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Abstract
A commonly held background assumption about the sciences is that they connect
along borders characterized by ontological or explanatory relationships, usually given
in the order of mathematics, physics, chemistry, biology, psychology, and the social
sciences. Interdisciplinary work, in this picture, arises in the connecting regions of
adjacent disciplines. Philosophical research into interdisciplinary model transfer has
increasingly complicated this picture by highlighting additional connections orthog-
onal to it. But most of these works have been done through case studies, which due
to their strong focus struggle to provide foundations for claims about large-scale rela-
tions between multiple scientific disciplines. As a supplement, in this contribution, we
propose to philosophers of science the use of modern science mapping techniques to
trace connections betweenmodeling techniques in large literature samples.We explain
in detail how these techniques work, and apply them to a large, contemporary, and
multidisciplinary data set (n=383.961 articles). Through the comparison of textual
to mathematical representations, we suggest formulaic structures that are particularly
common among different disciplines and produce first results indicating the general
strength and commonality of such relationships.

Keywords Model templates · Computational templates · Modeling practice ·
Formulas · Science mapping · Digital humanities · Computational philosophy

1 Introduction

How are the sciences organized? Given that individual disciplines do not just stand
next to each other in an unrelated fashion, but have overlapping objects of inquiry,
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and often borrow methods from their neighbors, it seems sensible to ask what organi-
zation arises among them. One view that has been historically prominent, is that the
sciences are organized in a somewhat hierarchical order, which leads from physics
over chemistry to biology, and from biology and neurology on to psychology and the
social sciences.1 The organization principle along this gradient is frequently character-
ized by growing complexity, by ontological relationships (e.g. of composition), or by
explanatory relationships. Interdisciplinary work, under this view, tends to occur at the
borders of connected areas, whose objects of study blend into each other. Other com-
mon views might highlight a contrast between more theoretical and practical fields,2

in which more applied fields connect to mathematics, and the more theoretical areas
of computer science and physics.

Philosophers of science have further complicated this picture, by highlighting
connections between scientific disciplines orthogonal to these arrangements.3 In par-
ticular, the recognition of interdisciplinary similarities of models, which can arise
throughmodelmigration or the convergent evolution ofmodeling practices, has shifted
our image of what factors enable disciplinary contacts. Philosophers have analyzed
these connections throughnotions such as computational templates,4 model templates5

and theoretical templates,6 citing the Lotka-Volterra-, the Kuramoto-, and the Ising-
model, various commonly used statistical distributions, and generative networkmodels
as primary examples. Examples that, both in the scientific literature, as well as in the
philosophical literature referencing it, are commonly introduced by one central math-
ematical formula.

The analyses of these examples have greatly contributed to our understanding of
interdisciplinarity and model transfer. But due to their focus on specific cases, there
are certain limits placed on how much they can tell us about the extent to which the
underlying mechanisms play a role in the sciences seen as a whole. The investigated
cases might for example turn out to be rare episodes uncharacteristic of the common
conduct of scientists in a domain, or they might attach themselves to views or person-
alities that turn out to be at the very fringes of their disciplines. Demonstrating that one
template is in use in very different places, even though it might appear there under very
different names, and with little attribution to earlier occurrences in other disciplines,
is challenging on its own.7 It seems even harder to show that this is a phenomenon
that is substantial enough to be considered a structuring principle of the sciences.

