Identifiers

DAS-81910-7

Gene donor for GM crop—Source of recombinant

DNA for GM crop—confers tolerance to

aryloxyalkanoate herbicides when expressed in

plants (USDA-APHIS 2015)

aUS-EPA date indicates date first registered by the US Environmental Protection Agency (US-EPA 2017b); EFSA date indicates date

first approved by the European Food Safety Authority (EFSA 2012, 2017); USDA date indicates date deregulated by US Department

of Agriculture (USDA-APHIS 2017)
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(Kupferschmied et al. 2013). Similarly, other species

of Pseudomonas, including P. chlororaphis, P. prote-

gens and P. aeruginosa, have demonstrated insectici-

dal activity (see Table 2 of Kupferschmied et al.

2013). Because of their role in plant protection and

defense, P. chlororaphis and other Pseudomonas

species with biopesticidal activity are being marketed

for use as seed-treatment and foliar-applied biopesti-

cides or as gene donors for GM crops (Kupferschmied

et al. 2013).

History of safe use in agriculture

Pseudomonas-based biopesticides and plant

protection products

Several biopesticide products containing Pseu-

domonas species that provide protection against

fungal pathogens and diseases have been developed

and assessed for their safety (Table 1). For example,

two strains of P. syringae (ESC-l0 and ESC-11) have

been shown to control post-harvest mold contamina-

tion on certain fruits, and dry rot and silver scurf on

potatoes during storage (US-EPA

1999b, 2001a, 2009b). The products developed with

these strains emphasize the long history of safe use of

Pseudomonas-based biopesticides, as they were first

registered with the United States Environmental

Protection Agency (US-EPA) in 1990 and 1996 (US-

EPA 2017b). Over the past 30 years, several addi-

tional Pseudomonas-based biopesticides and plant

protection products have been registered with the US-

EPA or approved by the European Food Safety

Authority (EFSA); this further demonstrates the long

history of safety (Table 1). For example, Pseu-

domonas sp. DSMZ 13134, which is closely related

to P. fluorescens, has been shown to provide protec-

tion against fungal diseases in vegetables and flowers

(Buddrus-Schiemann et al. 2010; EFSA 2012), and

P. aureofaciens strain Tx-1 has been shown to provide

protection against fungal pathogens on golf course turf

(US-EPA 1999a, 2000). P. chlororaphis strain

AFS009 is being leveraged to provide protection

against a range of soil-borne fungal pathogens

(AgBiome 2017; US-EPA 2017a), and other strains

of P. chlororaphis (strains MA 342 and 63-28) have

been shown to control fungal pathogens in cereals

(EFSA 2017; Johnsson et al. 1998), as well as in

greenhouse ornamentals and vegetable crops (US-

EPA 2001b, d). In addition to fungal protection,

Pseudomonas-based products are used to protect

plants against frost damage. For example, P. syringae

is known to protect plant leaves from frost through ice

nucleation (Hirano and Upper 2000), and a non-frost-

forming strain of P. fluorescens (strain A506) is being

used to reduce frost damage on fruit and veg-

etable crops (Nufarm Americas Inc. 2012; US-EPA

1992b). The same strain of P. fluorescens is also being

used to suppress pathogenic bacterial growth (e.g., fire

blight and russet inducing bacteria) on apple and pear

crops (Nufarm Americas Inc. 2012; US-EPA 1992b),

whereas P. fluorescens strain D7 is being used to

suppress growth of certain invasive grass species (US-

EPA 2014).

