Skip to main content
Log in

The Effect of Water on the Activity and Selectivity for Carbon Nanofiber Supported Cobalt Fischer–Tropsch Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The effect of water on the activity and selectivity for a series of carbon nanofiber supported Fischer–Tropsch cobalt catalysts has been investigated. Fischer–Tropsch synthesis was carried out in a fixed bed reactor at industrially relevant conditions (483 K, 20 bar, H2/CO = 2.1). Three catalysts were prepared either by incipient wetness impregnation or wet impregnation and consisted of 12 or 20 wt% cobalt deposited on carbon nanofibers of the platelet and fishbone structures. Addition of 20 and 33 mol% water to the reactor inlet increased the reaction rates, but also the deactivation rates of all the catalysts. As a result of the high water concentrations, the catalysts were irreversibly deactivated. A positive correlation between the amount of water in the reactor and the selectivity to long-chain hydrocarbons (C5+) was found.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Storsæter S, Borg Ø, Blekkan EA, Holmen A (2005) Study of the effect of water on Fischer–Tropsch synthesis over supported cobalt catalysts. J Catal 231:405–419

    Article  Google Scholar 

  2. Minderhoud JK, Post MFM, Sie ST, Sudholter EJR (1985) Process for the preparation of hydrocarbons from a mixture of CO and H2. US Patent 4628133 A, to Shell Oil Company

  3. Kim CJ (1990) Process for catalytic hydrocarbon synthesis from CO and H2 over metallic cobalt. European Patent application 0 355 218 A1, to Exxon Research Engineering Co

  4. Iglesia E (1997) Design, synthesis, and use of cobalt-based Fischer–Tropsch synthesis catalysts. Appl Catal A 161:59–78

    Article  CAS  Google Scholar 

  5. Blekkan EA, Borg Ø, Frøseth V, Holmen A (2007) Fischer–Tropsch synthesis on cobalt catalysts: the effect of water. Catalysis 20:13–32

    Article  CAS  Google Scholar 

  6. van de Loosdrecht J, Balzhinimaev B, Dalmon J-A, Niemantsverdriet JW, Tsybulya SV, Saib AM, van Berge PJ, Visagie JL (2007) Cobalt Fischer–Tropsch synthesis: deactivation by oxidation? Catal Today 123:293–302

    Article  Google Scholar 

  7. Dalai AK, Davis BH (2008) Fischer–Tropsch synthesis: a review of water effects on the performances of unsupported and supported Co catalysts. Appl Catal A 348:1–15

    Article  CAS  Google Scholar 

  8. Tsakoumis NE, Rønning M, Borg Ø, Rytter E, Holmen A (2010) Deactivation of cobalt based Fischer–Tropsch catalysts: a review. Catal Today 154:162–182

    Article  CAS  Google Scholar 

  9. Bezemer GL, van Laak A, van Dillen AJ, de Jong KP (2004) Cobalt supported on carbon nanofibers—a promising novel Fischer–Tropsch catalyst. Stud Surf Sci Catal 147:259–264

    Article  CAS  Google Scholar 

  10. Yu Z, Borg Ø, Chen D, Enger BC, Frøseth V, Rytter E, Wigum H, Holmen A (2006) Carbon nanofiber supported cobalt catalysts for Fischer–Tropsch synthesis with high activity and selectivity. Catal Lett 109:43–47

    Article  CAS  Google Scholar 

  11. Tavasoli A, Karimi S, Taghavi S, Zolfaghari Z, Amirfirouzkouhi H (2012) Comparing the deactivation behaviour of Co/CNT and Co/γ-Al2O3 nano catalysts in Fischer–Tropsch synthesis. J Nat Gas Chem 21:605–613

    Article  CAS  Google Scholar 

  12. Zhu J, Holmen A, Chen D (2013) Carbon Nanomaterials in Catalysis: proton affinity, chemical and electronic properties, and their catalytic consequences. ChemCatChem 5:378–401

    Article  CAS  Google Scholar 

  13. Yu Z, Chen D, Tøtdal B, Holmen A (2005) Effect of support and reactant on the yield and structure of carbon growth by chemical vapour deposition. J Phys Chem B 109:6096–6102

    Article  CAS  Google Scholar 

  14. Delannay F (1984) Characterization of heterogeneous catalysts. Marcel Dekker, New York

    Google Scholar 

  15. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  16. Reuel RC, Bartholomew CH (1984) The stoichiometries of H2 and CO adsorptions on cobalt: effects of support and preparation. J Catal 85:63–77

    Article  CAS  Google Scholar 

  17. Storsæter S, Borg Ø, Blekkan EA, Tøtdal B, Holmen A (2005) Fischer–Tropsch synthesis over Re-promoted Co supported on Al2O3, SiO2 and TiO2: effect of water. Catal Today 100:343–347

