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Abstract This article compares for the first time, local longitudinal and transverse
dispersion coefficients obtained by homogenization with experimental data of dispersion
coefficients in porous media, using the correct porosity dependence. It is shown that the
longitudinal dispersion coefficient can be reasonably represented by a simple periodic unit
cell (PUC), which consists of a single sphere in a cube. We present a slightly modified and
simplified approach to derive the homogenized equations, which emphasizes physical aspects
of homogenization. Subsequently, we give full dimensional expressions for the dispersion
tensor based on a comparison with the convective dispersion equation used for contaminant
transport, inclusive the correct dependence on porosity. For the PUC of choice, the dispersion
relations are identical to the relations obtained for periodic media. We show that commercial
finite element software can be readily used to compute longitudinal and transverse dispersion
coefficients in 2D and 3D. The 3D results are for the first time obtained at relevant Peclet
numbers. There is good agreement for longitudinal dispersion. The computed transverse
dispersion coefficients for a single sphere in a cube are much too low. The effect of adsorp-
tion on the dispersion coefficient is also studied. Adsorption does not affect the transverse
dispersion coefficient. However, adsorption enhances the longitudinal dispersion coefficient
in agreement with an analysis of homogenization applied to Taylor dispersion discussed in
the literature.
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List of Symbols
c (x, y, z, t) Tracer concentration
ca Equilibrium surface concentration
cs Absorbed concentration (Eq. 2.6)
c(n) See Eq. 2.7
D Longitudinal or transverse component of D
Dm Effective molecular diffusion tensor
Dd Hydrodynamic dispersion tensor
D0 Molecular diffusion coefficient
Dd

xx , Dm
xx Longitudinal component of Dd and Dm

Dd
yy, Dm

yy Transverse component of Dd and Dm

D Dm + Dd

K Distribution coefficient
L Characteristic macroscopic length
� Characteristic length of the PUC
N Number of dimensions
n Outward unit normal
PUC Periodic unit cell
p Pressure
Pe Peclet number
〈Q〉 Average of quantity Q
QR, QD Reference and dimensionless quantity
R Retardation
rb Big scale (global) coordinate
rs Small scale (local) coordinate
t Time
u Darcy velocity
uinj Darcy injection velocity
u Average Darcy velocity vector
v Fluid velocity
v Average interstitial velocity vector
vR Reference velocity
� Grain boundary
δ Thickness of sorption layer
∂� Outer boundary of PUC
ε Scaling parameter �/L � 1
μ Viscosity
ϕ Porosity−→χ c(1)= −→χ ·gradb c(0)

χx x-Component of −→χ
� Total domain of PUC
�l Fluid domain in the PUC
�m Grain domain in the PUC
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1 Introduction

Reactive transport in porous media plays an important role in environmental hydrology,
petroleum engineering, and agricultural engineering. Our interest in upscaling methods was
motivated by the desire to interpret laboratory experiments (Darwish et al. 2006) related
to Arsenic (As) remediation processes for drinking water in Bangladesh and Bihar (India)
(Bhatt 2011); if Fe2+ is deposited on the sand grains it shields the As adsorbing FeIII oxides
that cover the grains; this leads to arsenic production in the drinking water wells. The article
by Bouddour et al. (1996) about upscaling deposition and erosion phenomena by homogeni-
zation in porous media was in particular appealing because it describes interesting new mech-
anisms, such as surface dispersion deposition and surface dispersion erosion. This article,
however, does not as yet incorporate the computation of these coefficients. Another appealing
aspect of homogenization (Hornung 1997; Mikelic and Rosier 2004; Sanchez-Palencia 1980)
is that it does not need a closure relation for obtaining the macroscale transport equation as
opposed to volume averaging (Wood 2009).

However, the relevant model equations are not conventional and not easy to solve (Tardif
d’Hamonville et al. 2007). There are only very few references (Tardif d’Hamonville et al.
2007) dealing with the computation of one of the transport terms, i.e., the dispersion tensor,
and in the 3D setting only results are obtained for low Peclet numbers (Pe). Carbonnell and
Whitaker (1983) combine a derivation by Brenner (1980) for periodic media with volume
averaging and show that they obtain an equation that is identical to the equation obtained with
homogenization, i.e., Eq. 3.13. Edwards et al. (1991) and many other authors (Didierjean
1997; Eidsath et al. 1983; Souto and Moyne 1997) use this equation for periodic media and
present 2D computational results also for higher Peclet numbers. The comparison with exper-
imental values uses a standard plot of the longitudinal dispersion coefficient divided by the
molecular diffusion coefficient versus the Peclet number (Arya et al. 1988). A dissimilar def-
inition of the dispersion tensor by the engineering and mathematics community, differing by
a factor equal to the porosity, precluded until now a correct comparison between experimen-
tal and theoretical values obtained with homogenization (Tardif d’Hamonville et al. 2007).
This factor is, however, correctly incorporated in the periodic media literature (Edwards et al.
1991).

One purpose of this article is to show that the solution of the model equations can be
obtained by software that is readily available and give a comparison between experimen-
tal and theoretical values. We have limited the scope of this article to the computation of
the dispersion tensor including equilibrium adsorption at the grain surface (Auriault and
Lewandowska 1993, 1997; Mauri 1991). It is expected that the next step, i.e., the computa-
tion of the surface dispersion deposition and surface erosion coefficients is a logical extension
of the results obtained in this article. It follows from the problem statement above that of the
many articles of Auriault, we use article (Bouddour et al. 1996) as a key-reference for the
derivations. There are, however, more than 70 articles and a book (Auriault et al. 2009) coau-
thored by Auriault that deal with similar aspects (Auriault 2002; Auriault and Adler 1995;
Auriault et al. 1992, 2005; Auriault and Lewandowska 1993, 1996, 1997, 2001; Auriault and
Royer 1993a,b). Moreover, there are new developments (Allaire et al. 2010a,b) that concern
homogenization for reactive flow in a moving frame of reference.

A few remarks are relevant to put the engineering application in the appropriate context.
Lowe and Frenkel (1996) simulate dispersion in a random lattice Boltzmann system by using
the integral of the Velocity Auto Correlation Function with respect to time. It is found that
this integral does not converge and this would suggest that the ensuing longitudinal con-
vective dispersion coefficient increases with time. This puts the fundamental validity of the
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836 H. Bruining et al.

dispersion phenomenon into question. No convergence problems occur, however, for disper-
sion coefficients computed with homogenization or in periodic media. The behavior of the
dispersion coefficient in the transition region from molecular diffusion to a completely dis-
persion dominated system has been analyzed for periodic media in Bensoussan et al. (1978),
Bhattacharya and Gupta (1983), Bhattacharya et al. (1989), and Gupta and Bhattacharya
(1986). We distinguish between upscaling from the pore-scale to the core scale (local dis-
persion) and from the core scale to the field scale (macroscopic dispersion) (Gelhar 1993).
We ignore all the scales below the pore-scale (see however, Bhattacharya et al. 1989). For
interpretation of laboratory experiments core-scale equations are relevant. Still, for upscaling
to the field scale macroscopic dispersion needs to be considered in practical applications to
arsenic remediation, but this is beyond the scope of this article. Attinger et al. (1988) use
homogenization theory to scale from the core scale to the field scale. They obtain an average
adsorption isotherm by using that on the core scale the concentrations are constant. Also, it
was assumed that the local Peclet number is of the order unity with respect to the upscaling
factor. Other examples of articles that address the influence of adsorption on dispersion are
Attinger et al. (1988), Chrysikopoulos et al. (1992), Moralles-Wilhelm and Gelhar (1996),
Rajaram and Gelhar (1993, 1995), Roth and Roth (1993), Van Genuchten and Wierenga
(1976), and Uffink et al. (2011) and references cited therein. In this article, we will apply
homogenization to an adsorption–convection–diffusion process in porous media for upscal-
ing from the pore-scale to the core scale, leading to an upscaled equation that can be used
for the interpretation of laboratory experiments.

An often mentioned criticism toward homogenization is the apparent central role played
by periodic boundary conditions, which are considered physically unrealistic. The question
is whether effective properties converge as the size of the periodic unit cell (PUC) increases
while keeping the upscaling factor the same order of magnitude. Bourgeat and Piatnitski
(2004) show that, if separation of scale is possible, effective properties in random media
converge as the scale of the unit cell increases, independent of its boundary conditions (peri-
odic, Dirichlet, or Neumann). For the same reason the method of volume averaging (Bachmat
and Bear 1983; Bourgeat et al. 1988; Marle 1982; Whitaker 1999) also uses periodic boundary
conditions to obtain transport coefficients (Wood 2009).

