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Abstract
The processes that control binary mixing of two sizes of grains have been investigated 
theoretically and validated by comparison with experimental data. These seemingly 
simple experiments are difficult to carry out with the degree of precision needed to test 
the models. We have developed a methodology allowing porosity and permeability to be 
measured to within ± 4.415% and ± 4.989% (at a flow rate of 5.13  cm3/s) of each value, 
respectively. Theoretical considerations recognise mixing processes: (1) an interstitiation 
process whereby small grains fit between larger grains and (2) a replacement process 
whereby large grains replace smaller grains and the porosity associated with them. A 
major result of this work is that the theoretical models describing these two processes are 
independent of grain size and grain shape. The latter of these two findings infers that the 
models developed in this work are applicable to any shape of grain or type of packing, 
providing that a representative porosity of each size of grain pack is known independently, 
either experimentally or theoretically. Experimental validation has shown that the newly 
developed relationships for porosity described measurements of porosity for near-ideal 
binary mixtures extremely well, confirming that porosity is always reduced by binary 
mixing, and that the degree of reduction depends upon the size of the ratio between the 
two grain sizes. Calculation of permeability from the packing model has also been done. 
Six different permeability estimation methods have been used. It was found that the most 
accurate representations of the experimental permeability were obtained (1) when the exact 
RGPZ (Revil, Glover, Pezard, Zamora) method was used with the porosity mixing models 
developed in this work and (2) when the exact RGPZ method was used with the weighted 
geometric mean to calculate a representative grain size.
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1  Introduction

The packing of mixtures of grains is important in many areas of science and engineering, 
from materials science (e.g. Yu et al. 1993; Norouzi et al. 2012) and process engineering 
(Ye and Lin 2006) to pharmaceuticals (Masteau and Thomas 1999; Van Veen et al. 2002). 
In the earth sciences, applications occur in many areas, including limnology, soil science 
(Zhang et  al. 2011), hydrology (Zhang et  al. 2009) and petrophysics (Sakaki and Smits 
2015; Nooraiepour et  al. 2019). Packing is a major influence on the physical properties 
of all mixtures of grains of different sizes or shapes. Those properties include porosity 
(Dias et al. 2004), which is a measure of storage capacity, and permeability (Bernabé and 
Maineult 2015), which describes fluid flow, but also encompass the ability of a material 
to transmit and absorb acoustic energy (Leurer and Brown 2008), electric current (Glover 
2015) and heat (Wallen et al. 2016).

In our case, we are interested in how granular mixtures represented by clastic rocks have 
their porosity and permeability controlled by grain size, relative grain size, grain shape (Yu 
et al. 1993), grain orientation and grain packing (Zhang et al. 1996). We recognise rocks 
whose macroscopic properties exhibit heterogeneous and anisotropic physical properties as 
a result of changes in grain packing (e.g. Zhang et al. 1996), and that the packing results 
from the instantaneous availability of sediment of a particular size or shape during the 
position, and the dynamics of the depositional process itself (Li et al. 2019).

In real rocks, grain size follows a unimodal or multimodal distribution with different 
amounts of grains of many different sizes. The mathematical description of such three-
dimensional packing is extremely complex. Consequently, we will restrict ourselves to 
mixtures of two sizes of grain (binary mixtures). Considering the wide application and 
importance even on mixtures of only two sizes of grain, there has been surprisingly little 
research carried out on them. Examples of binary mixing porosity models that have been 
developed include the ideal-packing porosity model of Kamann et al. (2007), the fractional-
packing porosity model of Koltermann and Gorelick (1995), the fine packing porosity 
model of Dias et al. (2004) and the interstitiation/non-cutting replacement porosity (INCR) 
model of Diyokeugwu and Glover (2019). It should be noted that the model of Diyokeugwu 
and Glover (2019) contains significant errors in the model equations (predominantly their 
Eqs. 4a and b), which are corrected in this work.

Permeability can either be calculated directly from the properties of the components 
of the binary mixture, using some distributive models, or using a model which uses the 
porosity which arises from the porosity mixing models mentioned above. In the case of 
distributive models, parallel, perpendicular and random patch distributions are adequately 
described by weighted arithmetic, harmonic and geometric means (Glover et  al. 2006), 
while some have used variants of the Hashin–Shtrikman bounds or Maxwell’s equation 
(Maxwell 1881), both of which rely on an analogy between fluid flow and electrical 
transport in porous media. The distributive model approach suffers from the restriction that 
the arrangement of the zones consisting of each size of grains needs to be defined, and so a 
true random mixture cannot be fully modelled.

For standard permeability models which use the porosity of the calculated binary 
mixture, there are many models which could be cited (see Rashid et al. (2015a, b) for a 
review), but the most common is that of Kozeny (1927) and Carman (1937). This is often 
used in the hydrocarbon industry, but, though simple to apply, has been discredited because 
it provides permeabilities often an order of magnitude too high because the model takes no 
account of dead-end porosity (Walker and Glover 2010). More recently, various variants 
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of the Revil, Glover, Pezard and Zamora (RGPZ) permeability model (Glover et al. 2006; 
Rashid et  al. 2015a, b) have found increasing success for both conventional and tight, 
clastic and carbonate rocks.

Figure 1 shows a schematic diagram of a 2D binary mixture of circular discs where the 
volume fraction of smaller discs increases from zero to unity from the left to the right of 
the diagram. It is analogous to a similar diagram which may be found in Kamann et  al. 
(2007), but differs because we have included curves for porosity and permeability, which 
are in accord with the model of porosity and permeability developed later in this work. 
The figure shows two regimes which represent where each of two processes is dominant. 
At low volume small grain fractions, the interstitiation process (IP) occurs, where smaller 
grains fill the interstices between larger grains. At high volume fractions of small grains, 
the replacement process (RP) occurs, where larger grains replace groups of smaller grains 
and the pore space between them.

It would be expected that the porosity arising from binary mixing would depend upon 
relative grain sizes, grain shapes, packing arrangements and how compact, or ideal, the 
packing is (Woronow 1986). In earth materials, each of these may vary.

The grain size effect is well recognised as a major control on reservoir quality in clastic 
reservoirs (e.g. Morad et al. 2010) and depends on the availability of grains of a given size 
(i.e. the grain size distribution), but is also true if only two grain sizes are present. If at any 
point during the position both small and large grains are available in unrestricted amount, a 
complete packing might be expected to occur. In this case, we define complete packing as the 
full occupancy of all void spaces large enough to take at least one of the smaller particles in 

Fig. 1   Schematic diagram of 
the physical changes occurring 
during the mixing of a binary 
mixture, together with expected 
changes in porosity and permea-
bility. The subscripts c and f refer 
to either porosities or permeabili-
ties arising from the packing of 
either coarse grains only, or fine 
grains only, respectively
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the mixture. However, there will be times during deposition where the availability of either the 
smaller grain or the larger grain is restricted. In the case of the unavailability of larger grains, 
the void spaces will be filled solely with the smaller grains, and so a single-grained sediment 
would result locally. In the case of the local unavailability of smaller grains, one would expect 
for spaces to develop within the sediment that are large enough to contain a small grain but 
do not do so. We define this situation as partial packing, which leads to a higher porosity than 
would be expected. It should be noted that complete packing is never guaranteed in the natural 
world, nor in laboratory experiments. Indeed, partial packing is likely to be more common. 
In our experiments, we have attempted to approach complete packing as closely as possible. 
However, it should be remembered that the porosity measurements that have been made in 
this work represent an upper bound to complete packing porosities. By contrast, however, 
the theoretical equations developed in this work are for complete packing. Consequently, we 
might expect our experimental measurements to systematically overestimate porosity rather 
than underestimate it despite all of the considerations that have been put in place to make the 
measurements as accurate as possible.

Some shapes of grain, such as a cubic grain, pack extremely efficiently if all grains are 
oriented in the same direction, but extremely poorly, if alternate grains are rotated through 
45°. While real rocks do not exhibit the extreme effects seen in cubic grains, the roughness of 
real grains affects porosities of samples composed of purely one grain size as well as mixtures.

It should also be noted that there may be other reasons for the end-member porosities to 
vary. For example, in water-saturated sediments, capillary forces stabilise fine grain packs at 
higher porosities than coarse packs because the specific surface area of fine grain packs is 
larger than that of coarser packs.

All of the aforementioned effects control the primary depositional porosity. However, post-
depositional or diagenetic processes can modify the primary porosity. These effects are either 
(1) geomechanical (e.g. Obradors-Prats et al. 2019), such as compaction or the development of 
fractures at all scales from the microscopic (< 10−5 m) to the megascopic (> 103 m), (2) geo-
chemical (e.g. Wu et al. 2019), such as dissolution and precipitation, or (iii) rarely biological 
in origin (Li and Li 2014). All of these diagenetic effects can occur globally or locally and can 
lead to heterogeneity and/or anisotropy in the rock. These diagenetic effects are not considered 
in this work, but process mixing modelling has been carried out recently (Li et al. 2019).

