Skip to main content
Log in

Sensitivity Aspects of Forchheimer’s Approximation

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Forchheimer’s equation, considered to be a nonlinear extension of the linear Darcy’s law, applies to a broader range of velocities for flows through porous media. In this article, we examine sensitivity of the Forchheimer model to permeability κ and a nonlinear coefficient β, using both experimental and computational data for validation. In addition to the direct observations, we were able to identify the role of temperature which influences the model by means of viscosity and density of the fluid. To get a quantifiable answer, we introduce a sensitivity index. Our results reveal a significant impact of the temperature to the model behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Andrade J.S., Costa U.M.S., Almeida M.P., Makse H.A., Stanley H.E.: Inertial effects on fluid flow through disordered porous media. Phys. Rev. Lett. 82(26), 5249–5252 (1999)

    Article  Google Scholar 

  • ANSYS FLUENT User’s Guide, Release 13.0, November 2010

  • Bear J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    Google Scholar 

  • Belhaj, H.A., Agha, K.R., Nouri, A.M., Butt, S.D., Islam, M.R.: Numerical and experimental modeling of non-Darcy flow in porous media. SPE Latin American and Caribbean Petroleum Engineering Conference, 27–30 April 2003, Port-of-Spain, Trinidad and Tobago, paper number. 81037-MS. doi:10.2118/81037-MS (2003)

  • Comiti C., Sabiri N.E, Montillet A.: Experimental characterization of flow regimes in varius porous media - III: limit of Darcy’s or creeping flow regime for Newtonian and purely viscous non-Newtonian fluids. Chem. Eng. Sci. 55, 3057–3061 (2000)

    Article  Google Scholar 

  • Ergun S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1652)

    Google Scholar 

  • Fourar M., Lenormand R., Karimi-Fard M., Horne R.: Inetria effects in high-rate flow through heterogeneous porous media. Transp. Porous Media 60(3), 53–370 (2005)

    Article  Google Scholar 

  • Friedel T., Voigt H.-D.: Investigation of non-Darcy flow in tight-gas reservoirs with fractured wells. J. Pet. Sci. Eng. 54, 112–128 (2006)

    Article  Google Scholar 

  • Garibotti C.R., Peszyńska M.: Upscaling Non-Darcy Flow. Transp. Porous Media 80(3), 401–430 (2009)

    Article  Google Scholar 

  • Guodong, J., Patzek, T.W., Silin, D.B.: Direct prediction of the Absolute permeability of unconsolidated and consolidated reservoir rock. SPE Annual Technical Conference and Exhibition, 26–29 September 2004, Houston, Texas, paper number: 90084-MS doi:10.2118/90084-MS (2004)

  • Hassanizadeh S.M., Gray W.G.: High velocity flow in porous media. Transp. Porous Media 2, 521–531 (1987)

    Article  Google Scholar 

  • Huang H., Ayoub J.: Applicability of the Forchheimer equation for non-Darcy flow in porous media. SPE J. 13, 112–122 (2008)

    Google Scholar 

  • Lage J.L., Antohe B.V.: Darcy’s experiments and the deviation to nonlinear flow regime. ASME J. Fluids Eng. 122, 619–625 (2000)

    Article  Google Scholar 

  • Lord, D.L., Rudeen, D.K., Schatz, J.F., Gilkey, A.P., Hansen, C.W.: DRSPALL: spallings model for the waste isolation pilot plant 2004 recertification. SANDIA REPORT SAND2004-0730, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550. February 2006.

  • Pan C., Hilpert M., Miller C.T.: Pore-scale modeling of saturated permeabilities in random spheres packing. Phys. Rev. E 64, 1–9 (2001)

    Article  Google Scholar 

  • Peszyńska, M., Trykozko, A.: Convergence and stability in upscaling of flow with inertia from porescale to mesoscale. Int. J. Multiscale Comput. Eng. Accepted December 2009.

  • Peszyńska M., Trykozko A., Kennedy K.: Sensitivity to parameters in non-Darcy flow model from porescale through mesoscale, Paper #46. In: Proceedings of CMWR XVIII in Barcelona, 21–24 June 2010. (http://congress.cimne.com/CMWR2010/Proceedings)

  • Peszyńska M., Trykozko A., Sobieski W.: Forchheimer law in computational and experimental studies at porescale and mesoscale GAKUTO International Series. Math. Sci. Appl. 32, 463–482 (2010)

    Google Scholar 

  • Samsuri, A., Sim, S.H., Tan, C.H.: An Integrated Sand Control Method Evaluation. SPE Asia Pacific Oil and Gas Conference and Exhibition. 9–11. September 2003, Jakarta, Indonesia, paper number: 80444-MS. doi:10.2118/80444-MS

  • Skjetne E., Ariault J.L.: New insights on steady, non-linear flow in porous media. Eur. J. Mech. B Fluids 18(1), 131–145 (1999)

    Article  Google Scholar 

  • Sobieski W.: Numerical analysis of sensitivity of Eulerian Multiphase Model for a spouted bed grain dryer. Dry. Technol. 26(12), 1438–1456 (2008)

    Article  Google Scholar 

  • van Battenburg D., Milton-Tayler D.: Discussion of SPE 879325, “Beyond Beta factors: a complete model for Darcy, Forchheimer, and Trans-Forchheimer flow in porous media. J. Pet. Technol. 57, 72–74 (2005)

    Google Scholar 

  • Zeng Z., Grigg R.: A criterion for non-Darcy flow in porous media. Transp. Porous Media 63, 57–69 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Sobieski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobieski, W., Trykozko, A. Sensitivity Aspects of Forchheimer’s Approximation. Transp Porous Med 89, 155–164 (2011). https://doi.org/10.1007/s11242-011-9760-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9760-7

Keywords

Navigation