Skip to main content
Log in

Security assessment framework for IoT service

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

An Erratum to this article was published on 07 September 2016

Abstract

What are the critical requirements to be considered for the security measures in Internet of Things (IoT) services? Further, how should those security resources be allocated? To provide valuable insight into these questions, this paper introduces a security assessment framework for the IoT service environment from an architectural perspective. Our proposed framework integrates fuzzy DEMATEL and fuzzy ANP to reflect dependence and feedback interrelations among security criteria and, ultimately, to weigh and prioritize them. The results, gleaned from the judgments of 38 security experts, revealed that security design should put more importance on the service layer, especially to ensure availability and trust. We believe that these results will contribute to the provision of more secure and reliable IoT services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abomhara, M., & Koien, G. M. (2014, May). Security and privacy in the Internet of Things: Current status and open issues. Paper presented at the 2nd international conference on privacy and security in mobile systems, Aalborg. doi:10.1109/PRISMS.2014.6970594

  2. Alam, S., Chowdhury, M. M., & Noll, J. (2011). Interoperability of security-enabled Internet of things. Wireless Personal Communications, 61(3), 567–586. doi:10.1007/s11277-011-0384-6.

    Article  Google Scholar 

  3. Attari, M. Y. N., Bagheri, M., & Jami, E. N. (2012). A decision making model for outsourcing of manufacturing activities by ANP and DEMATEL under fuzzy environment. International Journal of Industrial Engineering, 23(3), 163–174. Retrieved from http://ijiepr.iust.ac.ir/browse.php?a_code=A-10-149-2&slc_lang=en&sid=1.

  4. Babar, S., Mahalle, P., Stango, A., Prasad, N., & Prasad, R. (2010). Proposed security model and threat taxonomy for the Internet of things. In N. Meghanathan, et al. (Eds.), Recent trends in network security and applications (pp. 420–429). Berlin: Springer.

    Chapter  Google Scholar 

  5. Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), B-141–B-164. doi:10.1287/mnsc.17.4.B141.

  6. Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233–247. doi:10.1016/0165-0114(85)90090-9.

    Article  Google Scholar 

  7. Büyüközkan, G., & Çifçi, G. (2012). A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers. Expert Systems with Applications, 39(3), 3000–3011. doi:10.1016/j.eswa.2011.08.162.

    Article  Google Scholar 

  8. Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649–655. doi:10.1016/0377-2217(95)00300-2.

    Article  Google Scholar 

  9. Chen, J.-K., & Chen, I.-S. (2010). Using a novel conjunctive MCDM approach based on DEMATEL, fuzzy ANP, and TOPSIS as an innovation support system for Taiwanese higher education. Expert Systems with Applications, 37(3), 1981–1990. doi:10.1016/j.eswa.2009.06.079.

    Article  Google Scholar 

  10. Chen-Yi, H., Ke-Ting, C., & Gwo-Hshiung, T. (2007). FMCDM with fuzzy DEMATEL approach for customers’ choice behavior model. International Journal of Fuzzy Systems, 9(4), 236–246.

    Google Scholar 

  11. Cheng, C.-H. (1997). Evaluating naval tactical missile systems by fuzzy AHP based on the grade value of membership function. European Journal of Operational Research, 96(2), 343–350. doi:10.1016/S0377-2217(96)00026-4.

    Article  Google Scholar 

  12. Cirani, S., Ferrari, G., & Veltri, L. (2013). Enforcing security mechanisms in the IP-based internet of things: An algorithmic overview. Algorithms, 6(2), 197–226. doi:10.3390/a6020197.

    Article  Google Scholar 

  13. Covington, M. J., & Carskadden, R. (2013, June). Threat implications of the internet of things. In 2013 5th IEEE International conference on cyber conflict (pp. 1–12).

  14. Deng, H. (1999). Multicriteria analysis with fuzzy pairwise comparison. International Journal of Approximate Reasoning, 21(3), 215–231. doi:10.1016/S0888-613X(99)00025-0.