1 Auguste Comte (Comte and Martineau 2009) is commonly identified as the ideas modern originator, c.f.
(Bourdeau 2022; Cole 1983). See also Arsenault et al. (2006), Fanelli and Glänzel (2013), Fanelli (2010),
for empirical evidence for the hierarchies reality.
2 Peirce, for example, varies Comte’s classification by separating science of discovery, of review, and
practical science. See Midtgarden (2020) for an overview.
3 See Humphreys (2002, p. 5), from whom the present investigation takes its starting point.
4 Humphreys (2002, 2004).
5 Knuuttila et al. (2007), Knuuttila and Loettgers (2014, 2016).
6 Humphreys (2019).
7 For a general account of how it can be challenging to derive theoretical conclusions from case studies in
philosophy of science, see Kinzel (2016).
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Large-scale questions like this, asked about an ever-growing scientific landscape,8

as well as new technological possibilities and the increasing availability of data-sets,
have recently led some philosophers to embrace the use of digital methods.9 These
have become attractive to researchers, as they allow engagement with vast amounts of
material that due to their scale are inaccessible to traditional methods.

In this contribution we will make use of such novel computational techniques,
drawing on the science mapping literature, to provide a first bird’s eye view of what
the answer to this question might look like. After a brief overview of how techniques
of science mapping have become adopted, we will describe a technique that allows
us to find connections between the mathematical apparatus of articles, by calculating
the similarities of formulas. We will apply this technique to a sample of 383.961
preprints drawn from various disciplines, and through the comparison of textual to
mathematical maps suggest formulaic structures that link disciplines, as well as those
that are particular to specific disciplines.

2 Sciencemapping

Categorizations of science and of the knowledge it produces, have a long history in
philosophy. Some philosophers, like Hobbes10 or the Encyclopédistes11 also chose
to visualize their classification schemes in tree-like structures, a visual history which
Weingart (2013b) traces back to Porphyrian trees, and expands in a modern shift
towards web-like models of science.12

With the introduction of digital databases of scientific output and the development
of the powerful computational resources needed to process them, new approaches to
the structural mapping13 of the sciences have become possible. Their attraction lies in
their ’data-drivenness’, which means that the structures they reveal are thought to be
determined only by the available material and the method of processing. And as the
method of processing is usually not domain-specific, so the thought goes, they allow
the connections to show themselves relatively removed from the structures imposed
on them by institutions and classification systems.

There are several data types commonly used in the production of science maps.
Most commonly, we see mappings that make use of some type of citation data, either

8 See Barnett and Doubleda (2020), Bornmann and Mutz (2015), Fortunato et al. (2018), Larsen and von
Ins (2010) for estimates of the growth rates of modern science.
9 SeePence andRamsey (2018) for a detailed version of this argument, andMizrahi (2020) for an assessment
of the case-study method in this respect. See Lean et al. (2021) for an account of how to bridge the gap
between digital methods and practice-based philosophy of science. See, also, among others Malaterre and
Chartier (2021); Noichl (2021); Malaterre et al. (2020); Herfeld and Doehne (2019); Böhm et al. (2022)
for applications of computational methods in the philosophy of science. See also Sørensen and Johansen
(2020) for a philosophical study of mathematical diagrams usingmachine-learningmethods, whose outlook
is particularly close to our present one.
10 Hobbes (1651, p. 55), see also Adams (2019).
11 d’Alambert (1821, p. 115).
12 Weingart (2013a) also provides a nice illustrative collection of these diagrams. For another great collec-
tion of science maps, see Börner (2010).
13 See Petrovich (2020) for a very good overview.
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Fig. 1 A science map, based on all preprints archived in the arXiv and the bioRxiv, in the years 2019 and
2020. The mapping suggests a gradient from physics, via mathematics and computer science to the life
sciences.We also observe, on the lower right, a relatively clear separation between the arXiv and the bioRxiv.
We consciously avoid reifying clusters by assigning labels to them. Instead, we indicate the keywords that
achieve the highest summed-up tf-idf scores for each cluster, indicating the words that are most specific to
each cluster, as opposed to the rest of the sample. This and all following plots were produced in matplotlib,
and typeset using Adobe InDesign

establishing links between articles if one article cites another, if two articles are cited
by the same text (co-citation networks), or if they cite the same text (bibliographic cou-
pling).14 The other common data source for mappings of science are texts themselves,
which can be arranged by their semantic content.