The question that remains is whether a very simple PUC, like a single grain in a symmetry
element is indeed able to find representative values of the dispersion coefficients. Auriault
and Lewandowska (1996) state that although the assumption of a periodic structure is not
realistic, it is found to adequately model real situations. Brenner (1980), who pioneered the
use of periodic models to describe behavior in porous media, points out that a porous medium
is neither periodic nor random. Durlofsky (1991) states that in the absence of more detailed
knowledge and in the absence of large fluctuations on the unit cell scale, periodic boundary
conditions are a reasonable means to obtain up-scaled permeabilities. He applies this upscal-
ing to obtain effective properties on the global scale and also uses this as a starting point to
obtain global boundary conditions until convergence is obtained. In this way, it is possible
to get useful results in the absence of the possibility of a complete separation of scales in the
sense described by Bourgeat and Piatnitski (2004). In fractured media the use of a too small
PUC cannot be avoided, but it is still possible to get insight in the fracture-matrix transfer
process (Salimi and Bruining 2010a,b).

This article addresses a number of aspects that are not fully covered in the articles dealing
with homogenization to derive transport coefficients: (1) it explains the physics behind each
step in the derivations, (2) it uses a method familiar to engineers and proposed in Shook
et al. (1992) to introduce dimensionless quantities, (3) it shows that the numerical model
equations also in 3D can be easily solved with standard finite element software packages;
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Longitudinal and Transverse Dispersion Coefficient 837

this greatly enhances the applicability of homogenization to the engineering practice, (4)
the article gives the correct porosity dependence in the expressions for longitudinal disper-
sion using the definition common in the engineering literature (Bear 1972); it shows for the
first time that, as to homogenization, the simplest possible unit cell gives good agreement
between the computed and measured longitudinal dispersion coefficients, and (5) it shows
that equilibrium adsorption on the grain enhances longitudinal dispersion. Also, Van Duijn
et al. (2008) show that the introduction of adsorption enhances the dispersion coefficient in
Taylor dispersion.

In our nomenclature, we follow Perkins and Dallas (1962) and distinguish the effective
diffusion coefficient Dxx,m , which is the molecular diffusion coefficient corrected for tortu-
osity effects, i.e., Dxx,m = D0/τ , the total longitudinal (transverse) dispersion coefficient,
which consists of a sum of a contribution from the effective diffusion coefficient and from
the longitudinal (transverse) convective dispersion coefficient (Dagan and Neuman 1997;
Gelhar 1993; Rubin and Hubbard 2005; Zhang 2002) (Dxx,m, Dyy,d).

The Appendices A, B, and C describe details of the derivations. Section 2 describes
homogenization and Sect. 3 derives the up-scaled equations. Section 4 gives an explicit der-
ivation of the longitudinal and transverse dispersion coefficients. Section 5 deals with the
numerical implementation of the ensuing model equations in commercial finite element soft-
ware (COMSOL). Section 6 makes a comparison between homogenization data and both
experimental data and some theoretical results from periodic media in the literature. We end
with some conclusions.

2 Equations on the Microscale

The microscopic system, e.g., a collection of grains, is embedded in a domain of macro-
scopic (global) scale dimensions with a length L . This domain represents the core scale. In
the global setting, we use Darcy’s law and an upscaled version of the convection–diffusion
equation with adsorption that is derived in this article. We apply a potential gradient on the
large scale. This leads to an average interstitial velocity vR equal to the Darcy velocity divided
by the porosity. An inert tracer moves due to this velocity field and is subjected to diffusion
and adsorption. The velocity will be used to define the Peclet number (see below). We also
specify the injection concentration c0 and the outflow boundary condition D∂c/∂n = 0. In
our equations, we will use the relative concentration by dividing by c0 and denote it as the
concentration c. The outflow boundary does not introduce further characteristic quantities.
The macroscopic domain consists of a collection of PUC’s (see Fig. 1).

The PUC is defined on a microscopic (local) scale with characteristic length �. We will use
a periodic array of a single sphere (circle) in a cube (square) to obtain effective properties, but
such a cell can be easily extended to a more complex structure, without affecting the deriva-
tions, unless a clear separation of scales is no longer possible. The ratio of the scales is given
by ε = �/L . Indeed, a sufficiently small scaling parameter is one of the conditions for sepa-
ration of scales, which is a necessary condition for applying the homogenization procedure.

The PUC consists of a connected fluid domain �l with an inter-dispersed porous skeleton
�m. The two domains added form the total domain of the PUC, i.e., � = �l ∪ �m ∪ �.
The boundary of the PUC is ∂� and � denotes the boundary between the fluid region and
the grain. The porosity in this system is ϕ = |�l|/|�|. For the 2D computations, we use a
square fluid domain with a circular grain in the center (Fig. 1). For the 3D PUC we use the
structure shown in Fig. 3 to facilitate comparison with the results in Tardif d’Hamonville et al.
(2007). We assume that an adsorbed layer belongs to the grain and has a constant thickness
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Fig. 1 Periodic lattice on the global scale and PUC on the local scale

δ independent of the adsorbed concentration. The convection–diffusion equation describing
the local scale transport of tracer molecules in the fluid domain of the PUC in terms of the
concentration c reads

∂c

∂t
+ div (vc) = div (D0 grad c) , (2.1)

where div (vc) describes the convection and div (D0 grad c) describes the diffusion pro-
cess. Here, v is the mass averaged velocity of the average velocity of the tracer molecules
and water molecules (Bird et al. 1960). The diffusion coefficient in the fluid domain of the
PUC is the bulk molecular diffusion coefficient D0. The dimensionless small or local scale
Peclet number (Pe) gives the ratio between the convective and diffusive transport, i.e.,

Pe = vRc

D0
c
�

= vR�

D0
, (2.2)

where the reference velocity vR is the Darcy injection velocity uinj divided by the porosity:
vR = uinj/ϕ. In the microscopic setting uinj is the average flow rate based on the total vol-
ume of the unit cell inclusive the grain. The Peclet number is (O(ε0)) with respect to ε is
a representative number at significant distance from wells, where peclet numbers are much
higher. We use that vR is approximately 10−5 (m/s), � is of the order of 10−4 (m) and D0

for small molecules in water is approximately 10−9 (m2/s). Note that this value of the Peclet
number can be completely different; for microbes the diffusion coefficient is much smaller
(D0 ∼ 10−13 (m2/s)), near wells the Darcy velocity may be much higher, whereas in areas
with low hydraulic gradients (Bangladesh) the Darcy velocity is much smaller. When flows
in the gas phase are considered, the gas diffusion coefficient is of the order of 10−5 patm/p
[m2/s], a factor of 104 larger than the liquid diffusion coefficients D0 at atmospheric pressure
p = patm. Peclet numbers of different orders with respect to ε may lead to other upscaled
equations (Bouddour et al. 1996).

Stokes equation describes the flow in the fluid domain and results in the velocity field
v = (

vx , vy, vz
)
. The Stokes equation for incompressible fluids is

grad p = μ div grad v, (2.3)

where p is the pressure and μ is the viscosity. It describes the velocity field v = (
vx , vy, vz

)

in �l. Without loss of generality we can ignore gravity effects, by replacing the pressure by
the potential φ = p + ρgz, where ρ is the constant fluid density and g is the acceleration
due to gravity. The fluid is assumed to be incompressible and therefore

123



Longitudinal and Transverse Dispersion Coefficient 839

Fig. 2 Plot of the concentration versus distance. The values of c(0) are represented by the straight line and
the values of c(1) by the difference between the sinusoidal curve and the straight line (see Eq. 2.7). The length
� represents the small (pore) scale indicated by sub-index s and the length L represents the large (core) scale
as is indicated by the sub-index b

div v = 0. (2.4)

We use a no-slip boundary condition at the boundary � between the solid and the fluid and
assume that the grain surface is impermeable, therefore, v = 0 at �. Following Auriault and
Lewandowska (1996), we can solve Stokes equation independently of the transport equation
in the case of tracer flow. We give preference to this approach, which uses a velocity field that
is correct to all orders of magnitude, to simplify as much as possible the derivations in the
article to enhance its readability, because (i) it is also adopted in Auriault and Lewandowska
(1996) and (ii) it leads to the same results. Indeed, it is stated in Auriault and Lewandowska
(1996) that “the advective motion is independent of the diffusion and adsorption phenomena,
i.e., the coupling term is small with respect to the other ones. Therefore, the classical mac-
roscopic description of the advection (i.e., Darcy law), which has already been presented in
earlier contributions (see, for example, Auriault 1991), will be directly used in the analysis”.
Indeed, the leading order terms in the homogenization procedure lead to Eqs. 2.3 and 2.4.
We use Eq. 2.1 as the mass transport equation. At the grain boundary, adsorption of the tracer
molecules to the surface takes place. At the boundary the diffusing molecules are adsorbed,
i.e.,