    Article  Google Scholar 

  15. Europol. (2014). The Internet Organized Crime Threat Assessment. European Cybercrime Centre (EC3). Retrieved from https://www.europol.europa.eu/iocta/2014/.

  16. Forman, E. H., & Gass, S. I. (2001). The analytic hierarchy process–An exposition. Operations Research, 49(4), 469–486. doi:10.1287/opre.49.4.469.11231.

    Article  Google Scholar 

  17. FTC. (2015). Internet of things: Privacy & security in a connected world. FTC Staff Report. Retrieved from https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf.

  18. Gabus, A., & Fontela, E. (1972). World problems, an invitation to further thought within the framework of DEMATEL. Geneva: Battelle Geneva Research Center.

    Google Scholar 

  19. Gazis, V., Sasloglou, K., Frangiadakis, N., & Kikiras, P. (2012, October). Wireless sensor networking, automation technologies and machine to machine developments on the path to the Internet of Things. Paper presented at 16th Panhellenic conference on informatics (PCI), Piraeus. doi:10.1109/PCi.2012.64

  20. Giachetti, R. E., & Young, R. E. (1997). A parametric representation of fuzzy numbers and their arithmetic operators. Fuzzy Sets and Systems, 91(2), 185–202. doi:10.1016/S0165-0114(97)00140-1.

    Article  Google Scholar 

  21. Guillemin, P., & Friess, P. (2009, September). Internet of things strategic research roadmap. The Cluster of European Research Projects. Technical Report.

  22. IoT-A. (2012). D4.2 concepts and solutions for privacy and security in the resolution infrastructure. FP7 Integrated Project Internet of Things Architecture. Retrieved from http://www.iot-a.eu/public/public-documents/d4.2/view.

  23. Karsak, E. E., & Tolga, E. (2001). Fuzzy multi-criteria decision-making procedure for evaluating advanced manufacturing system investments. International Journal of Production Economics, 69(1), 49–64. doi:10.1016/S0925-5273(00)00081-5.

    Article  Google Scholar 

  24. Leung, L. C., & Cao, D. (2000). On consistency and ranking of alternatives in fuzzy AHP. European Journal of Operational Research, 124(1), 102–113. doi:10.1016/S0377-2217(99)00118-6.

    Article  Google Scholar 

  25. Lin, C.-L., & Tzeng, G.-H. (2009). A value-created system of science (technology) park by using DEMATEL. Expert Systems with Applications, 36(6), 9683–9697. doi:10.1016/j.eswa.2008.11.040.

    Article  Google Scholar 

  26. Maras, M. H. (2015). Internet of Things: Security and privacy implications. International Data Privacy Law, 5(2), 99–104. doi:10.1093/idpl/ipv004.

    Article  Google Scholar 

  27. Mardani, A., Jusoh, A., & Zavadskas, E. K. (2015). Fuzzy multiple criteria decision-making techniques and applications–Two decades review from 1994 to 2014. Expert Systems with Applications, 42(8), 4126–4148. doi:10.1016/j.eswa.2015.01.003.

    Article  Google Scholar 

  28. Middleton, P., Kjeldsen, P., & Tully, J. (2013, November).Forecast: The Internet of things, worldwide. Stamford, CT: Gartner Research. Retrieved from https://www.gartner.com/doc/2625419/forecast-internet-things-worldwide.

  29. Mikhailov, L. (2004). Group prioritization in the AHP by fuzzy preference programming method. Computers & Operations Research, 31(2), 293–301. doi:10.1016/S0305-0548(03)00012-1.

    Article  Google Scholar 

  30. Ministry of Science, ICT and Future Planning. (2013). Vitamin Project Initiatives for creative economy in Korea. http://www.msip.go.kr/webzine/index.do, https://www.facebook.com/vitathon

  31. Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc Networks, 10(7), 1497–1516. doi:10.1016/j.adhoc.2012.02.016.