We present such a map in Fig. 1. We will go into much more detail about how
it was made, and how we should interpret it, in the next section. For the moment
it suffices to say that it consists of 383.961 recent preprints, drawn from physics,
mathematics, computer science, and the life sciences, and arranged by an algorithm
that was unaware of their origin. Clusters in the mapping are labeled by their most
distinct keywords. It is not hard to read the involved disciplines from them. Towards
the top of the graphic, we note various sub-disciplines of physics (dark violet, red),

14 See Boyack et al. (2005), Klavans and Boyack (2017). See also van Eck and Waltman (2010) for an
interactive interface for the construction and exploration of citation networks.
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moving down into mathematics (orange), computer science (light green), and finally
at the bottom, the life sciences (blue).15

Because of the peculiarity of the data source (it lacks chemistry, and therefore fails
to establish links between physics and biology, it also lacks most social sciences),
we shouldn’t make any too involved claims about the global structure of science as a
whole from this map, although it would seem to fit reasonably well into the consensus
reported in the literature.16 But we can point out that locally, the arrangement and
connectivity of the clusters make a lot of sense. The cluster of neurology at the bottom
left for example fades upwards into the computer science cluster associated with the
training of neural networks. The, at the time of sampling, just emerging cluster of
Covid-19-literature, takes up space between the life sciences and computer science as
well, owing to the computerized nature of modeling and prediction during the early
pandemic. Towards the middle left we see an elongated cluster of distinct network
science traveling down in parallel, with several connections to areas in mathematics
and computer science. All in all, the picture seems to correspond relatively well to
a view of the sciences as thematically separated units, which are partially linked by
interdisciplinary endeavors. We further note a kind of theoretical ’backbone’ leading
from theoretical physics, over some areas ofmathematics, to parts of computer science,
suggesting a connection of theoretical fields, from which more application-centered
ones radiate.

The thematic map, therefore, seems to encapsulate many of the common-sense
assumptions about the structure of science, which we had identified above. We can
now ask how it compares to a picture that brings the connectivity introduced by
mathematical methods to the forefront. But first, we need to get into some technical
details about how these maps are produced, and what we need to keep in mind when
reading them.

3 Sample description

In the present contribution, we draw our sample from two large preprint-repositories,
the well-established arXiv, which mainly contains material from physics, informatics,
mathematics, and the younger bioRxiv, which is focused on the life sciences. Preprints
are by now a very common form of scholarly communication in many (although not
all) scientific disciplines, both to scientific peers and the general public,17 whichwould
make them of interest to philosophers of science, even if it weren’t true that a sizeable
share of them later do become regular journal articles.18 While preprints certainly do
not form a perfect mirror image of the scientific literature in their respective domains,
they can still be considered a reasonably close proxy. In our case,we focus on preprints,
because they are commonly archived in large databases of relatively uniform format,

15 We should note here that the actual orientation of the mapping is an artifact of the algorithm, and has no
meaning. Rotated, or mirrored mappings would be equivalent to the original while stretching or distorting
the maps would not be permissible.
16 Compare Klavans and Boyack (2009).
17 See the results of Carlson and Harris (2020).
18 See Abdill and Blekhman (2019), Xie et al. (2021).
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which is not the case for published material. We are in particular need of a uniform
format because, without it, the reliable parsing of formulas becomes an exceedingly
difficult problem. This is also the reason why, in this contribution, chemistry and the
social sciences have been left out. While chemists have recently begun to establish
a central, uniformly formatted preprint-archive, ChemRxiv, it has not been as well
adopted at the time of writing, as the ones included in our sample, and can’t be
considered as representative. And while some social sciences have strong preprint
cultures, they tend to archive their preprints solely in pdf format, with source files
remaining inaccessible.