(−D grad c) · n = δ

(
∂ca

∂t

)

�

at �, (2.5)

where δ is the constant thickness of the adsorbed layer and ca is the equilibrium surface
concentration [kg / m3] at the boundary. The relation between the adsorbed concentration cs

(per unit pore volume) and the equilibrium surface concentration ca reads

cs = δ

ϕ�N

∮

�

cads, (2.6)

where N = 2 for a 2D model and N = 3 for a 3D model.
The space coordinate at the small scale is indicated by rs and the space coordinate at the

large scale is indicated by rb. We split the space derivative terms in the governing equations
into a small (local) scale and a large (global) scale contribution (see Fig. 2). We write the
concentration c (rs, rb, t) and its derivative toward t as formal power series in the scaling
parameter ε
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Fig. 3 Part of the PUC (cube) filled with fluids: a finite element mesh with radius of spheres at the corner
a = 0.583 and b finite element mesh for a = 0.510 The average x-velocity is equal to 1/ϕ

c =c(0) + εc(1) + ε2c(2) + · · ·
∂c

∂t
=∂c(0)

∂t
+ ε

∂c(1)

∂t
+ ε2 ∂c(2)

∂t
+ · · ·

(2.7)

Figure 2 illustrates this assumption schematically. Substitution of Eq. 2.7 in Eq. 2.1 and
collecting the terms of different orders w.r.t. ε, leads to a set of equations, which can be used
to analyze the system. In order to eliminate the local scale dependency of the equations, we
average the equation with a certain order of ε over the PUC domain � and thus obtain the
up-scaled equation. For higher orders of ε more accurate model equations are obtained. This
will be illustrated below.

3 Derivation of the Up-Scaled Equations

This section describes the homogenization procedure for obtaining upscaled equations from
the model equations at the microscale. We define the direction of the pressure gradient as
the longitudinal direction. The transverse directions are perpendicular to the direction of the
pressure gradient.

3.1 Boundary and Initial Conditions at the Microscale

At the grain boundary the velocity is zero; a combination of periodic and semi-periodic
boundary conditions are applied on the outer boundaries of the unit cell (see Fig. 1). When
we would only be using pure periodic boundary conditions we would write

c(x = 0, y, z, t) =c(x = 1, y, z, t)

c(x, y = 0, z, t) =c(x, y = 1, z, t)

c(x, y, z = 0, t) =c(x, y, z = 1, t).

(3.1)

However, when we use a combination of semi-periodic boundary conditions at the bound-
aries of the unit cell in combination with strictly periodic boundary conditions, e.g., we
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Longitudinal and Transverse Dispersion Coefficient 841

would replace c(x = 0, y, z, t) = c(x = 1, y, z, t) in Eq. 3.1 by the semi-periodic boundary
condition

c(x = 0, y, z, t) = c(x = 1, y, z, t) + 1. (3.2)

If we were to use only strictly periodic boundary conditions we would obtain trivial solutions,
i.e., the concentration c(x, y, z, t) = constant.

We also use semi-periodic boundary conditions for the pressure, e.g., the pressure is peri-
odic in two transverse directions and a given pressure difference is applied between the two
faces of the PUC perpendicular to the longitudinal direction.

Tartar shows in the book by Sanchez-Palencia (1980, pp. 368–377) that the homogenized
Stokes equation is actually the Darcy equation. The equations on the microscale used in
the up-scaling procedure are Eq. 2.1 with boundary condition (2.5) at the grain surface and
semi-periodic boundary conditions at ∂�.

3.2 The Non-Dimensional Equations at Two Scales

The first step in the homogenization process is to write the concentration as c = c(rb, rs),
i.e., depending on the global coordinate rb and the local coordinate rs, where we omit the
indication of the time dependence for convenience. This splits the equations in a small PUC
scale term with reference length � (see Fig. 2) and a global scale term with reference length
L , denoted by the subscripts s and b, respectively. The introduction of two reference lengths,
viz., L and � is a convenient way to express that the terms with local differentiation are one
order of magnitude larger than the terms involving global differentiation as shown below.
The term div becomes divs + divb. Homogenization assumes that the global contribution
divb() is one order of magnitude smaller than the local contribution divs() with respect to the
scaling parameter ε = �/L � 1. In fact if the two contributions were of the same order of
magnitude homogenization cannot be applied (Auriault 1991). The full dimensional equation
reads

∂c(rb, rs)

∂t
+ divb (vc(rb, rs)) + divs (vc) = D divb gradb c(rb, rs)

+D divs gradb c(rb, rs) + D divb grads c(rb, rs) + D divs grads c(rb, rs). (3.3)

We non-dimensionalize Eq. 3.3 by inspection (Shook et al. 1992), i.e., write every depen-
dent and independent variable Q as the product of a dimensionless variable and a reference
value Q = QD QR. All reference values QR must be related to clearly identifiable quan-
tities in our problem of interest. For the equations used here, � is the reference length for
the small scale, L the reference length for the large scale, and vR = uinj/ϕ is the reference
velocity. Here, uinj is the injection velocity and ϕ denotes the porosity ϕ = |�l| / |�| .
As there is no clearly identifiable reference time tR, it must be composed of the other
variables, i.e., tR = L/vR. There are two dimensionless numbers in the convection–dif-
fusion equation, viz., the Peclet number, and the retardation factor. The Peclet number
is based on the reference length for the small scale, Pe = vR�/D0. Thus we find from
Eq. 2.1

∂c

∂t
+ divb (vc) + 1

ε
divs (vc) = ε

Pe
divb gradb c

+ 1

Pe
divs gradb c + 1

Pe
divb grads c + 1

εPe
divs grads c, (3.4)
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where we drop the sub-index D e.g., QD, on the symbols of dimensionless dependent and
independent variables to enhance readability.

We slightly deviate from the original approach described in Auriault (2002), Auriault and
Adler (1995), Auriault et al. (1992, 2005), Auriault and Lewandowska (1993, 1996, 1997,
2001), and Auriault and Royer (1993a,b). We split the differentiation ∇() = ∇b()+∇s() thus
distinguishing between differentiation toward rs on the small scale denoted by ∇s(c(rb, rs))

and differentiation toward rb on the larger scale denoted by ∇b(c(rb, rs)). We assume that
the term ∇s(..) is one order of magnitude larger than the term ∇b(..). After making the equa-
tions dimensionless, meaning that now ∇() means dimensionless differentiation we obtain
∇() = ∇b() + ∇s()/ε. With this, the description becomes completely equivalent with the
conventional approach, but we now understand its physical origin. In the non-dimensional-
ization, we use L as reference variable for the large scale and � as reference variable for the
small scale. Using two reference variables for the length helps to remind us to distinguish
between local and global terms.

The external boundary conditions at the large scale are a combination of Dirichlet or
Neumann conditions. At the small scale, i.e., at the PUC scale (equivalent to the Represen-
tative Elementary Volume (REV) scale in averaging), we use periodic boundary conditions
as external conditions.

Equivalently, according to Bourgeat and Piatnitski (2004), also Dirichlet or Neumann
conditions can be used. Indeed Bourgeat and Piatnitski (2004) show that, if separation of
scale is possible, effective properties in random media converge as the scale of the unit cell
increases, independent of its boundary conditions (periodic, Dirichlet, or Neumann). How-
ever, here we use periodic boundary conditions because the unit cell consists of a symmetry
element with a single grain. It is possible to extend the unit cell to several grains until con-
vergence is obtained. As it turns out we get a remarkable result that the unit cell with a
single grain is already sufficient to find longitudinal dispersion coefficients that agree with
experimental values. We note that at the PUC scale the concentration on one face must dif-
fer by a constant from the other face as otherwise all concentrations in the PUC become
constant.

For the internal boundary condition Eq. 2.5, the procedure is similar for grad() =
gradb() + grads() and we obtain the dimensionless boundary condition

ε

Pe

(
gradb c

) · n + 1

Pe

(
grads c

) · n = −K

(
∂c

∂t

)

�

at �, (3.5)

where we assume that the distribution coefficient

K (c) = δ

L

∂ca

∂c
= ε

δ

�

∂ca

∂c
(3.6)

is of the order ε. We assume that the adsorbed concentration ca (c) in the shell of thickness δ

enveloping the grains is in equilibrium with and thus a function of the concentration c in the
fluid near the grain surface. It is shown below that the distribution coefficient can be related

to the retardation factor R = 1 + K (c(0))
|�|ϕε

|�|, where in the unit cell |�| = 1 and |�| is the
surface area of the grain in the unit cell.