    Article  Google Scholar 

  32. Nedeltchev, P. (2014). The Internet of everything is the new economy. Cisco. Retrieved from http://www.cisco.com/c/en/us/solutions/collateral/enterprise/cisco-on-cisco/Cisco_IT_Trends_IoE_Is_the_New_Economy.html.

  33. Ning, H., Liu, H., & Yang, L. T. (2013). Cyberentity security in the Internet of Things. Computer, 46(4), 46–53. doi:10.1109/MC.2013.74.

    Article  Google Scholar 

  34. Önüt, S., Kara, S. S., & Işik, E. (2009). Long term supplier selection using a combined fuzzy MCDM approach: A case study for a telecommunication company. Expert Systems with Applications, 36(2), 3887–3895. doi:10.1016/j.eswa.2008.02.045.

    Article  Google Scholar 

  35. Park, K. C., Shin, J. W., & Lee, B. G. (2014). Analysis of authentication methods for smartphone banking service using ANP. KSII Transactions on Internet and Information Systems (TIIS), 8(6), 2087–2103. Retrieved from http://www.dbpia.co.kr/Article/3531347.

  36. Ramik, J. (2007). A decision system using ANP and fuzzy inputs. International Journal of Innovative Computing, Information and Control, 3(4), 825–837.

    Google Scholar 

  37. Raza, S., Shafagh, H., Hewage, K., Hummen, R., & Voigt, T. (2013). Lithe: Lightweight secure CoAP for the internet of things. IEEE Sensors Journal, 13(10), 3711–3720. doi:10.1109/JSEN.2013.2277656.

    Article  Google Scholar 

  38. Roman, R., Zhou, J., & Lopez, J. (2013). On the features and challenges of security and privacy in distributed internet of things. Computer Networks, 57(10), 2266–2279.

    Article  Google Scholar 

  39. Saaty, T. L. (1996). The analytic network process: Decision making with dependence and feedback; the organization and prioritization of complexity. Pittsburgh, PA: RWS Publications.

    Google Scholar 

  40. Saaty, T. L. (2006). The analytic network process. In T. L. Saaty & L. G. Vargas (Eds.), Decision making with the analytic network process (pp. 1–26). Berlin: Springer.

    Chapter  Google Scholar 

  41. Shin, D. (2010). The effects of trust, security and privacy in social networking: A security-based approach to understand the pattern of adoption. Interacting with Computers, 22(5), 428–438.

    Article  Google Scholar 

  42. Shin, D. (2014). A socio-technical framework for Internet-of-Things design: A human-centered design for the Internet of Things. Telematics and Informatics, 31(4), 519–531.

    Article  Google Scholar 

  43. Shin, D. (2015). Effect of the customer experience on satisfaction with smartphones: Assessing smart satisfaction index with partial least squares. Telecommunications Policy, 39(8), 627–641.

    Article  Google Scholar 

  44. Sun, C.-C. (2010). A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods. Expert Systems with Applications, 37(12), 7745–7754.

    Article  Google Scholar 

  45. Syamsuddin, I., & Hwang, J. (2010, October). A new fuzzy MCDM framework to evaluate e-government security strategy. Paper presented at 2010 4th international conference on application of information and communication technologies, Uzbekistan.

  46. Tadić, S., Zečević, S., & Krstić, M. (2014). A novel hybrid MCDM model based on fuzzy DEMATEL, fuzzy ANP and fuzzy VIKOR for city logistics concept selection. Expert Systems with Applications, 41(18), 8112–8128. doi:10.1016/j.eswa.2014.07.021.

    Article  Google Scholar 

  47. Tavana, M., Zandi, F., & Katehakis, M. N. (2013). A hybrid fuzzy group ANP-TOPSIS framework for assessment of e-government readiness from a CiRM perspective. Information & Management, 50(7), 383–397.