Because we are nonetheless interested in interdisciplinary relationships and attempt
to construct a large, contemporary, yet consolidated multidisciplinary sample, we
settled on all preprints archived in the arXiv and the bioRxiv in the years 2019 and2020,
which makes for a total of 383.961 articles, 49.769 of which stem from the bioRxiv,
and 334.192 from the arXiv. Full preprints and associated data were downloaded
using the available AWS-services19 maintained by the respective providers. Metadata
for the BioRxiv was downloaded using the provided API, metadata for the arXiv
was downloaded from the Google-Bucket provided by Cornell University (2020) and
kaggle.20

4 Processing

4.1 Constructing the thematic mapping

To construct the thematic mapping, we proceed in a mode of computational text anal-
ysis that has become fairly common in recent years.21

The first step of the process is illustrated in Fig. 2. We first clean the texts by
removing words with less or equal to three letters,22 non-word characters, and super-
fluous white space. We then lemmatize words,23 which means that inflected words are
moved into a uniform base form, so that e. g. ‘animals’ becomes ‘animal’ and ‘playing’
becomes ‘play.’ We then transform the texts into so-called bag-of-words-vectors. This
means that we construct a very large table (383961 rows * 30835 columns, imple-
mented as a scipy-sparse matrix24 in which each row represents one of the articles in
our sample, and each column represents a word.25 Each cell in the table contains how

19 We thank Herold (2022) for their code and advice.
20 See Clement et al. (2019) for the introduction of the collection-mechanism.
21 The whole code of this analysis is made available in a GitHub repository under https://github.com/
MNoichl/comp_templates. Similar analyses of textual data can found in Low et al. (2020), Javier et al.
(2022), Ordun et al. (2020).
22 This makes sense for our task, as we are interested in thematic structures. If we were trying to measure
stylistic differences between articles, we shouldn’t be as drastic here.
23 Using nltk’s (Bird et al. 2009) implementation of the word-net-lemmatizer.
24 Virtanen et al. (2020).
25 This part of the analysis, including the application of SVD, is conducted in the framework provided by
scikit-learn, Pedregosa et al. (2011).
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Fig. 2 The vectorization process, illustrated. For each text we count how often each word present in the
vocabulary appears, building a hugeword-frequency table.We then adjust these counts using a tf-idf-scheme,
which increases the impact of less common words

often each word occurs in the respective article. This approach is called bag-of-words,
because it neglects all internal structures of the texts, and reduces them to distribu-
tions of word frequencies. We choose this simple, yet remarkably effective approach,
because it makes our later analyses straightforwardly interpretable, as well as easier
to troubleshoot.

Most cells contain the number zero, as most words do not occur in most articles.
We assume that very common, general words, like ‘model’, tell us rather little about
the thematic structure that we are interested in. But because they are so common,
they might exert a strong influence on our results. For this reason, we first remove
common stopwords, like ‘they’, ‘them’ or ‘and’,26 and then re-scale the counts in
a way that increases the weight of very uncommon words, while decreasing that of
common words, using what is called a tf-idf-weighting-scheme. To conduct tf-idf
(Term frequency - inverse document frequency), we first calculate a weight for each
word. To do this we divide the number of documents by the number of documents in
which the word of interest appears, resulting in a number that will be far larger for rare
words than for frequent ones. We then take the logarithm of this number, to moderate

26 We use the list implemented in nltk Bird et al. (2009). For an overview of commonly used lists of
stopwords, c.f. Nothman et al. (2018).
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Fig. 3 In SVD, the initial data-matrix Xt f id f gets decomposed into three constituents -U which contains the