As shown above the reference time tR can be composed from the reference length L for
the large scale divided by the fluid velocity vR (Shook et al. 1992). Hence, there is no separate
dimensionless number connected to the first term of Eq. 3.4. If the interest is in the concen-
tration profile at a distance of the order of L from the origin it follows that (1 + R) ∂c/∂t is
of the same order of magnitude as divb (vc).
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3.3 The Flow Equations and Boundary Condition with Terms of the Order of ε−1 and ε0

The terms of the order of ε−1 in the flow equation and ε0 in the boundary condition are the
leading order terms. We expand the unknown concentration as a formal power series in the
scaling parameter ε (see Eq. 2.7). All terms c(0), c(1) etc. are �−periodic, i.e., periodic in
the PUC. In practice the series is truncated for ε0 or ε1. In other words, c(0) is an approxima-
tion of the real behavior of c with an accuracy depending on ε (Auriault and Royer 1993b).
Each of the terms with the same power of ε are collected to give an equation that provides
partial information for solving the total system of equations, because a small change in ε

does not change the upscaling procedure. The terms of lowest order, ε−1, in Eq. 3.4 lead to

divs

(
vc(0)

)
= 1

Pe
divs grads c(0), (3.7)

where we use that ∂c(0)/∂t is of the order of ε0 and can be ignored at the scale ε−1. This
assumption implies that our interest is in the development of the concentration profile on the
scale L . We use that

divs

(
vc(0)

)
= c(0)divs v + v · grads c(0) = v · grads c(0),

where divs v = 0 because of incompressibility. Indeed for fluids at constant density divs v =
divb v = 0. Substitution into Eq. 3.7 leads to

v · grads c(0) = 1

Pe
divs

(
grads c(0)

)
. (3.8)

The resulting term of order ε0 in boundary condition (3.5) is

1

Pe

(
grad c0) · n = 0 at �. (3.9)

The only solution of Eqs. 3.8 and 3.9 that satisfies periodic boundary conditions is that
c(0) is constant on a local scale and is therefore independent of the local scale coordinate
rs = (xs, ys, zs). Even if c(0) is constant at the local scale it is a non-constant function of the
global scale coordinate c(0) = c(0) (rb, t) = c(0)(xb, yb, zb, t).

3.4 Equations Derived at Higher Order of ε

The next step is to analyze the resulting terms of ε0 in Eq. 3.4, i.e.,

∂c(0)

∂t
+divb

(
vc(0)

)
+divs

(
vc(1)

)
= 1

Pe
divs

(
gradb c(0)

)
+ 1

Pe
divs

(
grads c(1)

)
,

(3.10)

In many cases of interest it suffices to use a transport equation without the diffusion terms, i.e.,
the zeroth order transport equation, which can be derived from Eq. 3.10 (see Appendix A).

∂c(0)

∂t
+ v̄

R
· gradb c(0) = 0, (3.11)

where the retardation factor

R = 1 + K (c(0))

|�| ϕε
|�| > 1. (3.12)
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Note that K (c(0)) is constant at the local scale and hence K (c(0)) does not need to be a linear
relation in c(0). Equation 3.11 can be used to eliminate the time derivative from Eq. 3.10. It
leads to (see Appendix B) the source, convection–diffusion equation

− v̄x

R
+ divs (v(χx + xs)) = 1

Pe
divs grads(χx + xs), (3.13)

where χx is the x-component of a vector −→χ that describes the first order concentration correc-
tion c(1) = −→χ · gradbc(0). When we are interested in the longitudinal dispersion coefficient,
gradbc(0) is applied in the same direction as the overall pressure gradient, whereas if we
are interested in the transverse dispersion coefficient, gradbc(0) is applied perpendicular to
the overall pressure gradient. The velocity v is the mass averaged velocity on the microscale
(see Sect. 2).

In the same way, we collect the terms of order ε1 in Eq. 3.5,

1

Pe

(
gradb c(0)

)
· n + 1

Pe

(
grads c(1)

)
· n = − K (c(0))

ε

(
∂c(0)

∂t

)

� at �, (3.14)

where K
(
c(0)

)
/ε is of order ε0.

Substitution of c(1) = −→χ ·gradb c(0) in the boundary condition Eq. 3.14, combining with
Eq. 3.11 and looking at the case gradb c(0) = −ex leads with the relation between K

(
c(0)

)

and the retardation factor R defined in Eq. 3.12, i.e., K (c(0))
|�|ϕε

|�| =R−1 to (see Appendix B)

1

Pe

(
grads (χx + xs)

) · n = K (c(0))

ε

v̄x

R
= (R − 1) |�|

R|�| ϕv̄x at � . (3.15)

Note that |�| is the dimensionless surface area of the grain, i.e., in the PUC with a volume
equal to one.

We can calculate c(1) from Eqs. 3.13 and 3.15 with the help of a numerical method. In this
study, we use the finite element software package COMSOL for this purpose to solve for χx .

Retaining the terms up to order ε1 leads to the complete higher order convection–diffusion
equation (see Appendix C), i.e.,

〈∂c(1)

∂t

〉
+ divb

〈
vc(1)

〉
= 1

Pe
divb

(〈
gradb c(0)

〉
+

〈
grads c(1)

〉)
−

∫

�

K (c(0))

|�|ε

(
∂c(1)

∂t

)

�

ds.

(3.16)

where 〈Q〉 means that Q is averaged over the PUC.

4 Derivation of the Dispersion Coefficients

4.1 The Up-Scaled Dimensionless Equation

Since, we now have an expression for the global concentration ∂c(0)

∂t from Eq. 3.10 and an

expression for the first order correction ∂c(1)

∂t from Eq. 3.16, we can find an up-scaled equation
that includes diffusion.
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By adding the product of Eq. 3.16 and ε to Eq. 3.10 and by substitution of c(1) = −→χ ·
gradb c(0), we obtain the dimensionless up-scaled convection–diffusion equation

〈∂c

∂t

〉
+ divb

〈
vc(0)

〉
= −ε divb

〈
(v ⊗ −→χ )

〉
· gradb c(0)

+ ε

Pe
divb

〈
(I + grads ⊗ −→χ )

〉
· gradb c(0) − 1

|�|ε
∫

�

K (c(0))

(
∂c

∂t

)

�

ds, (4.1)

where we use the notation c = c(0) + εc(1).

Elaboration of some averages leads to

ϕ
∂c0

∂t
+ divb (ūc0) = ε divb

(
−

〈
(v ⊗ −→χ )

〉
+ 1

Pe

〈
(I + grads ⊗ −→χ )

〉)
· gradb c(0)

− 1

|�|ε
∫

�

K (c(0))

(
∂c

∂t

)

�

ds, (4.2)

where
〈
∂c
∂t

〉 = ϕ ∂c(0)

∂t because ε
〈
∂c(1)

∂t

〉 = 0 as the average of the higher order concentration
terms over the PUC is zero. We can rewrite the average interstitial velocity

〈
v
〉
over the PUC

using the average Darcy velocity: ū = 1
|�|

∫
�l

v drs = ϕv̄. We only consider cases where the
main pressure gradient is applied perpendicular to one of the faces, with the normal in the
x , y, or z-direction, of the cubic unit cell. By applying the global concentration gradient in
the same direction as the pressure gradient we obtain the longitudinal dispersion coefficient
and when we apply the global concentration gradient perpendicular to the pressure gradient
we obtain the transverse dispersion coefficient. By virtue of symmetry the average velocity
in the direction perpendicular to the applied pressure gradient is zero. The average velocity
vx over the west-boundary of the unit cell is the Darcy velocity (volumetric flux). The flux
is constant over any cross-section x = c in the unit cell and hence the integral of the Stokes
velocity in the unit cell is equal to the Darcy velocity.