In summary, this paper contains a theoretical study of binary grain packing supported by 
significant experimental determinations. The applications of the study are very wide, as indi-
cated in the first paragraph of the introduction. A binary mixture is a significant simplification 
of many of these applications. Only future studies will be able to determine (1) the extent to 
which this model is efficacious as it stands in each of the applications, (2) whether modifica-
tions need to be made to account for a greater distribution of grain sizes or (3) whether the 
equations can be altered to take account of secondary processes such as compaction, deforma-
tion and cementation. This paper only considers the geometric aspects of how packing affects 
porosity and permeability, and takes no account of the materials from which the grains are 
composed.

2 � Theory: The Two‑Dimensional Case

Let us consider a two-dimensional box of arbitrary shape and dimensions with an area 
Abox = L2. We will place grains of two sizes into this box and examine their packing 
characteristics and porosity. Initially, the grains are assumed to be circular, but later we 
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will see that the equations developed in this section do not depend on the shape of the 
grains. The grains are of two physical sizes of radius ȓ and Ȓ for the small- and large-sized 
discs, respectively. We define and use two-dimensionless measures of grain size, r and R, 
which represent the radius of each of the grain sizes scaled by the box size. Consequently, 
the model presented here is independent of box and grain size and is not subject to edge 
effects. The scaling relationships are:

This is an important first step as it allows the subsequent equations to be independent 
of the size of the containing box, as well as not relying on the volume of premixed grain 
fractions as in Kamann et  al. (2007) and Koltermann and Gorelick (1995), and in turn 
allows the mixed porosity to be presented as a function of parameters describing its final 
state rather than the state of supposed premixed components.

We will start by first considering the process whereby small discs fit between large 
discs, leading to a reduction in porosity, which we call the interstitiation process (IP). 
Subsequently, we will consider the porosity reduction process whereby large discs replace 
small discs and their associated porosity, which we call the replacement process (RP). 
There are two types of the replacement process, one which implies the partial cutting of 
small discs by the large discs and one where the small discs pack onto the surface of the 
larger discs.

2.1 � The Interstitiation Process

Consider the box initially packed with the larger discs with some form of packing as shown in 
Fig. 2a. The packing may be regular, such as square or hexagonal, but could equally well be ran-
dom, and even partial. The form of the packing is not defined in any way at this stage other than 
it results from the addition of N large discs to the box resulting in a structure with a porosity

where ϕc represents a porosity defined by the structure of larger (coarser) discs. Note that 
this equation does not imply any particular packing, either regular or random, nor does it 
assume that the box is filled with the larger discs. It is possible for there to be large spaces 
between other large discs that a disc or discs could occupy, but happen not to be occupied. 
In other words, the packing need not be complete, but may be partial.

Hence, the maximum number of these large discs which can be fitted into the box at a 
given porosity ϕc is:

Here, the value of the porosity arising from the packing of large discs ϕc is completely 
general. It might arise from some type of regular packing (e.g. cubic or hexagonal), perfect 
random packing or some inefficient random packing. Consequently, ϕc does not represent 
a minimum porosity arising from large discs, only the actual porosity arising from a given 
packing of large discs.

(1)

⌢

r = rL,

⌢

R = RL.

(2)�c = 1 − N�R2,

(3)Nmax =
L2

(

1 − 𝜙c

)

𝜋
⌢

R

2
=

(

1 − 𝜙c

)

𝜋R2
.
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Now let us consider the addition of discs which are small enough to fit between the 
larger discs (r ≪ R), reducing the porosity. During this process, the number of large grains 
is held constant and equal to the value given in Eq. (3), N = Nmax. The porosity ϕn resulting 
from this process of adding n small discs is given by:

This process is shown in Fig. 2b.
This equation is of limited practical utility because it deals with individual numbers of 

larger and smaller discs. Consequently, we need to rewrite Eq. (4) as a function of the area 

(4)�n = 1 − N�R2 − n�r2 = �c − n� r2.

Fig. 2   a, b The interstitiation process; a the large disc matrix before filling with smaller discs, b partially 
completed filling with small discs. c, d The replacement process; c the small disc matrix before replace-
ment, d partially completed replacement with large discs, e close-up of the cutting replacement process 
showing how some grains are unrealistically cut by the process, f close-up of the non-cutting replacement 
process
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fraction of fine discs χAf and of coarse discs χAc. The area fraction of fine discs χAf is given 
by

where Af and Ac are the total areas of fine discs and coarse discs, respectively.
Henceforth, we will express all results as a function of the area fraction of small discs 

χAf. Rearranging Eq. (5) gives

There are a maximum number of small discs that can fit between the larger discs. This 
is given by

where ϕf is the porosity defined by the structure if only the smaller discs were packed 
together, or when defined at a sufficiently small scale that the definition included no effect 
of the larger discs. Here, the value of the porosity arising from the packing of small discs 
ϕf is completely general same way as for ϕc, described earlier. The value of ϕf might arise 
from some type of regular packing (e.g. cubic or hexagonal), perfect random packing, or 
some inefficient random packing of just the small discs as they fit between the larger discs. 
Consequently, ϕf does not represent a minimum porosity arising from small discs, only the 
actual porosity arising from a given packing of small discs.

Consequently, there is a point at which there is no more space between the larger discs 
to add smaller discs, and this point defines the minimum porosity that the binary structure 
can attain. Applying Eq. (4), the minimum porosity is defined by

which, upon substituting Eq. (7), gives

which is in agreement with the classical result. Consequently, the minimum porosity must 
lie between zero and unity.

Now the porosity from this process can be expressed as a function of the area fraction of 
small discs by substituting Eqs. (6) and (3) into Eq. (4) to give

This is an interesting result in that it is independent of individual disc sizes and of their 
relative sizes. The relationship also contains no information about the shape of the discs. 
Indeed, all of the control on the porosity exercised by the size, shape and packing of the 
discs resides solely in the values of ϕc and χAf. The value of ϕc includes the effect of grain 
size and grain shape associated with the distribution of the larger grains, while χAf includes, 
via ϕf, the same information for the smaller grains.

(5)�Af =
Af

Af + Ac

=
n�r2

n� r2 + N�R2
and �Ac = 1 − �Af,

(6)
n

N
=
(

R

r

)2 �Af
(

1 − �Af

) .

(7)nmax =

(

1 − N�R2
)(

1 − �f

)

�r2
,

(8)�min = 1 − Nmax�R
2 − nmax� r

2,

(9)�min = �f

(

1 − Nmax�R
2
)

= �f�c,

(10)�n =
�c − �Af

1 − �Af

.
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2.2 � The Replacement Process

Now consider the box initially occupied by n smaller grains (Fig. 2c). The porosity of this 
finer structure depends upon the number of these smaller grains present. The porosity of this 
structure is

Once again no particular packing, either regular or random is implied by this equation, nor 
does it assume that the box is filled with the smaller discs, and once again the packing may be 
partial, and in general that would be the case. If the packing of these small discs is complete, 
the maximum number of small discs is

Now imagine adding large discs to the box. Since the large discs are larger than the 
small discs, there is generally not sufficient space for the simple addition of the large discs. 
Instead, space must be ‘cut out’ from the fine grain structure to make the space to introduce 
each new large grain as shown in Fig.  2d. This process results in the overall reduction of 
porosity because small grains and their associated porosity are removed from the structure and 
replaced with solid large grains. The replacement porosity reduction process is not as efficient 
as interstitiation because in that case only pore space is replaced with solid discs.

The porosity of the resulting structure is

where the +N�R2
(

1 − �f

)

 term is an adjustment to account for the fact that the − N�R2 
term accounts twice for the addition of the larger solid material. Resolving Eq. (13) gives

Once again, there are a maximum number of large discs that may be added before the 
larger grains would overlap. This is given by

which is the same as Eq.  (3). Substituting Eq.  (15) into Eq.  (14) allows the minimum 
porosity attainable using the replacement process and gives

which is the same as attained by the interstitiation process in Eq. (9). This result implies 
that the end-member structures from both processes have equivalent porosities.

Once again, porosity from the replacement process can be expressed as a function of the 
area fraction of small discs by substituting Eqs. (6) and (12) into Eq. (14) to give

(11)�f = 1 − n� r2.

(12)nmax =

(

1 − �f

)

� r2
.

(13)�N = 1 − n�r2 − N�R2 + N�R2
(

1 − �f

)

= �f − N�R2 + N�R2
(

1 − �f

)

,

(14)�N = �f

(

1 − N�R2
)

.