Eigenvectors of the row-wise covariance-matrix, V T which contains those of the column-wise covariance-
matrix, and� which contains the Eigenvalues.Whenmultiplicated together, thesematrices result in Xt f id f .
(We can’t go into the exact details of how this decomposition is accomplished computationally.) If we
truncate them though, so that e. g. only the first 200 columns of U , the first 200 rows of V T , and the

upper 200 * 200 corner of � remain and multiply the resulting matrices Û , ˆV T , �̂, we get as a result an
approximation of the original matrix. Indeed we notice that X̂t f id f in the lower-left exhibits nearly the
same patterns as Xt f id f , having its values only slightly jittered. As we are only interested in recovering the
row-wise correlations with the major axes in the dataset, we can directly go on to conduct our calculations
with the small matrices Û · �̂. For further introduction to the process, see Petrovich (2020)

its effect, before we multiply it with every word count in the column that is associated
with the word. This increases the influence of infrequent words, which are more useful
for differentiating between texts while decreasing that of very frequent ones.

The resulting table of tf-idf-scores then gets passed to a technique called Singular
Value Decomposition. SVD is a general method that decomposes one matrix into
three new ones, which, when multiplied with each other, result in the initial one.
These matrices can be interpreted as the Eigenvectors of the covariance matrices of
the rows and columns, and their Eigenvalues. This means that they encode how much
individual data points co-varywith the dominant axes of co-variance, or in otherwords,
how much they agree with the most dominant trends in our dataset. A more detailed
explanation of this technique is given in Fig. 3.

By multiplying together only the parts of these matrices, which are responsible
for the 150 most dominant features, we can achieve an approximation of the initial
matrix, which keeps intact its most important features, while resulting in a much
smaller dataset. The reason for conducting this intermediate step is twofold: on the
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one hand, it decreases computation times downstream by making the dataset smaller.
On the other hand, it reduces noise in the dataset, as the resulting matrix keeps the
largest axes of variance in the dataset intact, but clears out smaller ones.

In the final step towards ourmapping,we conductUniformManifold Approximation
and Projection (McInnes et al. 2018) on the SVD-vectors. UMAP is a relatively
young dimensionality-reduction and visualization technique, which has quickly risen
to popularity in a wide range of analysis tasks.27 While it can play a variety of roles
in processing pipelines, its current main application is to give a two-dimensional
representation on a very high-dimensional dataset.

It should at this point be clearly stated, that it is impossible to perfectly fulfill this
task in the case of most natural datasets - 150 dimensions just do not fit into two.28 But
in many cases of natural datasets, the sub-processes in the generation of the dataset in
which we are most interested, take place in a space of a dimensionality that is lower
than that of the raw dataset.

We can understand this by using our textual dataset as an example. As we recall, it
springs from two largely non-overlapping sources: Texts drawn from the life sciences,
and texts drawn mainly from physics and informatics. So while there is of course
much room for overlap, we expect this split to be reflected in our dataset in some
major way. This is one important aspect of the data-generation-process, that has no
trouble fitting into two dimensions, even though the actual dataset if prepared through
the bag-of-words method, will be of far higher dimensionality. And indeed, if we look
at our textual map in Fig. 1, colored by the source of the articles, we find a relatively
clear arrangement along the y-axis. So while remaining necessarily unsatisfactory to
some degree, we can expect to find global structures represented in our mappings,
which, if interpreted with adequate care, can yield deep insights into our dataset.

With these cautionary remarks out of the way, we can now proceed to give a rough
explanation of how the algorithm works. The process is also visualized in Fig. 4.
It begins by constructing a nearest neighbor graph from our dataset, in which each
data point is linked to a predefined number of closest neighbors. The ‘nearness’ of
data points is determined by calculating the cosine-similarity between the rows in the
dataset, a measure that is usually recommended for textual data because it weights the
individual features similarly. If we interpret the rows of our working dataset as vectors
that determine positions in a vector space, we can understand cosine similarity as the
angle between these vectors in the origin. The weight of the edges in this graph is
determined by the similarities, and it is what will later co-determine how near or far
from each other points are placed in our mapping.

The issue we now run in, which is commonly known as one instance of the ‘curse
of dimensionality’, is that in this high-dimensional space, most distances appear to be
nearly identical, which means that the weights are not very informative as they are.