4.2 Hydrodynamic Dispersion and Effective Diffusion Coefficients

We recall that the dimensionless variables, QD = Q/QR, are expressed as the ratio between
the full dimensional variable (Q) and the reference value (QR). On the microscale the ref-
erence length is �, where as on the macroscale it is L , with ε = �/L . For the reference
time, we used tR = L/vR, where vR = uinj/ϕ is the reference velocity. We also recall that
Pe = vR�/D0 and K = δ

L
∂ca
∂c . We dropped the sub-index D in the paper after we con-

verted to dimensionless equations. Therefore, we replace Q → Q/QR. Finally, we recall
that ū = ϕv̄. Even if the derivation is straightforward we prefer to mention the intermediate
step, i.e., in fully dimensional form we obtain for Eq. 4.2

ϕtR
∂c0

∂t
+ L

vR
divb (ūc0)= εL2 divb

((
−

〈
(v ⊗ −→χ )

〉
+ 1

Pe

〈
(I+grads ⊗ −→χ )

〉)
· gradb c(0)

)

− �3tR
|V | �2ε

δ

L

(
∂ca

∂c

)

c(0)

(
∂c(0)

∂t

) ∫

�

ds ,

where we assumed that the average of the concentration c(1) over the grain surface is zero.
The terms in averaging brackets are still in their dimensionless form. We note that the inte-
gral over the surface area of the particle divided by the volume of the unit cell is the specific
surface S = 1

V

∫
�

ds. We obtain after division by tR
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ϕ
∂c0

∂t
+ divb (ūc0) = −Sδ

(
∂ca

∂c

)

c(0)

(
∂c(0)

∂t

)

�

+ εL2

tR
divb

((
−

〈
(v ⊗ −→χ )

〉
+ 1

Pe

〈
(I + grads ⊗ −→χ )

〉)
· gradb c(0)

)
. (4.3)

This equation is conventionally written in hydrology as

ϕR
∂c0

∂t
+ divb (ūc0) = divb

(
(ϕDd + ϕDm) · gradb c(0)

)
, (4.4)

where Dd denotes the hydrodynamic dispersion coefficient and Dm denotes the contribution
of the molecular diffusion coefficient modified by the tortuosity tensor grads ⊗ −→χ. We use

that Sδ
(

∂ca
∂c

)

c(0)
= ϕ (R − 1) , the product of the porosity and the retardation factor minus

one.
We note that εL2

tR
= �vR = D0 Pe. Comparison of Eqs. 4.3 and 4.4 leads to the expressions

Dd = − D0 Pe

ϕ

1

|�|
∫

�l

v ⊗ −→χ drs , (4.5)

and

Dm = D0

ϕ

⎛

⎜
⎝ϕI + ϕ

|�l|
∫

�l

grads ⊗ −→χ drs

⎞

⎟
⎠ , (4.6)

where we keep v⊗−→χ and grads ⊗ −→χ still in their dimensionless form as they are computed
from Eqs. 3.13 and 3.15, which are kept in the dimensionless setting. For the computation
of the dispersion coefficients, below, we have chosen x as the direction of global or large
scale fluid flow. In the equations, χx is strictly periodic (see Eq. 3.1). Without adsorption the
right side of Eq. 3.15 is zero as R = 1. When including adsorption the retardation factor
R > 1. The equations obtained in Tardif d’Hamonville et al. (2007) are similar. However, the
engineering community, for historical reasons, does not include the porosity (ϕ) effect in the
dispersion coefficient and therefore Eqs. 4.5 and 4.6 use a division by ϕ in contrast to Tardif
d’Hamonville et al. (2007). Note that |�l| = ϕ. We use the Peclet number (Pe) in Eq. 4.5
because in our case the velocity v is still dimensionless, and it is convenient to calculate the
integral directly from the dimensionless numerical results.

Note also that certain symmetry conditions are required if grads ⊗ −→χ represents the unit
tensor divided by a constant tortuosity factor. Without these conditions the tortuosity factor
can become direction dependent. The longitudinal hydrodynamic dispersion coefficient can
be computed from

Dxx,d = − D0 Pe

ϕ

1

|�|
∫

�l

vxχx drs, (4.7)

and for xx component of the molecular diffusion tensor reads

Dxx,m = D0

⎛

⎜
⎝1+ 1

|�l|
∫

�l

∂χx

∂x
drs

⎞

⎟
⎠ . (4.8)
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All off-diagonal elements of the dispersion tensor will be zero, because χxvy is a product
of an even function χx of y and an uneven function vy of y, which upon integration will lead to
zero. In the same way, ∂χx/∂y is an uneven function of y and hence the volume integral is zero.

To obtain χy , we need to solve

divs
(
v(χy + ys)

) = 1

Pe
divs grads(χy + ys), (4.9)

with analogous periodic boundary conditions (like in Eq. 3.2). The grain boundary condition
reads, irrespective of whether we use R > 1,

1

Pe

(
grads (χy + ys)

) · n = 0 at �, (4.10)

because v̄y = 0.
Hence, we obtain for the transverse dispersion coefficients

Dyy,d = − D0 Pe

ϕ

1

|�|
∫

�l

vyχydrs, (4.11)

and for yy component of the molecular diffusion tensor

Dyy,m = D0

⎛

⎜
⎝1+ 1

|�l|
∫

�l

∂χy

∂y
drs

⎞

⎟
⎠ . (4.12)

5 Numerical Calculation of the Dispersion Coefficient

In order to calculate the fully dimensional hydrodynamic dispersion and effective diffusion
coefficients we need to compute the first order concentration correction (χx ) from Eq. 3.13
for the longitudinal dispersion coefficient and the first order correction

(
χy

)
from Eq. 4.9 for

the transverse dispersion coefficient. We solve the problem both in 2D and 3D using a Finite
Element Method software package, COMSOL Multiphysics, but certainly equivalent pack-
ages, e.g., FENICS can also be used. COMSOL, formerly FEMLAB is a software package
that can solve various coupled engineering and physics problems, e.g., here a combination of
Stokes and the convection–diffusion equation. The benefit of using COMSOL with respect to
the vorticity approach (Bruining and Darwish 2006) is that it is capable of solving the prob-
lem in three dimensions. COMSOL also allows to compute the volume integrals in Eqs. 4.7,
4.8, 4.11, and 4.12. Finite element commercial software makes it easy to do the numerical
calculations, even if some background knowledge is required for a proper validation of the
results. For the 2D example, we use a simple square array of cylinders, i.e., the PUC is a
circle in a square such that the porosity ϕ = 0.37. For reasons of easy comparison with Tardif
d’Hamonville et al. (2007) we have defined the geometry in Fig. 3 for the PUC in 3D. To
obtain the unit cells in Fig. 3, we start with a unit cube. In each of the eight corners of the cube,
spheres, representing the grains, with radii of 0.583 or 0.510 have been drawn corresponding
to porosities of 0.242 and 0.446, respectively. The parts of the sphere that fall outside the unit
cube are discarded, whereas the parts inside the cube constitute the grains. The overlapping
parts of the spheres inside the cube belong to the porous skeleton.

The steady state incompressible Stokes equation grad p = μ div grad v was implemented
by setting the appropriate parameters equal to zero, i.e., discarding the inertia term. The
internal flow boundaries are set to a no-slip condition, i.e., zero velocity at the grain surface.
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Symmetry conditions at the cube faces parallel to the main flow direction are equivalent to
periodic boundary conditions if the sphere is located at the center of the PUC. Numerical
comparisons show that semi-periodic boundary conditions for symmetric PUC’s can be set
by choosing a constant pressure difference between the corresponding points at the cube
faces perpendicular to the main flow direction. The pressure difference between correspond-
ing points was chosen such that the average dimensionless longitudinal velocity vx is equal
to 1/ϕ. This choice of setting vx = 1/ϕ reduces the number of calculations since we use
this velocity as a factor in the source term of Eq. 3.13. This is accomplished as follows: in
the dimensionless calculation in the unit cell with side ξ = 1, a pressure difference between
corresponding points is applied such that the volume integral of the x-Darcy-velocity in the
flowing part is equal to one, and the choice of the Peclet number is made by varying the
molecular diffusion coefficient. Here, taking the volume integral equal to one, means that
the average Darcy velocity u or specific discharge is one and thus vx is equal to 1/ϕ. How-
ever, it is possible to use any value for u as long as the Peclet number Pe = uξ/ (ϕD0) .

In the literature (Bear 1972), the Peclet number is usually defined as vdp/D0, where the
interstitial velocity v = u/ϕ and dp is the grain diameter. For our choice of inscribed radii
(a = 0.51 or a = 0.583) this only leads to a minor difference.