(15)Nmax =

(

1 − �c

)

�R2
,

(16)�min = �f�c,

(17)�N = �f

[

1 −
(

1 − �f

)

(

1 − �Af

)

�Af

]

.
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However, this equation does not accurately represent the porosity evolving from this 
process in true binary mixtures. The reason is that the process of ‘cutting-out’ sufficient 
area of small discs and their associated porosity cuts smaller grains apart. Figure 2e shows 
an enlargement of Fig. 2d to show the effect. This cutting process leaves the larger grains 
with solid surface knobbles that increase the matrix fraction and occludes porosity. It is 
clear, therefore, that Eq.  (17) leads to a greater reduction of porosity than would be the 
case if all discs, large or small always remain intact, which is the realistic case. We call this 
model the cutting replacement process (CRP).

A modified set of equations is needed to include the added limitation that all discs 
remain whole. This amounts to recognising all of the knobbles on the large disc 
peripheries, calculating their areas and removing that area from the porosity and area 
fraction calculations. This sounds complex, but the calculation is not difficult. First, 
consider the final binary mixture. It contains N large grains and n small grains. The total 
areas represented by each of the types of disc are

so the area fraction of small grains is

which can be rearranged to give

which, when substituted into Eq. (14) for the replacement process, gives

We call this model the non-cutting replacement process (NRP) which results in a 
structure where small discs are locally packed around the peripheries of the larger discs, as 
shown in the enlargement in Fig. 2f. Comparison of Eq. (17) and the first form of Eq. (21) 
shows the difference between the two approaches. The mixed porosity is in both cases 
less than the porosity of the pure fine disc phase ϕf, but in the case of the non-cutting 
replacement process the porosity decreases at a slower rate as the area fraction of small 
discs decreases when larger discs are added than for the cutting replacement process. This 
is because the knobbles no longer contribute to the porosity reduction.

The value of χAfcrit = χAf(ϕmin) can be found by setting Eq. (10) equal to Eq. (21) while 
relabelling χAf(ϕmin) = χAfcrit and then rearranging the result to obtain χAfcrit, which after 
some manipulation gives

(18)
Ac = N�R2,

Af =
(

1 − �f

)(

1 − N�R2
)

=
(

1 − �f

)

�c,

(19)�Af =
Af

Af + Ac

= 1 −
N�R2

1 − �f + N�R2�f

,

(20)N =

(

1 − �f

)(

1 − �Af

)

�R2
(

1 − �f + �Af�f

) ,

(21)�N = �f

[

1 −
(

1 − �f

)

(

1 − �Af

)

(

1 − �f + �f�Af

)

]

= �f

[

�Af
(

1 − �f + �f�Af

)

]

.

(22)�Afcrit =
�c − �c�f

1 − �c�f

=
�c − �min

1 − �min
.
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Now substituting Eq.  (22) into either Eq.  (10) or Eq.  (21) gives ϕ = ϕcϕf = ϕmin, con-
firming that the interstitiation process described by Eq. (10) and the non-cutting replace-
ment process described by Eq. (21) meet at the value (χAfcrit, ϕmin).

In summary, two-dimensional binary mixing can be described by

These four equations define a triangle of which two of the sides are curved. An example 
of such curves is represented in Fig. 3 with the interstitiation process curve shown as the 
continuous red line and the non-cutting replacement process shown by the continuous blue 
line. The blue dashed line represents the cutting replacement process given by Eq.  (17). 
The grey line represents the least efficient mixing of the two base porosities ϕc and ϕf.

It is important to note that these curves are independent of physical or relative disc 
sizes, or the ratio of the size of the small discs to the large discs. They are also independ-
ent of grain shape. Although the equations have been derived using circular discs, they are 
equally valid for and plane regular or irregular two-dimensional shape of constant area. 
However, that is not to say that the values of ϕn and ϕN will not be different for, say, cir-
cular discs and square plates, it is just that the difference lies in and is controlled by the 
values of ϕc and ϕf, which are inputs to the equations.

For example, let us suppose that we have a matrix of large discs. These have a maxi-
mum random packing porosity of about 0.228 (Hinrichsen et al. 1990), i.e. ϕc = 0.228. 

(23)

�n =
�c − �Af

1 − �Af

for �n ≥ �min and �Af ≤ �Afcrit,

�N = �f

[

�Af
(

1 − �f + �f�Af

)

]

for �n ≥ �min and �Af ≥ �Afcrit,

�min = �c�f =
�c − �Afcrit

1 − �Afcrit

and �Afcrit =
�c − �min

1 − �min
.

Fig. 3   Example implementations of the models presented in Eq.  (23) with ϕc = 0.228, representing dense 
random packing of spheres and ϕf = 0.279 representing uniform hexagonal packing of the smaller discs 
between the randomly arranged larger discs. The minimum porosity ϕmin  = ϕcϕf   = 0.064 and the critical 
area fraction χAf = 0.176. IP interstitiation process, CRP cutting replacement process, NRP non-cutting 
replacement process
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Let us take two scenarios. In the first, let us suppose a lower-density random pack-
ing of irregularly shaped particles (ϕf = 0.35) fills the porosity left by the larger discs. 
The porosity of the mixture follows the black (for IP) and the blue curves (for NRP) 
in Fig. 4a. Suppose now that the fill is replaced by a higher-density regular packing of 
regularly shaped pentagons, with a consequently lower porosity (ϕf = 0.15). The poros-
ity of the mixture follows the black and red curves in Fig. 4a. Note that the IP curve 
remains common to both scenarios because the matrix of larger grains has not changed. 
However, if, for either scenario, the packing of the large grains was decreased such that 
their porosity was increased to ϕc = 0.35, it would be the grey curve in this figure that 
would be used with the red and blue curves to define the behaviour of the porosity of the 
mixture.

Some regular packings have variable porosities that arise from the relative rotations 
of their particles. This will give rise to a range of behaviours. Let us suppose a dense 
cubic regular packing of smaller square particles fills the porosity left by a densely 
packed random arrangement of larger discs (ϕc = 0.228). Now the minimum porosity for 
a dense cubic regular packing of squares is zero (Fig. 4a), while its maximum porosity 
is 0.5 (Fig. 4b), depending on how the squares are rotated with respect to each other in 
the pack, i.e. 0 ≤ ϕf ≤ 0.5. The porosity of the binary mixture can be calculated from 
Eqs. (22) and results in a range given by the shaded area in Fig. 4d.

Fig. 4   a IP and NRP curves for the four scenarios where ϕc  = 0.228, ϕc  = 0.35, ϕf = 0.35 and ϕf  = 0.15, b 
zero-porosity arrangement of square tiles, c highest porosity (ϕf  = 0.50) arrangement of square tiles, d the 
solution space shown in pink for porosity where the arrangement of square tiles falls between arrangements 
(b, c). Note that for χAf  ≤ χAfcrit the solution is unique and follows the black IP curve
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3 � Theory: The Three‑Dimensional Case

All of the steps followed for two-dimensional binary mixing may be calculated for 
particles in three dimensions. This time considers a three-dimensional box of arbitrary 
shape and dimensions with a volume Vbox = L3. We will place particles of two sizes into 
this box and examine their packing characteristics and porosity. Once again the grains 
are initially assumed to be spherical, but will later be extended to arbitrary shapes. 
Grains of two physical sizes of radius ȓ and Ȓ for the small- and large-sized particles, 
respectively, are expressed in a dimensionless form using the scaling relationships in 
Eq. (1).

Both the interstitiation and both types of replacement process are characterised by 
carrying out the transformation πr2 → 4πr3/3 and πR2 → 4πR3/3 and defining the volume 
fraction of small grains as

This gives an interstitiation porosity

a replacement porosity

a volume fraction scaling relationship fraction for small particles χVf of

and a minimum porosity which is the same as for the 2D case:

In summary, three-dimensional binary mixing can be described by

which are the same equations as for the 2D case and contain no explicit information about 
the size or shape of the particles, nor the efficiency of the packing. Consequently, the 
operative equations are also invariant under the dimensional transformation between 2D 
and 3D.

(24)�Vf =
Vf

Vf + Vc

=
n� r3

n� r3 + N�R3
and �Vc = 1 − �Vf.

(25)�n = 1 −
4

3
N�R3 −

4

3
n� r3 = �c −

4

3
n� r2,

(26)�N = 1 − n� r2 − N�R2 + N�R2
(

1 − �f

)

= �f − N�R2 + N�R2
(

1 − �f

)

,

(27)
n

N
=
(

R

r

)3 �Vf
(

1 − �Vf

) ,

(28)�min = �f

(

1 −
4

3
Nmax�R

3
)

= �f�c.