As part of the registration requirements of biopes-

ticide products, environmental and human health risk

assessments are conducted prior to commercialization

(US-EPA 2017c). The US-EPA concluded that these

Pseudomonas strains are low risk, therefore these

strains were granted exemptions from the requirement

for a tolerance (40 CFR Parts 180.1114, 180.1145,

180.1212, 180.1304, 180.1326 and 180.1341). The

human health and environmental safety of P. chloro-

raphis strain 63-28 and P. aureofaciens strain Tx-1

have been reviewed by the US-EPA. Both strains were

determined to have no toxicity or human health

concerns (US-EPA 2000, 2001d). Similarly, the

human health and environmental safety of P. chloro-

raphis strains MA 342 and DSMZ 13134 have been

reviewed by the European Commission (EC 2002;

Velivelli et al. 2014) and EFSA (2012, 2017). For

strain MA 342, the European Commission acknowl-

edged that there were no signs of toxicity or

pathogenicity based on a rat acute oral study, and P.

chlororaphis is unlikely to grow at mammalian body

temperature (EC 2002); EFSA recommended addi-

tional studies to finalize the risk assessment (EFSA

2017). For DSMZ 13134, EFSA concluded that this

strain of P. chlororaphis is unlikely to cause toxicity

or pathogenicity via oral exposure based on clinical

and other experimental data (EFSA 2012).

Pseudomonas syringae strains ESC-10 and ESC-11

and P. fluorescens strain A506 were registered with

the US-EPA in the early 1990s. According to the US-

EPA, these strains of P. syringae pose low risk to

humans or birds because they do not survive at

temperatures above 32 �C, and they do not cause

adverse effects in mammals when ingested, inhaled or
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applied topically (US-EPA 2009b). Similarly, P. fluo-

rescens is ubiquitous in the environment, is not

generally considered to be a human or animal

pathogen (US-EPA 1992a) and is not expected to

have adverse ecological effects on avian wildlife,

aquatic organisms, non-target insects, mammalian

systems or endangered species (US-EPA

1992a, 2009a).

Pseudomonas species and related species as a gene

source for GM Crops

Certain Pseudomonas species and related species have

also served as gene sources for genetically modified

crops (Table 1). The GM crop products developed

with these strains also emphasize the long history of

safe use of Pseudomonas species as gene donors, as

the first GM crop containing a gene from P. chloro-

raphis was deregulated by the United States Depart-

ment of Agriculture (USDA) in 1995 (USDA-APHIS

1995, 2017). Event 8338 tomato (OECD Unique

Identifier CGN-89322-3) was developed by Monsanto

(Monsanto Company 1995). These GM tomatoes

contain a gene from P. chlororaphis that encodes the

1-amino-cyclopropane-1-carboxylic acid deaminase

(ACCd) enzyme, which has been shown to delay

ripening when expressed in tomato plants by reducing

ethylene production.

Similarly, in 2013 and 2014, the USDA deregu-

lated four herbicide tolerant GM soybean and cotton

varieties that were developed with genes from P. flu-

orescens and Delftia acidovorans (USDA-APHIS

2017). The gene from P. fluorescens encodes the

hydroxyphenylpyruvate dioxygenase (HPPD) protein,

which has been demonstrated to confer tolerance to

isoxaflutole (IFT) herbicides when expressed in plants.

Bayer CropScience developed herbicide tolerant soy-

bean event FG72 (OECD Unique Identifier MST-

FGØ72-2) using the HPPD W366 gene from P. fluo-

rescens strain A32 (USDA-APHIS 2013). The gene

from D. acidovorans has been demonstrated to confer

tolerance to aryloxyalkanoate herbicides by expression

of the aryloxyalkanoate dioxygenase-12 (AAD-12)

protein.Herbicide tolerance traits have been developed

using the aad-12 gene fromD. acidovorans in soybean

and cotton byDowAgroSciences LLC [OECDUnique

Identifiers DAS-44406-6; DAS-68416-4 and DAS-

81910-7 (USDA-APHIS 2014a, b, 2015), respec-

tively]. Delftia acidovorans was previously classified

as Pseudomonas acidovorans and Comamonas aci-

dovorans, before being reclassified recently as Delftia

(Dow AgroSciences 2010; Tamaoka et al. 1987). The

safety of both P. fluorescens and D. acidovorans as a

gene sources for GM crops has been assessed by

several regulatory authorities [for example, EFSA

(2015a), FSANZ (2013), USDA-APHIS (2013) and

CFIA (2013), FSANZ (2014), Health Canada (2014),

USDA-APHIS (2014c), respectively]. Based on this

and other evidence, GM soybean containing the gene

from P. fluorescens and the GM soybean and cotton

events containing the gene from D. acidovorans have

been approved by several regulatory authorities glob-

ally (ISAAA 2018).