27 We must note here that UMAP is by no means the only available technique for this purpose. Further
work might also consider the use of t-SNE, which, as González-Márquez et al. (2022) has recently argued,
is well suited for the representation of text-corpora.
28 These problems have recently led to sharp critiques of the usage of these and similar techniques in the
field of single cell-genomics (Chari et al. 2021), where they had become very established. As we do not use
the coordinates acquired through UMAP for further analysis and remain firmly on the side of explorative
data analysis, we believe to avoid the issues that linger here for the most part.

123



107 Page 10 of 22 Synthese (2023) 201 :107

Fig. 4 A graphical explanation of UMAP. We begin by constructing a graph that links each data point to n
of its nearest neighbors. We then reweigh the edges of the graph and lay them out in the low-dimensional
space using a force-directed algorithm. Graphic inspired by Lee et al. (2021)

For this reason, UMAP employs a reweighing scheme that adjusts weights based on
local distance measures at each node of our graph.

Having conducted this reweighing step, we now have to find a satisfying layout for
the graph. UMAP generally starts by conducting a quick spectral embedding (a rough
first layout) of the graph and assigning the resulting coordinates as initial positions
to the data points. From there it follows the common idea of many network-layout
algorithms, which is to have a general repulsive force, which pushes all nodes of
the network constantly away from each other while using the weights as links that
pull them together at the same time. As shown in Fig. 4, simulating the interplay of
these two forces on the nodes moved by them, yields after a few hundred simulation
steps an approximation of the initial configuration of similarities of points in our
low-dimensional, perceivable data space.

We should remind the reader at this point again about the noted imperfections of
the resulting mappings. To give an example of one common issue that can arise due
to the construction of the nearest neighbor graph: If a data point were to be com-
pletely disconnected because it was just so far away from all the other points that
it couldn’t be included in any other points’ nearest neighbors, the algorithm would
have no idea where to place it, and it would fluctuate just randomly around (and away
from the other points) during the layout process. This, and similar problems, don’t
necessarily endanger our purpose. But it is good to keep in mind, that not all distances,
especially between individual points instead of larger groupings, can be expected to
be interpretable. Instead, it makes more sense to visualize a whole range of possible
embeddings, as we do in Fig. 5, to see which features of our embedding remain con-
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Fig. 5 Results of different runs of the UMAP algorithm, demonstrating a range of possible outcomes
under different hyper-parameter settings. We note how some features of the embedding, e.g. the left-right
orientation are contingent, while the global structure stays relatively robust, except under very small values
of the n-nearest neighbors parameter

sistent over changing hyper-parameters and the uncertainties of the stochastic layout
processes.

An additional sanity check here is to conduct clustering using a graph clustering
algorithm29 on the nearest neighbor graph underlying the embedding.As the clustering
solution is independent of the layout process, it can flagmismatches for us, and provide
insights into the nature of the structures that arise in the UMAP mapping.

We now turn to the analogous construction of the map of mathematical content.

29 We here use the implementation of the Louvain-algorithm by Hollocou (2020).
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Fig. 6 The formula-preprocessing process inspired by Tangent (Zanibbi et al. 2016), using the implemen-
tation from TangentCFT (Mansouri et al. 2019)

4.2 Constructing themathematical mapping

In constructing our map of the mathematical content, we will try to keep as close to
the way we constructed our thematic map as possible. But calculating the similarities
between equations is not trivial, and is a far less studied problem than that between
texts. A simple bag-of-words approach as outlined above for examplemust fail because
the number of individual symbols used inmathematics ismuch smaller than the number
of words that can be found in a natural language corpus.