(29)

�n =
�c − �Vf

1 − �Vf

for �n ≥ �min and �Vf ≤ �Vfcrit,

�N = �f

[

�Vf
(

1 − �f + �f�Vf

)

]

for �n ≥ �min and �Vf ≥ �Vfcrit,

�min = �c�f =
�c − �Vfcrit

1 − �Vfcrit

and �Vfcrit =
�c − �min

1 − �min
,
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Once again our contention is that information about porosity for either the large par-
ticles or the small particles is present in their respective pure phase porosities, and their 
combination allows the porosity of the binary mixture to be found using Eq.  (29). In 
realistic geological situations, packing is often unlikely to be fully developed. For exam-
ple, in the process of sedimentation, holes that could accommodate a particle might 
occur purely because particles of the correct size were not present at the right time. 
Alternatively, diagenetic process might through dissolution open up pore volumes, 
while precipitation and compaction processes could reduce them. Each of these primary 
and secondary porosity processes might lead to values of porosity that differ from the 
curves defined by Eq. (29), and the extent of the discrepancy could be used to track the 
progress of such processes.

4 � Experimental Verification

An initial set of experiments was carried out as a pilot study and reported by Diyokeugwu 
and Glover (2019). Here, we report a much more comprehensive suite of experiments 
that have been carried out on a wider range of binary mixtures and using enhanced 
measurement and mixing protocols. In each case, the porosity and the permeability of each 
sample were measured.

Each sample was a mixture of two sizes of glass sphere. The glass spheres were the 
same type used in Glover and Déry (2010) and are summarised in Table 1. The stock of 
each size of beads was washed alternately in distilled water, acetone and distilled water to 
ensure that all traces of glass dust and other impurities had been removed. The stock grains 
were then oven-dried and stored.

The apparatus for measuring the porosity and permeability is shown in Fig.  5. Sam-
ples were made from two sizes of glass bead in various volume fractions using the dry 
weight of each fraction to ensure that the grain fraction of the subsequently mixed beads 
was known accurately, according to the formula

This approach is accurate, providing that the density of the glass used in the two 
beads is the same. All of the beads used in this work are from Endecotts Ltd., who have 
confirmed that they are made from the same grade of soda–lime glass using the same 
process. Consequently, it is reasonable to assume that Eq. (30) can be used for calculating 
the experimental volume fraction of fine grains. The glass beads themselves are calibration 
grade samples, with calibration traceable to the National Physics Laboratory. Nevertheless, 
each of the samples was analysed by laser diffractometry, the diameter measurements of 
which are given in Table 1.

The two samples of glass beads were initially mixed in distilled water before being 
decanted into the sample holder. The fine grid in the sample holder ensures that no 
beads were washed out of the sample holder. Once in the sample holder the mixture was 
stirred with a glass rod, the rod was washed with distilled water to ensure that no beads 
were lost from the mixture. The sample holder was then sealed. The filled sample cell 
was then purged with air until it was completely dry. The sample holder with the dry 
binary mixture was then subjected to a regime of agitation, at three different frequen-
cies. Each agitation set consisted of three parts: first, low-frequency manual shaking for 

(30)�Vf =
Wf

Wf +Wc

.
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1 min; second, tapping at about 4 Hz using a small rubber hammer driven by a geared 
9 V motor for 5 min; and third, applying ultrasound at 45 kHz for 10 min. There were 
three sets of agitation. The sample cell was adjusted such that the sample occupied the 
smallest bulk volume possible after each part of each agitation. Finally, the sample was 
purged with CO2 and then flushed with a 0.1 mol/dm3 solution of deaerated water to sat-
urate it completely. Circulation was carried out until the sample was completely water 
saturated. The sample was mounted vertically as shown in Fig. 5. A measurement of the 
electrical conductivity across the sample was carried out in order that the formation fac-
tor of the sample could be measured. The agitation process replaced the stirring process 
that had been used in previous pilot measurements (Diyokeugwu and Glover 2019).

Porosity measurements were calculated from knowledge of the volume of the mixed 
sample and of the solid beads. The sample volume measurement was made by knowing 
the cross-sectional area of the sample holder and measuring the length of the core 
holder occupied by the sample. The volume of the beads was measured using the total 
weight of the sample, the known density of the beads and assuming that the beads were 
spherical. A full analysis of the random, systematic and total errors for the porosity 
measurements is given in “Appendix”.

Permeability measurements were made by timing the passage of a volume of distilled 
water through the sample using a gravitational head approach. The input fluid was 
stored in a 5 dm3 translucent Nalgene bottle with an outlet valve. The bottle was placed 
above the sample holder and calibrated with three horizontal marks 1 cm apart as shown 
in Fig. 5b. At the start of the experiment, the bottle was arranged such that it was full of 
0.1 mol/dm3 NaCl solution to the top mark and that the middle mark was 120 ± 0.1 cm 
above the centre of the sample. Fluid was flowed until the volume in the input bottle 
reached the bottom mark. Flow rate was measured gravimetrically by collecting the 
sample holder effluent in a flask arranged on a laboratory scale. The implementation of 
a gravimetric method obviates the need to have a range of graduated burettes of different 
capacities and improves the accuracy of the permeability measurement. The measured 

Fig. 5   The experimental apparatus developed for the measurement of porosity and permeability in this work
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mass was logged by computer, which also timed the experiment and made adjustments 
for the input pressure according to the volume of fluid flowed.

The pressure adjustment requires the previous knowledge of the relationship between 
volume in the input bottle and the position of the fluid surface with respect to the three 
reference marks. This calibration was carried out before the experiments.

The density of the process water at the experimental temperature was measured 
extremely accurately using a graduated flask and the laboratory scale. The length and 
cross-sectional area of the sample are already known for the porosity measurement. The 
viscosity of the process water was measured using a high-resolution viscometer. Once 
again, all of the individual systematic and random errors were quantified and analysed 
to obtain the random, systematic and total errors for the permeability measurement. This 
analysis is given in “Appendix”.

Measurements were made flowing fluid through the cell in both directions by reversing 
the cell physically in the experimental rig. This is extremely easy to arrange as the cell 
itself is symmetric. At least ten measurements of flow were carried out for each mixture 
in each flow direction allowing a mean permeability and its associated standard deviation 
to be calculated. It is this experimental uncertainty that is represented by the error bars for 
permeability in subsequent figures. It is worthwhile noting that we found no systematic 
difference on the permeability as a function of flow direction, leading us to assume that the 
samples we tested were as randomly mixed as possible.

It should be noted that for a few samples there was a trend for the permeability from 
repeated flow measurements to be systematically progressively lower than those taken 
earlier in the set of ten measurements. This behaviour occurred typically for samples 
that had a large contrast in grain size and at small volume fractions of fine particles. We 
ascribed this behaviour to the movement of the small particles within the mixture in 
response to the flow of fluid, such that they preferentially blocked flow pathways that were 
previously open. When this was noticed, the sample was remixed, and the permeability 
returned to the permeability it had at the beginning of the set of flow measurements. 
Consequently, for the samples we used the results from 20 flow measurements separated by 
mixing to calculate the permeability. It should be noted that at no point did we encounter 
any pressure dependence of permeability, which we took as an indication that the grains 
were well mixed and the fluids contain no air bubbles.

A total of 165 individual measurements have been made on 12 different binary mixtures 
of glass beads and sand. A minimum of 12 and a maximum of 17 volume fractions of each 
mixture were tested. This represents a very wide coverage of the binary space as a function 
of both volume fraction and size ratio. The resulting porosity and permeability data are 
given in Table 2.

5 � Porosity

Figure 6 shows the measured porosities (the data of which are given in Table 2) for binary 
mixtures of the bead and sand sizes characterised in Table 1 as a function of volume frac-
tion of fine beads or grains χVf. Figure  6 shows that in almost all cases the porosity of 
the mixtures is approximately in agreement with the theoretical curves. Occasionally, the 
experimental data points follow the theoretical curves within the marked error bounds; 
however, there is a tendency for porosity to be overestimated. In other words, where the 
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Table 2   Measured porosity and permeability results

Mixtures 8 and 12 Mixtures 9 and 12 Mixtures 10 and 12

χVf (−) ϕmeas (−) kmeas (mD) χVf (−) ϕmeas (−) kmeas (mD) χVf (−) ϕmeas (−) kmeas (mD)