    Article  Google Scholar 

  18. Borg Ø, Storsæter S, Eri S, Wigum H, Rytter E, Holmen A (2006) The effect of water on the activity and selectivity for γ-alumina supported cobalt Fischer–Tropsch catalysts with different pore sizes. Catal Lett 107:95–102

    Article  CAS  Google Scholar 

  19. Storsæter S, Tøtdal B, Walmsley JC, Tanem BS, Holmen A (2005) Characterization of alumina-, silica-, and titania-supported cobalt Fischer–Tropsch catalysts. J Catal 236:139–152

    Article  Google Scholar 

  20. Eri S, Kinnari KJ, Schanke D, Hilmen A-M (2002) Fischer–Tropsch catalyst with low surface area alumina, its preparation and use thereof, International Publication Number WO 02/47816A1, to Statoil ASA

  21. Lögdberg S, Boutonnet M, Walmsley JC, Järås S, Holmen A, Blekkan EA (2011) Effect of water on the space-time yield of different supported cobalt catalysts during Fischer–Tropsch synthesis. Appl Catal A 393:109–121

    Article  Google Scholar 

  22. Dalai AK, Das TK, Chaudhari KV, Jacobs G, Davis BH (2005) Fischer–Tropsch synthesis: water effects on Co supported on narrow and wide-pore silica. Appl Catal A 289:135–142

    Article  CAS  Google Scholar 

  23. Hilmen AM, Schanke D, Hanssen KF, Holmen A (1999) Study of the effect of water on alumina supported cobalt Fischer–Tropsch catalysts. Appl Catal A 186:169–188

    Article  CAS  Google Scholar 

  24. Borg Ø, Rønning M, Storsæter S, van Beek W, Holmen A (2007) Identification of cobalt species during temperature programmed reduction of Fischer–Tropsch catalysts. Stud Surf Sci Catal 163:255–272

    Article  CAS  Google Scholar 

  25. van Steen E, Claeys M, Dry ME, van de Loosdrecht J, Viljoen EL, Visagie JL (2005) Stability of nanocrystals: thermodynamic analysis of oxidation and Re-reduction of cobalt in water/hydrogen mixtures. J Phys Chem B 109:3575–3577

    Article  Google Scholar 

  26. Bertole CJ, Mims CA, Kiss G (2002) The effect of water on the cobalt-catalyzed Fischer–Tropsch synthesis. J Catal 210:84–96

    Article  CAS  Google Scholar 

  27. Krishnamoorthy S, Tu M, Ojeda MP, Pinna D, Iglesia E (2002) An investigation of the effects of water on rate and selectivity for the Fischer–Tropsch synthesis on cobalt-based catalysts. J Catal 211:422–433

    Article  CAS  Google Scholar 

  28. Merte LR, Peng G, Bechstein R, Rieboldt F, Farberow CA, Grabow LC, Kudernatsch W, Wendt S, Lægsgaard E, Mavrikakis M, Besenbacher F (2012) Water-mediated proton hopping on an iron oxide surface. Science 336:889–893

    Article  CAS  Google Scholar 

  29. Loveless B, Hibbitts D, Buda C, Lawlor T, Neurock M, Iglesia E (2013) C–O activation and C–C bond formation in synthesis gas conversion. 23rd North American Catalysis Society Meeting, Louisville

  30. Tsakoumis NE, Dehghan R, Johnsen RE, Voronov A, van Beek W, Walmsley JC, Borg Ø, Rytter E, Chen D, Rønning M, Holmen A (2013) A combined in situ XAS-XRPD-Raman study of Fischer–Tropsch synthesis over a carbon supported Co catalyst. Catal Today 205:86–93

    Article  CAS  Google Scholar 

  31. Zhu J, Yang J, Lillebø AH, Zhu Y, Yu Y, Holmen A, Chen D (2013) Compact reactor for Fischer–Tropsch synthesis based on hierarchically structured Co catalysts: towards better stability. Catal Today 215:121–130

    Article  CAS  Google Scholar 

  32. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964

    Article  CAS  Google Scholar 

  33. Bertole C, Kiss G, Mims CA (2004) The effect of surface-active carbon on hydrocarbon selectivity in the cobalt-catalyzed Fischer–Tropsch synthesis. J Catal 223:309–318

    Article  CAS  Google Scholar 

  34. Rane S, Borg Ø, Rytter E, Holmen A (2012) Relation between hydrocarbon selectivity and cobalt particle size for alumina supported cobalt Fischer–Tropsch catalysts. Appl Catal A 437–438:10–17

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from Statoil ASA and the Norwegian Research Council through the KOSK programme is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Holmen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borg, Ø., Yu, Z., Chen, D. et al. The Effect of Water on the Activity and Selectivity for Carbon Nanofiber Supported Cobalt Fischer–Tropsch Catalysts. Top Catal 57, 491–499 (2014). https://doi.org/10.1007/s11244-013-0205-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0205-0

Keywords

Navigation