Indeed, the advantage of this procedure is that the solution for the velocity field does
not change for computations with various Peclet numbers. We can solve the cell equation
Eq. 3.13 for the longitudinal dispersion coefficient and Eq. 4.9 for the transverse dispersion
coefficient with the stored velocity field as input. We also use boundary condition (3.15). It
turns out to be advantageous to use the diffusion equations, Eqs. 3.13 and 4.9 in the transient
mode: ∂c/∂t + v · grad c = div (D grad c)+ SR, where we use c = χx + xs or c = χy + ys

for the longitudinal and transverse coefficients, respectively. The source term is only non-
zero for longitudinal dispersion, i.e., SR = v̄x/R while various values of D = 1

Pe are used
in Eqs. 3.13 or 4.9. Here, xs (ys) is the x-coordinate (y-coordinate) in the PUC. For long
times the solution converges to the solution of the stationary reaction–diffusion–convection
equation, i.e., v · grad c = div (D grad c) + SR. For the calculation of the longitudinal dis-
persion coefficient, we use semi-periodic boundary conditions in the longitudinal direction,
i.e., c(xs = 1, ys) + 1 = c(xs = 0, ys) and periodic boundary conditions in the transverse
direction, i.e., c(xs, ys = 1) = c(xs, ys = 0). For reasons of symmetry the latter can also be
replaced by the no flow/symmetry boundary condition.

To implement semi-periodic boundary conditions in COMSOL (see Eq. 3.2), it appears
to be necessary to choose the appropriate Neumann precondition at the inflow and outflow
boundary to avoid discontinuous jumps of the concentration derivative at the boundary; in
this case, we implement the convective flux condition (−D grad c) ·n = 0 to ensure that the
diffusive flux or the concentration gradient is also periodic. This aspect was not incorporated
in the COMSOL manual. The remaining external boundaries and the internal boundaries
have insulation symmetry boundary conditions, (−D grad c + cv) · n = 0. The transient
solution for the convection–diffusion equation reaches a steady state solution if the source
term SR = −v̄x/R counterbalances the difference between the convective flux entering and
leaving the PUC.

To compute the transverse dispersion coefficient, we use c(xs, ys = 0, zs, t) = c(xs, ys =
1, zs, t) + 1, and strictly periodic boundary conditions in the flow direction xs and the direc-
tion zs. Note that now we cannot replace the boundary condition in the x-direction (fluid
flow direction) by a no flow/symmetry boundary condition. COMSOL can solve the Stokes
equation as well as the convection–diffusion equation in their conservative form. A Multigrid
preconditioner presolves the linear set of equations before COMSOL applies the Generalized
Minimal Residual Method (GMRES).
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6 Results

Figure 4 presents the 2D results of the computations in terms of the ratio of dispersion coef-
ficients D and the molecular diffusion coefficient D0 for various Peclet numbers and for a
simple square arrays of cylinders with a porosity ϕ = 0.37 (see Fig. 1) in the absence of
adsorption. The Peclet number is defined as Pe = v�/D0, where v is the average interstitial
velocity (the Darcy velocity or specific discharge divided by ϕ), the length of the unit cell
and D0 the molecular diffusion coefficient.

Figure 4 also compares our results with experimental (Bear 1972) and numerical data
cited in Table IV of Edwards et al. (1991). The comparisons involve the dispersion in a 2D
periodic medium of circles inside squares for a case with porosity ϕ = 0.37. At the smallest
resolution, we used 250 triangular elements and at the highest resolution we used 4,000 tri-
angular elements, with no significant change in the results. Edwards et al. (1991) used 400
nine-node elements. As it turns out Edwards solves exactly the same cell equation (3.13),
but state that they derive subsequently the dispersion coefficient from an equation derived by
Brenner (1980) (based on a moment analysis)

Dm + Dd = 1

ϕ|�|
∫

�l

∇−→χ ⊗ ∇−→χ drs. (6.1)

The result of using Eq. 6.1 is shown in Fig. 4 as the thin drawn line below the other data.
It only gives good results for very small Peclet numbers. However, the values in Table IV
of Edwards et al. (1991) are exactly reproduced for low Peclet numbers if we use Eqs. 4.7
and 4.8 instead of Eq. 6.1. Buyuktas and Wallender (2004) also use Eqs. 3.13, 4.7, and 4.8
to obtain the dispersion coefficient in the same way as in this article. The data from Eidsath
et al. (1983) also quoted in Edwards et al. (1991) disagree both with our calculations and the
data of Edwards. However, Eidsath used a 36 element mesh. At higher Peclet numbers, the
computed data by Edwards are higher than the experimental data and our computed results.
We are not able to find a reason for this discrepancy.

Figure 5 shows the 3D results. The 3D simulation with the corner spheres of radii a =
0.510 (0.583) was carried out with 5,832 (3128) mesh points, with 27,420 (14495) tetrahedral

Fig. 4 Comparison of the computed hydrodynamic dispersion coefficients without adsorption (drawn line)
for a 2-D model with experimental and numerical data of other authors. The squares are the experimental data
(Bear 1972), the crosses are the data from Eidsath et al. (1983) whereas the triangles are data from Edwards
et al. (1991). The drawn curve is computed in this work for simple square arrays of cylinders with ϕ = 0.37.

The thin drawn line below the other data uses the cell average of 〈cx cx 〉 (see Eq. 6.1) to estimate the dispersion
coefficient
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Fig. 5 Longitudinal (upper curves) and transverse (lower curves) dispersion without adsorption divided by
molecular diffusion versus Peclet number. The Peclet number (see Eq. 2.2) is based on the interstitial velocity
v = u/ϕ. The characteristic dimension is the size of the unit cell. Dashed (dashed-dot-dot) line has a unit cell
as Fig. 3a and the drawn (dashed-dot) line as Fig. 3b. The triangles denote experimental points (Bear 1972)

Lagrangian quadratic elements. COMSOL uses shlag (2,′c′) shape functions with integration
order 4 and constraint order 2. A simulation with 1,731 (955) mesh points and 7,746 (4068)
elements gave results that deviated at most 0.133% (0.288%). At low Peclet numbers the lon-
gitudinal and transverse dispersion coefficient are dominated by the molecular diffusion and
thanks to the definition used by engineers they do not depend on the porosity. For low Peclet
numbers transverse and longitudinal dispersion are equal. For the configuration in Fig. 3a, b
D/D0 assumes values of 0.51 (0.69) . The measured value is D ∼ 0.7D0, is only obtained
for the configuration shown in Fig. 3b. This configuration has a porosity value ϕ = 0.446,

close to many laboratory tests (ϕ = 0.35−0.45) . The configuration of Fig. 3a has a porosity
value of 0.242, and here we find D ∼ 0.5D0 for low Peclet numbers. At high Peclet num-
bers the longitudinal D/D0 values increase faster than proportional to the Peclet number.
Deviations between the theoretical results for the longitudinal dispersion coefficients for the
configurations of Fig. 3a, b are well within the range of experimentally determined values
(Dullien 1992).

It should be noted that experiments to obtain these data are not trivial due to the low
values of the dispersion coefficients. Many experimental data that show large values can be
incorrect due to stream line splitting at the entrance and production point, i.e., if special fluid
distributors at the injection and production point were not used. Small entrapped air bubbles
also can cause an apparent increase of the dispersion coefficient. Finally, also the sand pack
must be homogeneous, which requires special experimental preparation techniques (Wygal
1963). Some of the experimental values in Bear (1972) are given here as the triangles in
Fig. 5.

The transverse dispersion coefficients remain almost equal to the value at low Peclet
values. For the configuration in Fig. 3a, b the transverse dispersion coefficient divided by
increases from 0.51 (0.69) at low Peclet numbers to 0.59 (1.0) at high Peclet numbers. It
also increases slower than proportional to the Peclet number.

There are excellent overview articles for experimental data (Delgado 2006, 2007) of longi-
tudinal and transverse dispersion (Wronski and Molga 1987). These studies mention effects of
particle size and particle shape distribution. Non-uniform particle size distributions decrease
the value of the longitudinal dispersion. To study size distribution effects with the PUCs used
in this study is well possible, but considered outside the scope of the article.

We also compared our results with the results obtained by Tardif d’Hamonville et al. (2007)
and found good agreement with their results, taking into account that in Tardif d’Hamonville
et al. (2007) the division by the porosity ϕ, commonly used by engineers, is not included. In
Tardif d’Hamonville et al. (2007), only results for low Peclet numbers are shown. Computed
transverse dispersion coefficients are much smaller than experimental values (Delgado 2007).
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Fig. 6 The effect of adsorption on the dispersion coefficient. With adsorption, i.e., the retardation factor
R = 10, the longitudinal dispersion coefficient is higher than the dispersion coefficient with retardation factor
R = 1, i.e., without adsorption

Possibly a statistical-oriented approach is necessary to obtain more realistic values of the
transverse dispersion coefficient (Fannjiang and Papanicolaou 1996). For example, the trans-
verse dispersion coefficients in a staggered array (Edwards et al. 1991) are larger than for
the situation of a single sphere in a square. However, the values are still much smaller than
experimental values (Delgado 2007). It can be expected that better results can be obtained
for more complicated unit cells, but such a cell must have isotropic properties as otherwise
longitudinal dispersion mixes in the transverse dispersion.