0 0.384 894.7 0 894.7 894.7 0 0.384 894.7
0.112 0.308 165.5 0.067 437.5 437.5 0.054 0.365 489.2
0.142 0.287 85.6 0.122 179.3 179.3 0.105 0.322 226.6
0.172 0.266 49.1 0.162 69.89 69.9 0.15 0.275 110.7
0.215 0.226 20.5 0.204 32.21 32.2 0.211 0.222 30.51
0.262 0.177 5.61 0.25 8.52 8.52 0.242 0.199 15.83
0.276 0.163 4.71 0.27 6.19 6.2 0.271 0.192 4.12
0.31 0.177 4.805 0.351 6.96 6.96 0.308 0.188 6.53
0.398 0.218 7.59 0.456 15.605 15.6 0.422 0.231 18.09
0.505 0.245 10.21 0.538 20.09 20.09 0.55 0.288 42.73
0.597 0.284 14.2 0.589 23.31 23.3 0.652 0.314 46.22
0.688 0.306 16.3 0.834 33.51 33.5 0.788 0.366 65.23
0.804 0.348 17.6 0.921 28.49 28.5 0.906 0.405 65.37
0.902 0.368 11.5 1 22.19 22.188 1 0.412 41.49
1 0.391 6.22

Mixtures 11 and12 Mixtures 8 and 11 Mixtures 9 and 11

χVf (−) ϕmeas (−) kmeas (mD) χVf (−) ϕmeas (−) kmeas (mD) χVf (−) ϕmeas (−) kmeas (mD)

0 0.384 894.7 0 0.378 231.17 0 0.378 231.19
0.098 0.327 298.56 0.11 0.311 55.65 0.065 0.345 70.08
0.152 0.293 120.21 0.165 0.274 20.63 0.122 0.301 33.61
0.222 0.22 29.63 0.237 0.205 2.47 0.189 0.243 8.77
0.272 0.205 7.81 0.268 0.195 1.51 0.224 0.21 4.25
0.325 0.201 7.13 0.322 0.193 1.72 0.261 0.191 1.23
0.458 0.227 23.205 0.424 0.22 3.15 0.285 0.185 2.28
0.577 0.269 46.59 0.55 0.265 5.59 0.302 0.187 1.41
0.657 0.291 79.51 0.64 0.291 7.605 0.41 0.222 3.505
0.813 0.333 133.33 0.748 0.33 8.61 0.523 0.26 7.91
0.911 0.346 170.32 0.846 0.352 10.29 0.655 0.305 13.89
1 0.378 231.17 1 0.391 6.22 0.757 0.336 17.51

0.867 0.362 25.52
1 0.393 22.19

Mixtures 10 and 11 Mixtures 8 and 10 Mixtures 9 and 10

χVf (−) ϕmeas (−) kmeas (mD) χVf (−) ϕmeas (−) kmeas (mD) χVf (−) ϕmeas (−) kmeas (mD)

0 0.378 231.17 0 0.412 41.49 0 0.412 41.49
0.055 0.354 71.57 0.098 0.358 20.12 0.078 0.377 32.12
0.132 0.297 31.63 0.189 0.294 8.105 0.212 0.272 4.505
0.195 0.248 8.84 0.249 0.229 2.25 0.252 0.242 2.74
0.237 0.223 2.95 0.27 0.225 1.38 0.275 0.236 1.38
0.26 0.238 2.65 0.292 0.203 0.602 0.296 0.245 1.01
0.279 0.22 1.42 0.412 0.223 1.18 0.335 0.238 1.205
0.306 0.226 2.58 0.524 0.262 2.71 0.484 0.262 3.14
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experimental data points do not fall on the theoretical curves they tend to almost always 
plot slightly above theoretical curves. We attribute this to not attaining the perfect mixing, 
despite the complex protocol we use to approach it as closely as possible.

Examination of the different parts of Fig.  6 shows that binary mixtures of two sizes 
of glass beads, where the two diameters differ significantly, tend to produce results 
which follow the theoretical curves into the critical range of volume fractions the smaller 
particles, where the interstitiation process and the replacement process change over (e.g. 
Fig. 6a). By contrast, binary mixtures where the two beads have similar diameters produce 
experimental porosity values in the critical range that are overestimated (e.g. parts i and 
j of Fig.  6). We propose that it is difficult to attain perfect mixing for beads of similar 
diameter, at least with a cell the size of which we use. It might be possible to attain a better 
mixing in a much larger cell.

Two experiments are included that use sand. The mixture of Ottawa sand and fine sand 
(e.g. Fig. 6k) shows the same general behaviour as for the glass beads. The experimental 

Table 2   (continued)

Mixtures 10 and 11 Mixtures 8 and 10 Mixtures 9 and 10

χVf (−) ϕmeas (−) kmeas (mD) χVf (−) ϕmeas (−) kmeas (mD) χVf (−) ϕmeas (−) kmeas (mD)

0.444 0.258 9.21 0.624 0.316 4.25 0.607 0.29 6.98
0.567 0.294 17.91 0.759 0.335 7.53 0.735 0.322 12.21
0.675 0.346 25.59 0.92 0.374 7.09 0.856 0.349 19.23
0.763 0.358 33.51 1 0.391 6.22 1 0.393 22.19
0.896 0.39 43.49
1 0.412 41.49

Mixtures 8 and 9 Ottawa sand and fine sand Mixture 12 and Ottawa sand

χVf (−) ϕmeas (−) kmeas (mD) χVf (−) ϕmeas (−) kmeas (mD) χVf (−) ϕmeas (−) kmeas (mD)

0 0.393 22.19 0 0.321 122.8 0 0.384 894.7
0.05 0.352 22.34 0.052 0.285 80.05 0.072 0.342 596.2
0.156 0.292 5.35 0.123 0.246 22.78 0.113 0.305 339.4
0.232 0.229 1.23 0.159 0.202 9.979 0.187 0.25 105.2
0.264 0.214 0.533 0.225 0.144 1.78 0.223 0.218 39.97
0.282 0.219 0.19 0.241 0.128 0.509 0.275 0.171 10.51
0.305 0.224 0.113 0.253 0.133 0.305 0.287 0.165 8.481
0.356 0.22 0.32 0.275 0.128 0.411 0.299 0.152 6.607
0.456 0.24 1.32 0.329 0.137 0.903 0.322 0.168 4.089
0.589 0.284 3.18 0.398 0.148 1.501 0.338 0.165 4.945
0.782 0.34 6.78 0.488 0.182 3.102 0.395 0.175 9.761
0.888 0.363 9.14 0.567 0.188 3.89 0.513 0.205 22.22
1 0.391 6.22 0.703 0.222 7.55 0.593 0.229 33.12

0.822 0.249 10.25 0.688 0.242 50.39
0.923 0.292 10.104 0.809 0.281 78.92
1 0.288 8.514 0.902 0.312 112.23

1 0.321 122.8

The name of each mixture refers to the sample codes given in Table 1
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data points follow the theoretical curves well, but produce values slightly higher than the 
theoretical curves. Once again, we attribute this variation to not quite attaining perfect mix-
ing. Figure 6l shows the results from a mixture of the largest glass beads (Sample 12) and 
Ottawa sand. Once again, the experimental data follow the theoretical curves, but with 
porosity values slightly higher than the theoretical curves define. In both experiments using 
natural sand, there was a slightly greater scatter in experimental data. This may be due to 
the difficulties in obtaining perfect packing when the particles composing the binary mix-
ture are irregular in shape.

Tests were also carried out using a mixture that resulted from mixing in water followed 
by no shaking. For these samples, it was found that the initial packing of grains provided 
porosities that were always significantly higher than predicted by our theoretical curves. 
These mixtures contain voids which are at larger than the smaller of the two grain sizes 
and form because of a local dearth of the smaller grains during mixing and shaking in our 
experiments, or during deposition in the case of real rocks. We expect that such pore spaces 
commonly arise in the deposition of sedimentary rocks and hence expect our equations to 

Fig. 6   Measured porosity as a function of volume fraction of fine beads or grains from experimental meas-
urements (symbols with calculated uncertainties). The solid lines represent the results of Eq.  (29), which 
are the theoretical curves for ideal packing developed in this work
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represent the lower limit on porosities encountered in nature. Figure 7 shows a plot of how 
the porosity of one sample evolved after repeated shaking, noting that the final values are 
those given in Table 2.

6 � Permeability

6.1 � Introduction

Permeability may be predicted from porosity for granular materials using a very large 
number of models. Almost all of the models are empirical in nature, having been 
developed for particular rock types. Some of those conventional models, such as that of 
Kozeny and Carman (Kozeny 1927; Carman 1937), though not fundamentally empirical 
are implemented using fitting coefficients and consequently become empirical. The 
Kozeny–Carman (Kozeny 1927; Carman 1937) model has been used previously by 
Kamann et al. (2007) in their study of the binary mixing phenomenon. Unfortunately, 

Fig. 6   (continued)
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we cannot reproduce their curves and have consequently concluded that there is an error 
in Kamann et  al.’s implementation of the model leading to values many times greater 
or less than the Kozeny–Carman relationship produces. Furthermore, it is now known 
that the Kozeny–Carman relationship is not accurate for most rocks because it does 
not take into account dead-end and unconnected porosity (Walker and Glover 2010). 
Consequently, we have taken a different approach to calculating the permeability.