Pathogenic, toxic or allergenic properties

As previously reviewed by Leuschner et al. (2010),

regulatory authorities in the US and Europe concluded

that P. chlororaphis strains used for plant protection

purposes pose no health concerns for humans (EC

2002; US-EPA 2001d). Additionally, P. chlororaphis

was previously reviewed by EFSA using a Qualified

Presumption of Safety (QPS) Approach (EFSA

2015b), which included a thorough assessment of the

species’ life history characteristics, commercial uses

and safety concerns. The thorough review ofP. chloro-

raphis safety resulted in a general consensus that it is

non-pathogenic to humans and livestock because of its

inability to grow and proliferate at mammalian body

temperatures (EC 2002). Based on this weight of

evidence, P. chlororaphis was determined to be safe

for biocontrol applications (Chen et al. 2015).

While there have been a few reports where

P. chlororaphis has been isolated from animals with

disease or illness (for example, Hatai et al. 1975),

these reports are rare and there has been no causal link

to clinical illness (EC 2002; EFSA 2015b). As part of

the QPS evaluation, microorganisms are considered

within the context that they are ‘‘deliberately intro-

duced in the food chain either directly or as a source of

additive or food enzyme’’ (Leuschner et al. 2010). The

QPS assessment does not consider the organism’s

safety for use as a gene source for GM crops, therefore

the utility of this QPS assessment is limited to

applications where the organism is either used directly

or as a source of additive or food enzyme in food and

feed applications. The QPS assessment for P. chloro-

raphis noted that it may produce secondary
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metabolites (for example, rhamnolipids and phenazine

compounds) (EFSA 2015b). However, the potential

for a gene source to produce a secondary metabolite

like rhamolipids or phenazine compounds does not

indicate inherent risk for the GM crop. Secondary

metabolites like rhamolipids or phenazine compounds

are synthesized through complex biochemical path-

ways involving multiple genes. For example, rham-

nolipids biosynthesis occurs in sequential reactions

catalyzed by RhlA, RhlB and RhlC proteins [under the

control of the rhlA, rhlB and rhlC genes, respectively

(Gunther et al. 2005; Reis et al. 2011)]. Biosynthesis of

phenazine compounds is controlled by phz genes

(Dowling and O’Gara 1994). The safety of the specific

gene inserted into the plant and gene products is

assessed as part of the safety assessment of GM crops,

and there is no evidence to suggest that the ipd072Aa

gene from P. chlororaphis is involved in the biosyn-

thesis of secondary metabolites like rhamnolipids or

phenazine compounds.

Phylogenetic relatedness to known human and plant

pathogens

There is currently a robust understanding of the

phylogenetic relatedness within the genus Pseu-

domonas (Anzai et al. 2000; Burr et al. 2010; Garrity

et al. 2005; Gomila et al. 2015; Moore et al. 2006). The

Pseudomonas genus does contain some well-recog-

nized plant and human pathogens, including P. aerug-

inosa and P. syringae (Peix et al. 2009). Therefore, the

phylogenetic relatedness of pathogenic Pseudomonas

species and other Pseudomonas species intended for

agricultural applications should be considered before

potential use. P. aeruginosa is a gram-negative,

aerobic bacterium that is relatively ubiquitous in the

environment and can be found in soil and water, as

well as on the surface of plants. P. aeruginosa is well

recognized as both a plant pathogen and an oppor-

tunistic human pathogen that can cause respiratory

infection in immunocompromised patients (Sadikot

et al. 2005). The pathogenicity of P. aeruginosa is

thought to be related to virulence factors carried by

pathogenicity islands. For example, the pathogenicity

islands PAPI-1 and PAPI-2 have been linked to the

virulence of P. aeruginosa. It has been confirmed that

P. chlororaphis does not contain virulence factors and

shares no genomic homology with these known

pathogenicity islands (Chen et al. 2015).P. aeruginosa

is phylogenetically distant from P. chlororaphis (An-

zai et al. 2000; EC 2002; Fig. 1).