Figure 6 shows the effect of adsorption on the dispersion coefficient. Such an effect of
adsorption can be expected as the movement of solute in the direction of flow is retarded near
the grains and not affected far away from the grains, leading to a spreading of solute. The
effect of adsorption on dispersion is quantified in the boundary condition for −→χ in Eq. 3.15.
Non-linear adsorption can have a substantial effect on the spreading of a concentration profile
(Rhee et al. 2001) on the macroscale, but as we see in Fig. 6, the effect on the longitudinal
dispersion coefficient on the local scale is very small. As we discussed in Sect. 4.2, the effect
on transverse dispersion is zero.

We end with a few words about the practical relevance of the results in this article. The first
important aspect is that homogenization shows whether the proposed up-scaled equation can
be used for the interpretation of laboratory results. In periodic media modeling these order
of magnitude considerations are ignored. The main condition is that the Peclet number on
the PUC scale is of the order of unity. For iron ions with molecular diffusion coefficients in
water of the order of 10−9 [m2/s] this is clearly the case. For microbes with a much lower
diffusion coefficient such an assumption is not correct and this may have a consequence for
the up-scaled convection–diffusion equation for microbes. The second application is that it
is in principle possible to derive the transport coefficients. A periodic array of single spheres
in a cube appears to be sufficient to estimate longitudinal dispersion coefficients. A possible
shortcoming of such a simple unit cell manifests itself in the underestimate of the trans-
verse dispersion coefficient. Whether more realistic transverse coefficients can be obtained
by defining more complex PUC’s (Edwards et al. 1991) is still an open research question.
As to the transport coefficients an important result is that absorption enhances longitudinal
dispersion (see Fig. 6). The reason for this is that the solute near the grain is retarded more
than away from the grain and this leads to spreading of the solute, which translates itself in a
larger longitudinal dispersion coefficient. However, the enhancement effect appears to be too
small to be of practical significance. Non-linear adsorption K (c(0)), see also Eqs. 3.11 and
3.12, can lead to self-sharpening or convective spreading on the large scale. Finally, local
(pore-scale) dispersion, considered in this article, cannot be disregarded in describing mac-
roscopic dispersion, because macroscopic dispersion consists of a reversible and irreversible
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contribution (Jha et al. 2009; Berentsen et al. 2005). The irreversible contribution is caused by
pore-scale mixing and subsequent diffusion. At a heterogeneity scale of the order of meters
or larger, fluid elements that took different paths are incompletely mixed by diffusion (as
diffusion is slow on such a large scale) and this can be considered as partly reversible disper-
sion. A challenge for future study is to investigate whether homogenization can contribute
to find a more accurate partition between reversible and irreversible dispersion.

7 Conclusions

• This article compares the Peclet number dependence of longitudinal and transverse dis-
persion coefficients obtained by homogenization in a PUC that consists of a sphere
(circle) in a cube (square) with experimental data of dispersion in porous media. We use
the same porosity dependence as in the engineering literature. There is good agreement
for longitudinal dispersion. The computed transverse dispersion coefficients for such a
simple unit cell are much lower than experimental values.

• A slightly modified and simplified approach for homogenization shows that one of the
assumptions is that the local spatial derivatives are one order of magnitude larger than
the global derivatives. For the PUC of choice, the dispersion relations are identical to
the relations obtained for periodic media. COMSOL can be readily used to compute
longitudinal and transverse dispersion coefficients in 2D and 3D. The 3D results are for
the first time obtained at relevant Peclet numbers.

• Adsorption does not affect the transverse dispersion coefficient. However, adsorption
enhances the longitudinal dispersion coefficient in agreement with an analysis of homog-
enization applied to Taylor dispersion discussed in the literature. The enhancement, even
at retardation factors of 10, is small.
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Appendix A: The Flow Equations and Boundary Condition with Terms
of Order ε0 and ε1

This appendix derives the zeroth order transport equation from the terms of order ε0 in Eq. 3.4
and the terms of order ε1 in boundary condition (3.5) Eq. 3.4 is repeated here for convenience

∂c(0)

∂t
+divb

(
vc(0)

)
+divs

(
vc(1)

)
= 1

Pe
divs

(
gradb c(0)

)
+ 1

Pe
divs

(
grads c(1)

)
,

(A.1)
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where we used that grads c(0) = 0 because c(0) is constant on the microscale. It turns out
that divs

(
gradb c(0)

)
cannot be taken equal to zero as it plays a role as part of the driving

force for c(1), see Eq. B.1. In the same way, we collect the terms of order ε1 in Eq. 3.5,

1

Pe

(
gradb c(0)

)
· n + 1

Pe

(
grads c(1)

)
· n = − K (c(0))

ε

(
∂c(0)

∂t

)

�

at �, (A.2)

where K
(
c(0)

)
/ε is of order ε0.

An important step in homogenization is averaging: a quantity Q is integrated over the fluid
domain �l and then divided by the total volume of the PUC, |�|, represents the averaged
behavior 〈Q〉 = 1

|�|
∫
�l

Q drs, where the local scale coordinate rs = (xs, ys, zs) denotes a
point in �l. After this averaging step, the quantity 〈Q〉 is only a function of the global scale
coordinate rb = (xb, yb, zb). Applying this averaging procedure to Eq. 3.10 gives

1

|�|
∫

�l

∂c(0)

∂t
drs + 1

|�|divb

⎛

⎜
⎝

∫

�l

vc(0)drs

⎞

⎟
⎠ + 1

|�|
∫

�l

divs

(
vc(1)

)
drs

= 1

|�|
1

Pe

∫

�l

divs

(
gradb c(0)

)
drs + 1

|�|
1

Pe

∫

�l

divs

(
grads c(1)

)
drs, (A.3)

where divb is not dependent on the small scale coordinate rs and is therefore taken outside
the integral.

Application of the divergence theorem of Gauss converts the volume integral of the diver-
gence of a vector w in a periodic domain into a surface integral in the following manner:

∫

�l

divs w drs =
∫

�

w · n ds +
∫

∂�

w · n ds =
∫

�

w · n ds, (A.4)

where we use that the surface integral over the outer boundary vanishes due to the periodicity
of the unit cell. Applying Gauss’s theorem to Eq. A.3 leads to

〈∂c(0)

∂t

〉
+divb

〈
vc(0)

〉
= 1

|�| Pe

∫

�

(
gradb c(0)

)
· n ds+ 1

|�| Pe

∫

�

(
grad c(1)

)
· n ds.

(A.5)

Application of Gauss’s theorem to the third term in Eq. A.3 shows that this term is zero,
because of the � periodicity of vc(1) and the no-slip condition v = 0 on the grain surface
�. Note that |�| = 1, but we like to keep it for more transparent conversion to the full
dimensional model in Sect. 4.2.

For the boundary condition Eq. 3.14 another procedure applies: integration of the boundary
condition over the grain boundary leads to

∫

�

1

Pe
gradb c(0) · n ds+

∫

�

1

Pe
grads c(1) · n ds =−

∫

�

K (c(0))

ε

(
∂c(0)

∂t

)

�

ds at �.

(A.6)
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Substitution of this boundary condition in Eq. A.5 leads to

〈∂c(0)

∂t

〉
+ divb

〈
vc(0)

〉
= − 1

|�|
∫

�

K (c(0))

ε

(
∂c(0)

∂t

)

�

ds. (A.7)

We recall that c(0) is independent of the small scale coordinate rs and is therefore constant

over the PUC. Therefore, we can take the terms K (c(0))
ε

(
∂c(0)

∂t

)

�
outside the integral. We

obtain

〈∂c(0)

∂t

〉
+ divb

〈
vc(0)

〉
= − K (c(0))

|�|ε
∂c(0)

∂t

∫

�

ds = − K (c(0))

ϕ |�| ε
〈∂c(0)

∂t

〉
|�| , (A.8)

where |�| denotes the surface area of the grain boundary. Collecting the terms with
〈
∂c(0)

∂t

〉

we obtain

〈∂c(0)

∂t

〉
(

1 + K (c(0))

|�| ϕε
|�|

)

+ divb

〈
vc(0)

〉
= 0. (A.9)

This is the reactive transport equation, which is often used to describe adsorption–convection

transport problems in practice (Bear 1972). The factor K (c(0))
|�|ϕε

|�| =
δ
�

(
∂ca
∂c

)

c(0)

|�|ϕ |�| describes
the ratio of the adsorbed mass divided by the mass of the free concentration.