Theoretical permeability curves have been calculated directly using three standard 
mixing models (arithmetic, harmonic and geometric) as well as with two determinis-
tic models (Kozeny–Carman (KC) and RGPZ Exact (RGPZe)). The standard mixing 
models mix the known permeabilities of each of the pure phases directly, not using the 
binary porosity calculated and measured earlier in this work. The deterministic models 
use the mixed binary porosity calculated using Eq. (29), a constant cementation expo-
nent and an effective grain diameter for the mixture, which has been obtained using four 
different approaches (cubic, arithmetic, harmonic and geometric). Overall, there were 
11 different permeability curves calculated in this paper (three standard mixing models 
and four for each of the deterministic models) together with, as a comparative reference, 
the experimental data for the mixtures between bead samples 8 and 12 (porosity data of 
which are shown in Fig. 6a). Figure 8 contains two parts which show the same data, but 
on different scales; permeability is shown on a restricted linear scale in Fig. 8a and for 
the same data shown on a logarithmic scale in Fig. 8b.

6.2 � Standard Mixing Models

Standard mixing models provide a permeability for a mixture based upon the perme-
abilities of the end members. One end member is the permeability of a sample com-
posed of only the coarse-grained component, and the other end member is the perme-
ability of the sample composed of only the fine-grained component. These end-member 

Fig. 7   The development of the measured porosity for three glass bead mixtures as a function of the amount 
of shaking they had undergone
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permeabilities have been calculated using the exact RGPZ equation (Glover et al. 2006) 
in each case. The three standard mixing models in this group are as follows:

1.	 The weighted arithmetic mean mixing model, which is generally employed to calculate 
the overall permeability of a set of permeabilities arranged in parallel to the flow 
direction and for a binary mixture, is given by

(31)karith = �Vfkf +
(

1 − �Vf

)

kc,

Fig. 8   Comparison of the 11 models studied in this work for the parameters relevant for mixtures of bead 
samples 8 and 12 (see Table 1), together with the relevant permeability measurements as reference. a Per-
meability shown on restricted linear axis, b the same data shown on a log scale. The curves for the three 
standard mixing models are shown in black. The curves for the RGPZe model with effective grain size cal-
culated with each of the cubic scaling, arithmetic mean, harmonic mean and geometric mean are shown in 
solid coloured lines, and the curves for the KC model are shown with dashed coloured lines
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2.	 The weighted harmonic mean mixing model, which is generally employed to calculate 
the overall permeability of a set of permeabilities arranged perpendicular to the flow 
direction and for a binary mixture, is given by

3.	 The weighted geometric mean mixing model, which is generally employed to calculate 
the overall permeability of a set of permeabilities arranged randomly with respect to the 
flow direction (e.g. Glover et al. 2006) and for a binary mixture, is given by

Figure 8 shows the standard mixing models as black lines. In each case, the value of 
permeability intermediate volume fractions fall always between the permeability of the two 
end members. In addition, difference between the weighted arithmetic mean and weighted 
harmonic mean mixing models can be considerable when there are approximately equal 
volume fractions of fine and coarse grains. Clearly, the standard mixing models cannot 
produce a permeability higher or lower than the range encompassed by the two end-
member permeabilities. Immediately, one might question their validity because intuitively 
one would realise that the permeability of a coarse-grained rock where the pores are filled 
with very much finer material will be lower than either the finer material or the course 
material alone. The failure of this type of model is partially due to them not including 
the effect of a mixed porosity as given by Eq.  (29). It is clear that this type of model 
should never be used to calculate the permeability of binary mixtures. However, it does 
not preclude the use of the geometric mean approach to model an aggregate of randomly 
distributed representative elementary volumes of rock each with a different permeability, 
as considered by Glover et al. (2006).

6.3 � Deterministic Models

Two deterministic models have been used in this work. Despite the perceived weaknesses 
in the Kozeny–Carman, it is widely applied and used in previous work on binary mixing 
(e.g. Kamann et al. (2007)). Consequently, we have implemented in order that the results 
from this work can be compared with previous work, using the form

where kKC is the permeability (in D), deff is the effective grain size of the mixture (in m) 
and ϕmix is the porosity of the mixture.

We have also calculated the permeability using the exact form of the RGPZ equation 
(Glover et al. 2006; Rashid et al. 2015a, b). The permeability is given by

(32)kharm =

(

�Vf

kf
+

(

1 − �Vf

)

kc

)−1

,

(33)kgeom = exp
{

�Vf ln
(

kf
)}

+
(

1 − �Vf

)

ln
(

kc
)

.

(34)kKC =
d2
eff
�2
mix

180
(

1 − �mix

)3
,

(35)kRGPZe =
d2
eff

4am2F(F − 1)2
=

d2
eff

4am2�−m
mix

(

�−m
mix

− 1
)2
,
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where kRGPZe is the permeability (in m2), deff is the effective grain diameter (in m), ϕ is the 
porosity (unitless), m is the cementation exponent (unitless), which is theoretically equal 
to 1.5 for spherical grains (Glover 2009), a is a constant that is thought to be equal to 
8/3 for three-dimensional samples composed of quasi-spherical grains and F = ϕ−m is the 
formation factor. This equation is analytical, derived from electro-kinetic considerations. 
Like many equations in electro-kinetics, it assumes that the electrical double layer is thin, 
which requires the value of the cementation exponent m to be derived from measurements 
on samples saturated with medium- to high-salinity fluid.

The exact RGPZ equation has three input parameters: the porosity, the cementation 
exponent and the grain diameter. Its advantage over models that only contain porosity as 
an input parameter is that the exact RGPZ equation also takes other physical controls on 
permeability, such as pore connectivity, into account. However, this general advantage is 
a disadvantage in our case because for a mixture of two grain sizes we do not know which 
grain size or cementation exponent would be characteristic of any given mixture. The same 
problem also exists for the Kozeny–Carman equation, which also uses the effective grain 
size for the mixture.

In our study, we know the porosity, cementation exponent and grain size of each of the 
pure components, both theoretically and experimentally. In addition, we know the porosity 
of any mixture from the theoretical curves (Eq. 29) as well as experimental measurements 
of porosity for 165 different fine particle fractions spread over 12 different binary mixtures. 
By contrast, we do not know the value of the effective grain diameter to use in Eqs. (34–35) 
for each mixture, and in the case of the RGPZ model, neither do we know the value of the 
effective cementation exponent of the mixture.

The cementation exponent was measured during the porosity and permeability 
experimental determinations and found to vary by a very small amount, the average 
and standard deviation for the pure phases being m = 1.4877 ± 0.0599. The values of 
cementation exponent vary so little that for the modelling carried out in the rest of this 
paper, we have assumed that the cementation exponent for all mixes is the simple 
arithmetic mean of cementation exponents of the end members. Tests carried out using a 
weighted arithmetic mean were indistinguishable from using the simple arithmetic mean. It 
is worth noting that while this assumption is that the simple arithmetic mean for calculating 
cementation exponent of a mixture is valid for all of the mixtures we have tested in this 
work, there is no guarantee that it would be a valid assumption for all other mixtures, for 
example a mix of grains and strings.

In all of our experiments, we found that the minimum porosity corresponds very well 
with the minimum permeability. That arrangement is also borne out by the theoretical 
development presented in this paper. However, experiments of porosity and permeability in 
geological materials sometimes show that the minima in porosity and permeability do not 
accord with each other. The reason for this is that the connectivity of the pore space, which 
controls the permeability and is expressed through cementation exponent, there is as a 
function of the volume fraction of small particles in the mixture. In consequence, mixtures 
with larger porosity may have smaller permeabilities compared to other mixtures. We saw 
no evidence for this in our work, where our mixtures were isotropic. We hypothesise that it 
may be more likely to occur when the grains are significantly oblate, and lead to anisotropy 
of permeability within the mixture.

The mixing of the grain sizes to obtain an effective grain diameter presents a problem 
which we have attempted to address by using four different mixing models for grain size. 
These are (1) a cubic model, (2) a volume fraction weighted arithmetic mean, (3) a volume 
fraction weighted harmonic mean and (4) a volume fraction weighted geometric mean.
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The cubic model is simply a cubic scaling of volume fraction between the two elements 
of the binary mixture to take account of the fact that χVf is a measure of volume fraction in 
three dimensions, while the grain diameter has one linear dimension. The cubic model is 
given by

where deff is the calculated grain size, dc and df are the coarse and fine grain diameters, 
respectively, and χVf is the volume fraction of the fine grains in the mixture.