The pathogenicity of P. syringae to plants is well

understood. The taxonomy of the species is separated

into pathovars, each distinguishable based on the

primary host plant(s) and carbon source(s) they utilize

for growth (Garrity et al. 2005). The plant pathogenic-

ity of P. syringae is based on an array of phytotoxins

that produce disease symptoms. For example, P. sy-

ringae pathovar syringae disrupts the plasma mem-

brane in host plants via production of syringomycins,

syringopeptins and syringotoxins. P. syringae is

phylogenetically distant from P. chlororaphis (Anzai

et al. 2000; Fig. 1). Additionally, it has been con-

firmed that P. chlororaphis does not contain the genes

that code for the biosynthesis of these or other

phytotoxins or exoenzymes (cellulases, pectinases,

pectin lyases) that compromise plant cell walls (EFSA

2015b).

While it is important to consider phylogenetic

relatedness to known pathogens, identifying a patho-

gen in the same genus as a potential source donor for a

GM crop does not indicate inherent risk. Many species

share phylogenetic relatedness with known pathogens

without being pathogenic themselves. For example,

the phylogenetic relatedness of species belonging to

the Bacillus genus has been published previously

based on 16S rRNA gene sequences (see Fig. 2 in

Alcaraz et al. 2010). While Bt shares distant phylo-

genetic relatedness with a few pathogens (e.g., Bacil-

lus anthracis; Alcaraz et al. 2010), it has a long history

of safe use as a biopesticide and as a gene source for

GM crops (US-EPA 1998, 2001c). Similarly, the

phylogenetic relatedness of species belonging to the

Streptomyces genus has been published previously

based on 16S rRNA gene sequences (see Fig. 1 in

Kämpfer 2006). Very few species of Streptomyces are

human, animal or plant pathogens (Kämpfer 2006).

For example, Streptomyces scabiei is a well-known

plant pathogen associated with potato scab (Zhang

et al. 2016), and Streptomyces somaliensis is a human

pathogen that causes deep tissue and bone infections

(Kirby et al. 2012). Even though phylogenetically

related to these pathogens, the safety of Streptomyces

viridochromogenes as a gene source for GM crops is

well established (OECD 2007).
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Conclusions

The safety assessment framework for GM crops is well

established and is appropriate for assessing traits

derived from non-Bt source organisms. One compo-

nent of the safety assessment includes an evaluation of

each introduced trait, including its source organism,

for potential adverse pathogenic, toxic and allergenic

effects. Establishing a history of safe use, and a lack of

known allergenic, toxic or pathogenic properties,

contributes to the weight of evidence that a gene,

and its expression product (protein), derived from a

source donor is safe for its intended use, when

expressed in a modified crop. Pseudomonas species

represent a potential source of genes with insecticidal

properties. The ipd072Aa gene from P. chlororaphis

encodes the IPD072Aa protein, which confers protec-

tion against certain coleopteran pests when expressed

in maize plants. This paper provides an assessment of

the safety of P. chlororaphis as a gene source for GM

crops. Like Bt, Pseudomonas species are ubiquitous in

the environment and several have been utilized in a

variety of agricultural and industrial applications.

Certain Pseudomonas species, including P. chloro-

raphis, have been used in biopesticide products and as

a gene source for GM crops, and their safety as applied

plant protection products has been previously

assessed. Although P. chlororaphis is distantly related

to plant and human pathogens (e.g., P. aeruginosa and

P. syringae), it is not a human, animal or plant

pathogen and has no known potential to cause toxic or

allergenic effects in mammals. This information

supports, in part, the safety assessment of potential

traits, such as IPD072Aa, derived from

P. chlororaphis.
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