For the following it is useful to rewrite Eq. A.9 in a non-averaged form, i.e.,

ϕ
∂c(0)

∂t

(

1 + K (c(0))

|�| ϕε
|�|

)

+ ϕv̄ · gradb c(0) = 0, (A.10)

where we use
〈
∂c(0)

∂t

〉 = 1
|�|

∂c(0)

∂t

∫
�l

drs = �l|�|
∂c(0)

∂t = ϕ ∂c(0)

∂t . Therefore, ∂c(0)

∂t = 1
ϕ

〈
∂c(0)

∂t

〉
.

We applied the product rule of differentiation for the second term in Eq. A.8, the incom-
pressibility condition divs v = divb v = 0 and we define v̄ = 1

|�l|
∫
�l

vdrs, where |�l|
denotes the volume of the fluid domain. Tortuosity effects do not enter in this integration and
therefore v̄ represents the interstitial velocity, i.e., the Darcy velocity divided by the porosity.

For reasons of concise notation, we use the retardation factor R = 1 + K (c(0))
|�|ϕε

|�| > 1 or
K (c(0))
|�|ϕε

|�| = R − 1 and obtain

∂c(0)

∂t
+ v̄

R
· gradb c(0) = 0. (A.11)

Appendix B: Derivation of the Cell Equation

This Appendix derives the cell equation (3.13) and the corresponding grain boundary condi-
tion (3.15), which makes it possible to find the first order correction to the concentration. To
eliminate the time derivative from Eq. 3.10, we subtract Eq. 3.11 from Eq. 3.10 and obtain

(
v− v̄

R

)
· gradb c(0)+divs

(
vc(1)

)
= 1

Pe
divs

(
gradb c(0)

)
+ 1

Pe
divs

(
grads c(1)

)
.

(B.1)
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The global gradient gradb c(0) is acting as a driving force for the local flow and the local
concentration field c(1) is proportional to gradb c(0). If gradb c(0) is applied also in the
x-direction we obtain the longitudinal dispersion coefficient. If we apply it in the y-direction
or z-direction we obtain the transverse dispersion coefficient. For our unit cell there should
be no difference to apply either the pressure gradient or the concentration gradient in an
arbitrary direction to obtain one of the components of the dispersion tensor, but it can be
expected that an arbitrary direction gives problems in the numerical calculations.

In order to proceed, we use that Eq. B.1 is linear and therefore that c(1) is linearly related
to gradb c(0) (Sanchez-Palencia 1980), which in its most general form can be written as
c(1) = −→χ · gradb c(0), where −→χ is a vector. Note that the vector −→χ (x, y, z) also depends
on the space coordinates. Substitution of c(1) = −→χ · gradb c(0) in Eq. B.1 leads to

(
v− v̄

R

)
· gradb c(0) + divs

(
v ⊗ −→χ · gradb c(0)

)

= 1

Pe
divs((I + grads ⊗ −→χ ) · gradb c(0)), (B.2)

where we use the notation (v ⊗ −→χ ) for the product between the two vectors v and −→χ
and grads ⊗ −→χ for the product between the two vectors grads and −→χ . This product is
called the dyadic product. The dyadic product is a tensor with as elements, e.g., on the
(1, 2) position the x-component of one vector with the y-component of the other vector.
Note that v ⊗ −→χ �= −→χ ⊗ v. We use I to denote the unit tensor. This equation can be
used to evaluate the dispersion tensor. Indeed in Eq. B.2,

(
v− v̄

R

) · gradb c(0) is the convec-
tive/reaction/adsorption transport term, divs

(
(v ⊗ −→χ ) · gradb c(0)

)
the dispersion term and

1
Pe divs ((I + grads ⊗ −→χ ) · gradb c(0)) the diffusive transport term.

Equation B.2 is an equation for the PUC scale. Therefore, we need to eliminate gradb c(0)

from Eq. B.2. The term gradb c(0) can be considered a constant vector on the small scale,
because of the disparity of scales. By making various choices we can obtain the components
of −→χ. For instance, we consider the longitudinal (flow) direction gradb c(0) = −ex , where
we use the minus sign because the concentration decreases in the longitudinal direction. The
x-component of the vector −→χ is denoted by χx = −→χ · ex , and therefore −→χ · gradb c(0) =
−χx . We can use χx to obtain the first order correction c(1) to the concentration c(0) when the
system is subjected to a unit global gradient in the x-direction. The behavior of χx is therefore
a measure for the concentration fluctuations caused by dispersion as a result of the non-homo-
geneous nature of a porous medium. Next, we use that

(
v ⊗ −→χ ) · gradb c(0) = −χx v and(

grads ⊗ −→χ ) · gradb c(0) = −grads χx . Moreover, I · gradb c(0) = −ex = −grads xs.

Substitution of gradb c(0) = −ex in Eq. B.2 leads therefore to the source, convection–dif-
fusion equation

− v̄x

R
+ divs (v(χx + xs)) = 1

Pe
divs grads(χx + xs). (B.3)

The velocity v is the mass averaged velocity on the “Stokes” scale (see Sect. 2).
Substitution of c(1) = −→χ · gradb c(0) in boundary condition Eq. 3.14, combining with

Eq. 3.11 and looking at the case gradb c(0) = −ex leads with the relation between K
(
c(0)

)

and the retardation factor R defined above Eq. 3.11, i.e., K (c(0))
|�|ϕε

|�| =R−1 to

1

Pe

(
grads (χx + xs)

) · n = K (c(0))

ε

v̄x

R
= (R − 1) |�|

R|�| ϕv̄x at �, (B.4)
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where we used again that
(
grads ⊗ −→χ ) ·gradb c(0) = −gradsχx and gradb c(0) = −ex =

−gradsxs. Note that |�| is the dimensionless surface area of the grain, i.e., in the PUC with
a volume equal to one.

We can calculate the local concentration variations of the first order term with the help of
a numerical method. In this study, we use the finite element software package COMSOL to
evaluate Eqs. (3.13) and BC (3.15) to solve for χx .

Appendix C: The Equations with Terms of Order ε1 and ε2

This Appendix derives the diffusion–convection equation (3.16) for the first order concen-
tration term, which can be used to find the upscaled diffusion–convection equation and to
derive the dispersion terms. A higher order dimensionless convection–diffusion equation
and boundary condition lead to a more accurate description than Eq. 3.11. We derive these
equations in the same way as the lower order equations. The equation with terms of order ε1

from Eq. 3.4 is

∂c(1)

∂t
+ divb

(
vc(1)

)
+ divs

(
vc(2)

)
= 1

Pe
divb

(
gradb c(0)

)
+ 1

Pe
divs

(
gradb c(1)

)

+ 1

Pe
divb

(
grads c(1)

)
+ 1

Pe
divs

(
grads c(2)

)
. (C.1)

Application of the averaging procedure and Eq. A.4 leads to

〈∂c(1)

∂t

〉
+ divb

〈
vc(1)

〉
= 1

Pe
divb

〈
gradb c(0)

〉
+ 1

|�| Pe

∫

�

gradb c(1) · nds

+ 1

Pe
divb

〈
grads c(1)

〉
+ 1

|�| Pe

∫

�

grads c(2) · n ds, (C.2)

where
∫
�

(
vc(2)

) · n ds = 0 because of no-slip conditions and both divb and gradb are inde-
pendent of the local scale and therefore not subjected to the averaging procedure. We note
that |�| = 1, but it will play a role when we are transforming to full dimensional equations
in Sect. 4.2.

The boundary condition with terms of order ε2 from Eq. 3.5 is

1

Pe

(
gradb c(1)

)
· n + 1

Pe

(
grads c(2)

)
· n = − K (c(0))

ε

(
∂c(1)

∂t

)

�

at �. (C.3)

After integration over the grain boundary this equation becomes

∫

�

1

Pe
gradb c(1) · n ds+

∫

�

1

Pe
grads c(2) · n ds =−

∫

�

K (c(0))

ε

(
∂c(1)

∂t

)

�

ds at �. (C.4)

Substitution of the boundary condition (C.4) into Eq. C.2 leads to the complete higher order
convection–diffusion equation, i.e.,

〈∂c(1)

∂t

〉
+ divb

〈
vc(1)

〉
= 1

Pe
divb

(〈
gradb c(0)

〉
+

〈
grads c(1)

〉)
−

∫

�

K (c(0))

|�|ε

(
∂c(1)

∂t

)

�

ds.

(C.5)
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