The volume fraction weighted arithmetic, harmonic and geometric means are given by

We noted in this work that for the range of χVf (0:1), the results of all of the models 
given in Eqs. (36) to (39) differed. Figure 9 shows the results of all four models as a func-
tion of a linear scaling between extreme points, which for the purposes of this diagram are 
the diameters of bead samples 8 and 12, respectively (Table 1). It is clear that the arith-
metic mean model is simply linear, while the other three models provide effective bead 
diameters smaller than the arithmetic mean model. The harmonic model provides the larg-
est variation from the arithmetic/linear model, while the geometric mean model occupies 
the middle ground and the cubic scaling model follows the geometric mean model at small 
bead diameters and the harmonic mean model at large bead diameters.

Application of the deterministic models does not require the use of end-member 
permeabilities explicitly, but calculates the permeability directly from Eqs. (34) and (35) 

(36)deff = dc −
(

dc − df
)

�
1∕3

Vf
,

(37)deff = �Vfdf +
(

1 − �Vf

)

dc,

(38)deff =

(

�Vf

df
+

(

1 − �Vf

)

dc

)−1

and

(39)deff = exp
{

�Vf ln
(

df
)}

+
(

1 − �Vf

)

ln
(

dc
)

, respectively.

Fig. 9   Effective bead diameter from each of four different mixing models as a function of the effective bead 
diameter calculated with a simple linear scaling
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using the values of porosity from the mixing models developed in this work (i.e. Eq. (29)), 
a cementation exponent (either m = 1.5, which is known to be valid for packs of spherical 
particles (Glover 2015), or m = 1.4877, which we obtained experimentally) and effective 
grain sizes from each of the models described above.

The deterministic models are represented in Fig. 8 by the solid coloured lines for the 
RGPZ model and dashed coloured lines for the KC model. It is immediately clear that 
the minimum porosity present in the porosity models that arises from Eq. (29) is carried 
over into the permeability model and results in a permeability minimum occurring at the 
same volume grain fraction. This permeability minimum can, according to the model, 
provide permeabilities lower than any of the standard mixing models or their end-member 
permeabilities and consequently conforms better to how we might intuitively imagine the 
permeability to evolve as a function of volume fraction.

All eight of the deterministic models (both KC and RGPZe) behave similarly and 
are clearly both significantly influenced by the variation of the mixed porosity, with the 
minimum in permeability controlled by and matching that of the mixed porosity. Moreover, 
the mixed porosity exerts a control on permeability leading to a variation in permeability 
of about two and a half orders of magnitude for 0 < χVf < 1.

However, the absolute value of permeability is also influenced by the type of model 
used to calculate the effective grain diameter. This is to be expected as the permeability 
calculated from both the KC and the RGPZe model is proportional to the square of the 
grain diameter (Eqs. 34) and (35). Consequently, higher permeabilities at any mixing ratio 
are provided by the arithmetic effective grain diameter model, moderate permeabilities for 
the geometric model and low permeabilities for the harmonic model. The cubic scaling 
model provides permeabilities similar to those provided by the harmonic model at χVf < 0.1 
and similar to those provided by the geometric model for χVf > 0.6 following the behaviour 
observed in Fig. 9. The importance of knowing which of the effective grain size models 
to use is underlined by the recognition that there is a variation of up to about one order of 
magnitude according to which model is used.

6.4 � Experimental Data

Figure 8 also includes one set of experimentally determined permeabilities, in order to pro-
vide some practical reference for all of these models. Qualitatively, the experimental data 
seem to be fitted well by a number of models. The RGPZe/geometric mean effective grain 
size model (solid green line in Fig. 8) seems to perform best, but other models, such as the 
Kozeny–Carman/Cubic combination, also appear to do well at some mixing fractions. We 
have calculated a statistic to judge which of the models best fits the experimental data. We 
use the sum of the squares of normalised differences between the experimental data and the 
theoretical prediction for each theoretical curve (SSND). The normalisation takes the form 
of dividing the difference between the predicted and experimental data by the experimental 
data and is described in more detail in Table 3. This normalisation is a modification of the 
common sum of squares statistic to ensure that all data are equally weighted even though 
the permeability varies by three orders of magnitude. In effect, the normalisation ensures 
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that the effect of many good fits at small permeability values is not swamped by one bad 
value at high permeabilities.

Table 3 contains an example of the SSND calculation for the fitting of models to the data 
for Mixtures 8 and 10 as shown in Figs. 6a and 8. The same data are shown in Fig. 10. Table 3 
and Fig. 10 show that the RGPZe model with a geometric mean calculation for effective grain 
diameter provides the best overall fit to the experimental data (SSND = 0.864), with the KC 
model using cubic scaling being second best (SSND = 1.231). The worst fit was provided by 
the RGPZe with harmonic mean calculation of effective grain diameter (SSND = 62.01) and 
KC with harmonic mean used to calculate the effective grain diameter (SSND = 12.767) mod-
els. Similar SSND calculation tables for the other mixtures show similar results.

When theoretical curves were compared with the other 11 binary sets measured in this 
work, it was found that the RGPZe model with a geometric mean calculation for effective 
grain diameter provided the best fit in all but three cases, and in all of these three cases, the 
RGPZe/geometric model came very close second. Those three exceptional cases were for 
the Mixtures 8 and 11, Mixtures 9 and 11 and Mixtures 9 and 10, the former of which the 
Kozeny–Carman/Harmonic model worked marginally better and the latter two of which the 
RGPZe/arithmetic model worked marginally better. In order to provide a more quantitative 
overall judgement on model performance, we have calculated the sums and arithmetic means 
of the SSNDs over all 12 mixtures for each model tested, which are ranked in Table 4, the best 
towards the top, having the smallest mean SSND. Although many of the models provide per-
fectly valid approximations to the data for some of the experimental measurements, the best 

Table 3   Example SSND calculations for fit testing for Mixtures 8 and 12

RGPZe
Cubic
scaling

RGPZe
Arithmetic

mean

RGPZe
Harmonic

mean

RGPZe
Geometric

mean

KC
Cubic
scaling

KC
Arithmetic

mean

KC
Harmonic

mean

KC
Geometric

mean

0 0.013467 0.013467 0.013467 0.013467 0.004497 0.004497 0.004497 0.004497
0.112 0.902552 0.048943 1.981356 0.001973 0.642903 0.078636 1.499676 0.001222
0.142 0.415145 0.149562 1.642972 0.012956 0.140791 0.237262 0.825129 0.067004
0.172 0.717061 0.121865 3.355746 0.000132 0.138601 0.266599 1.219406 0.061693
0.215 0.5574 0.179589 4.053318 9.42E-05 0.002147 0.428764 0.648323 0.165436
0.262 0.933736 0.149972 7.567869 0.028711 0.02509 0.54426 0.366592 0.249463
0.276 2.82384 0.031231 18.0008 0.383487 0.00026 0.473217 0.97504 0.149121
0.31 0.886938 0.177876 9.013281 0.048699 0.027051 0.564279 0.521454 0.22539

0.398 0.315495 0.313705 6.325578 0.009232 0.016467 0.569212 0.925401 0.150707
0.505 0.046159 0.4437 3.31033 0.000556 0.021231 0.585536 0.96561 0.098203
0.597 0.061945 0.422915 3.272985 0.013876 0.000493 0.509497 1.688041 0.007242
0.688 0.036536 0.415357 2.165128 0.027559 0.01019 0.450782 1.649405 0.00604
0.804 0.028765 0.33782 1.060037 0.05476 0.051032 0.314794 1.270752 0.086089
0.902 0.042208 0.370328 0.00939 0.023284 0.00828 0.304881 0.064976 0.000932

1 0.244953 0.244953 0.244953 0.244953 0.142411 0.142411 0.142411 0.142411
SSND = 8.026 3.421 62.017 0.864 1.231 5.475 12.767 1.415

Main body contains values of the square of the normalised difference SND =
((

kexpt − kmodel

)

∕kexpt
)2 for 

each mix for each model. Cooler colours show better fits for a particular point. The bottom line contains 
overall best fit data over all values of χVf, SSND =

∑
��

kexpt,i − kmodel,i

�

∕kexpt,i
�2 . Cooler colours show 

better fits for a particular model
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models overall are, in order of decreasing efficacy, (1) RGPZe/geometric, (2) RGPZe/arithme-
tic, (3) KC/cubic and (4) KC/geometric.