    Article  Google Scholar 

  48. Tseng, M.-L. (2009). Using the extension of DEMATEL to integrate hotel service quality perceptions into a cause-effect model in uncertainty. Expert Systems with Applications, 36(5), 9015–9023. doi:10.1016/j.eswa.2008.12.052.

    Article  Google Scholar 

  49. Turskis, Z., Zavadskas, E. K., & Peldschus, F. (2009). Multi-criteria optimization system for decision making in construction design and management. Engineering Economics, 61(1), 7–17.

    Google Scholar 

  50. Tuzkaya, G., Ozgen, A., Ozgen, D., & Tuzkaya, U. (2009). Environmental performance evaluation of suppliers: A hybrid fuzzy multi-criteria decision approach. International Journal of Environmental Science & Technology, 6(3), 477–490. doi:10.1007/BF03326087.

    Article  Google Scholar 

  51. Tuzkaya, U. R., & Önüt, S. (2008). A fuzzy analytic network process based approach to transportation-mode selection between Turkey and Germany: A case study. Information Sciences, 178(15), 3133–3146. doi:10.1016/j.ins.2008.03.015.

    Article  Google Scholar 

  52. Uygun, Ö., Kaçamak, H., & Kahraman, Ü. A. (2014). An integrated DEMATEL and Fuzzy ANP techniques for evaluation and selection of outsourcing provider for a telecommunication company. Computers & Industrial Engineering,. doi:10.1016/j.cie.2014.09.014.

    Google Scholar 

  53. Van Laarhoven, P., & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11(1), 199–227. doi:10.1016/S0165-0114(83)80082-7.

    Google Scholar 

  54. Vuković, D. (2014). Security issues in Internet of Things (IOT) related to passive RFID tags. Facta Universitatis, Series: Automatic Control and Robotics, 13(2), 97–105.

    Google Scholar 

  55. Weber, R. H. (2010). Internet of Things-New security and privacy challenges. Computer Law & Security Review, 26(1), 23–30. doi:10.1016/j.clsr.2009.11.008.

    Article  Google Scholar 

  56. Wu, W.-W., & Lee, Y.-T. (2007). Developing global managers’ competencies using the fuzzy DEMATEL method. Expert Systems with Applications, 32(2), 499–507. doi:10.1016/j.eswa.2005.12.005.

    Article  Google Scholar 

  57. Yan, Z., Zhang, P., & Vasilakos, A. V. (2014). A survey on trust management for Internet of Things. Journal of Network and Computer Applications, 42, 120–134. doi:10.1016/j.jnca.2014.01.014.

  58. Yang, H.-W., & Chang, K.-F. (2012). Combining means-end chain and fuzzy ANP to explore customers’ decision process in selecting bundles. International Journal of Information Management, 32(4), 381–395. doi:10.1016/j.ijinfomgt.2011.11.005.

    Article  Google Scholar 

  59. Yang, Y. P. O., Shieh, H. M., & Tzeng, G. H. (2013). A VIKOR technique based on DEMATEL and ANP for information security risk control assessment. Information Sciences, 232, 482–500. doi:10.1016/j.ins.2011.09.012.

    Article  Google Scholar 

  60. Yeh, T.-M., & Huang, Y.-L. (2014). Factors in determining wind farm location: Integrating GQM, fuzzy DEMATEL, and ANP. Renewable Energy, 66, 159–169. doi:10.1016/j.renene.2013.12.003.

    Article  Google Scholar 

  61. Yüksel, İ., & Dağdeviren, M. (2010). Using the fuzzy analytic network process (ANP) for Balanced Scorecard (BSC): A case study for a manufacturing firm. Expert Systems with Applications, 37(2), 1270–1278. doi:10.1016/j.eswa.2009.06.002.

    Article  Google Scholar 

  62. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hee Shin.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11235-016-0228-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, K.C., Shin, DH. Security assessment framework for IoT service. Telecommun Syst 64, 193–209 (2017). https://doi.org/10.1007/s11235-016-0168-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-016-0168-0

Keywords

Navigation