Figure  11 shows the measured permeabilities (the data given in Table  3) for all 
combinations of the bead and sand sizes shown in Table 1 as a function of volume fraction 
of fine beads or grains χVf. The uncertainty values on the experimental data vary with 
permeability and hence with flow rate as discussed in “Appendix”. The errors have been 
included in the figure by using the data given in “Appendix” to produce an overall percentage 
error as a function of permeability for 41 different permeabilities varying over five orders of 
magnitude. A simple linear curve can be fitted to these data with a coefficient of determination 
better than R2 = 0.98. The equation is given by

(40)e = 1.57 × 10−4k + 4.82,

Fig. 10   The square of the normalised difference SND =
((

kexpt − kmodel

)

∕kexpt
)2 as a function of χVf for 

each model. Low values indicate a better fit of each model to the experimental data for each mixture

Table 4   The arithmetic mean 
of SSND over all 12 mixtures 
studied in this work: the lower 
the value to better the fit

Permeability 
prediction method

Effective grain 
diameter method

ΣSSND Mean SSND

RGPZe Geometric mean 8.998 0.750
RGPZe Arithmetic mean 13.81 1.151
Kozeny–Carman Cubic scaling 18.37 1.531
Kozeny–Carman Geometric mean 25.21 2.101
Kozeny–Carman Harmonic mean 30.92 2.577
Kozeny–Carman Arithmetic mean 38.03 3.169
RGPZe Cubic scaling 63.86 5.322
RGPZe Harmonic mean 94.88 7.907
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where e is the total uncertainty (in  %) and k is the measured permeability in (D). This 
equation has been used to allocate a y-axis uncertainty to each point in Figs. 8 and 11. The 
x-axis uncertainty has been calculated to be constant at 1.024%, and this is applied directly 
to Figs. 8 and 11.

Each part of Fig.  11 also includes theoretical curves for the model that provided 
the best fit, and in the case of the Ottawa sand and fine sand mixture, for the best fit 
theoretical curve and the RGPZe/geometric mean combination. In all cases, the 
measured permeabilities did not conform to the weighted interpolations between the 
end-member permeabilities

In summary, in almost all cases the permeability of the mixtures accords well with 
the theoretical curves that have been generated using the porosity equations developed 

Fig. 11   Measured permeability as a function of volume fraction of fine beads or grains from experimental 
measurements (symbols with calculated uncertainties). The solid lines represent the four different imple-
mentations of the RGPZe model, while the dashed lines represent the different implementations of KC 
model
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in this work (Eq.  (29)) together with the RGPZe equation, the geometric mean method 
for generating an effective grain diameter for the mixture and a simple mean value of end 
members for calculating the cementation exponent.

7 � Conclusions

A study of binary mixing has been carried out involving the development of equations 
for mixed porosity and permeability from first principles. A total of 165 experimental 
determinations of porosity and permeability for a range of grain/bead diameters and 
volume fractions have been carried out, determining the accuracy of the measurements 
with precision.

The main conclusions are:

Fig. 11   (continued)
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1.	 The porosity of a binary mixture can be characterised by two process: an interstitiation 
process where small grains fill interstices between the larger grains and a replacement 
process where large grains replace smaller grains and the porosity existing between 
them.

2.	 The equations describing these processes are independent of grain size, relative grain 
size, grain shape and the degree of packing. The effect of these four characteristics is 
exercised through their control on the end-member porosities, i.e. the porosities of the 
sample composed solely of the larger or smaller particles.

3.	 The porosity has a local minimum which is equal to the product of the porosities of each 
of the two size components, agreeing with the classical result.

4.	 The porosity minimum occurs at a grain fraction of small grains that depends only upon 
the end-member porosities.

5.	 Experimental measurements on 12 binary mixtures made from five sizes of glass beads 
and two grades of sand, each of which was tested in between 12 and 17 volume fractions 
of the fine particles, showed all measurements conformed to the theoretical equations.

6.	 Experimental measurements of permeability showed that conventional weighted mixing 
models cannot account for the permeability measurements of the binary mixtures.

7.	 Eight methods for calculating permeability were tested. All methods are dependent on 
grain size, porosity and the connectedness of the pore space.

8.	 The experimental measurements showed permeabilities that were clearly affected by 
the porosity minimum in the porosity mixing model.

9.	 The experimental measurements were described best by theoretical curves generated by 
using the exact form of the RGPZ equation, with the porosity from the porosity model 
developed in this work, together with a weighted geometrical mean grain diameter and 
using a simple arithmetic mean of end members to calculate the cementation exponent 
of the mixtures.

The model, as presented in this paper, assumes that grains touch at a single point to 
all other grains which surround it. There is no account taken of the compressibility, 
deformability, any degree of cementation or dissolution. Nor is there any account taken 
of the composition of the grains, clay swelling and wettability. Clearly, some of these 
secondary processes will reduce porosity, while others will increase it. One aspect of future 
work might be to modify the equations given above in order to take account of some of 
these processes.

It was the purpose of this paper to provide very-high-quality data that would either 
validate or refute the theoretical development that this paper describes. However, there 
are data within the scientific literature concerning geological and non-geological binary 
mixtures or near binary mixtures to which the equations developed in this work might be 
applied as future work.

This paper concerns itself entirely with theoretical developments and experimental 
validation. Other future work might include the implementation of 3D digital rock models 
(DRMs) to confirm the theoretical equations and check consistency with the experimental 
data. The advantage of such models is that they can more easily be modified to take 
account of secondary processes, say cementation, which might guide the modification of 
the basic equations to take account of each secondary process. Furthermore, the results of 
DRMs can be analysed to provide coordination numbers and other percolation information 
for the system.
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Appendix: Error Calculations

The total, systematic and random errors in all of the input parameters have been propagated 
to obtain the total, systematic and random errors in the calculated porosity and permeability 
values. Table 5 shows theses progressive calculations and should be read downwards in the 
order of calculation. Columns 3 to 5 of the table contain the absolute error in measurement 
of the parameter named in Column 1 with units given in Column 2. Column 6 contains the 
typical value of the measured parameter, which in most cases does not vary sufficiently to 
cause significant impact on the error calculations. The exception is the time over which 
flow takes place for the permeability calculation. This exception will be discussed towards 
the end of “Appendix”. Columns 7, 9 and 11 contain the percentage error arising from the 
measurement error for the total, systematic and random errors, respectively (either calculated 
from data in columns 3 to 6, if the error arises directly from the measurement, or propagated 
from previously calculated percentage errors if the named parameter has been calculated. 
Columns 8, 10 and 12 contain the absolute error associated with the associated percentage 
error.

For porosity, the overall percentage error is 4.415%, which is composed of a random 
component (1.023%), which varies from measurement to measurement, and a systematic 
component of 3.393%, which may lead to errors in the absolute measurement of porosity 
but is constant between consecutive measurements.

In the case of permeability, the systematic error is constant at 3.737%, but the random 
error varies, and hence, the overall error also varies. The experiment is designed to 
measure the time taken for a given volume of fluid to flow through the binary bead pack. If 
the permeability of the bead pack is high, the time will be small, and the error in timing the 
flow will be high because the absolute accuracy with which the timing can be done is fixed. 
Conversely, if the permeability of the bead pack is low, the time taken to flow the fluid 
will be larger, ultimately approaching a value much larger than the accuracy with which 
the timing can be made, and hence having a small percentage error associated with it. The 
highest permeabilities encountered in this work gave rise to a flow rate of about 5.13 cm3/s, 
which flowed in about 60 s, leading to a random percentage accuracy in permeability of 
1.252% and an overall percentage accuracy of 4.989%, of which 0.1667% was due solely 
to inaccuracies in timing. The lowest permeabilities encountered in this work gave rise 
to a flow rate of about 0.0307 dm3/s, which flowed in about 2.78 h, leading to a random 
percentage accuracy in permeability of 1.086% and an overall percentage accuracy of 
4.823%, of which only 0.001% was due to inaccuracies in timing.

http://creativecommons.org/licenses/by/4.0/
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The greatest source of random error arose from the accuracy in the measurement of the 
length of the bead pack after it has been compacted as much as possible. This considers the 
accuracy with which the length is measured, but not the attainment of perfect or near-perfect 
packing, which was expected to introduce an error which varies from measurement to meas-
urement (i.e. is not systematic) but difficult to quantify. The effect of not attaining perfect 
or near-perfect packing would result in measured porosities higher than that predicted by 
the equations developed in this work. We note that measured porosities are almost always 
slightly larger than the theoretical predictions, and attribute this bias to the failure to attain 
perfect packing despite all the procedures used in this work to obviate the problem.

Figure 12 shows the percentage error in permeability from both random and systematic 
sources as well as the total percentage error, each as a function of flow rate. This graph 
shows that errors can become very large for very-high-permeability bead packs. Providing 
sufficient time is given for fluid to flow, by either having a small-to-medium permeability 
or requiring a larger volume to flow over the experimental period, ensuring that the random 
errors are constrained to less than 1.086%. The main contributions to systematic error are 
from the measurement of the viscosity of the process fluid (0.993%) and the area of the 
measurement cell (2.5%), which includes errors in the ten measurements of diameter which 
were used to provide the radius of the cell and the error in that radius, as well as errors aris-
ing from the cell not being perfectly cylindrical.
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