Even worse, often some mathematical structure might be filled with different sym-
bols or names for variables, even though the same calculation is conducted, as seems
to be often the case with p, q and φ, ρ respectively. But an approach that skips all
symbols in favor of pure surface structures will be insufficient as well, as mathematic
content does not determine specific surface structures: the same calculation can be
described through formulas, that on the surface level seem to be quite different. The
straightforward operation of the mean, for example, can look like m1+...+mN

N , as well

as 1
N

∑N
i mi . But just counting the co-occurrences of specific symbols between for-

mulas, in the case of the mean e. g. m, N , ...
...
doesn’t suffice either, as the individual

symbols have semantics that in themselves are quite complicated and multifaceted.
The letter n, for example, tends to take on a very specific meaning, denoting the size
of a (sub-)group, which only rarely will be replaced by other letters in that position.
Similar things are true for x , y, and z, which commonly, but not always, are used to
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indicate spatial coordinates. The letter i might interact with n as a counting variable,
but on its own will more often denote the imaginary unit. And the letter e can rarely
be replaced by the preceding d without a complete change in meaning. This problem
is even more challenging, as the same is not true for all letters and symbols, some of
which have far more free or diffuse semantics.

For these reasons, our similarity score can’t depend on a simple idea of how often
a certain letter or symbol is present in the two formulas whose similarity is to be
determined. It has to be aware of the context in which a certain symbol presents itself.
It has to understand that e.g. a � and a ‘+’ might in some contexts encode similar
ideas, and totally unrelated ones in others.

We find an implementation of an approach that takes this into account in Tan-
gentCFT, introduced by Mansouri et al. (2019), to whom our contribution is very
much indebted. Their basic insight is that it is more promising to encode formulas
not through individual symbols or pure structures, but through a combination of those
ideas: A list of structure-encoding symbol-tuples which are then fed to a language
model that is able to learn context-depending representations.

The general process is described in Fig. 6. After all formulas have been brought into
a uniform30 LATEX-format, they are transformed to Math-ML, which encodes them
in a hierarchical structure, in which each node gets linked to the one directly above.
In the term 1

ed
, for example, the symbols e, d and the superscript relation between

them all get linked to the fraction in the denominator position, while 1 gets linked to
the numerator. Each of these linkages along the tree can be considered as a tuple of a
relation and a symbol, which can be used in further modeling.

This representation scheme was initially proposed by Zanibbi et al. (2016) with the
idea to build a search engine for formulas. Their idea was that formulas that shared
large parts of these graphs could sensibly be considered similar, and would then be
returned by the search engine. While this had shown some promise, this approach still
struggled with the complexities and indeterminacies of the mathematical language,
which we have outlined above.

For this reason, more recent approaches have turned to embedding the hierar-
chical formula representations. This means that instead of just counting the tuples,
we try to learn representations that encode the similarities between them and make
these useful for the representation of whole formulas. Mansouri et al. (2019) use
the FastText-architecture for this purpose. FastText was initially developed by Face-
books AI research-lab as a technique for word embedding, with the intention of
text-classification.31 In the presented version of the technique, we use tuples, where
in the standard use-case one would use words.

Very roughly explained, FastText ’learns’ the semantic relations between words,
from the contexts in which individual words occur.32 For this, it cuts up all words
into chunks of three letters, for which it will learn representations as well. This way it
can later also encode unknown, rare, or inflected words if they contain already known

30 As the BioRxiv archives formulas as images, we had to employ an online service, mathpix.com for
conversion.
31 Joulin et al. (2016), Bojanowski et al. (2017).
32 For a philosophical localization of word-embeddings, see Gastaldi (2021).
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Fig. 7 A simplified illustration of the training of the FastText-model. The one-hot encoded vectors, on the
left, which represent one ’word’ in the whole vocabulary, select its representation in the hidden layer, as
well as that of its sub-word parts. The sum of these vectors is then used to form a positive prediction on
the context of the word, and a negative prediction on randomly selected, unrelated words. The prediction
errors are then used to adjust the weights in the hidden layer. In the end, we use those internal weights to
represent our formulas in further processing

sub-word parts.33 At the beginning of the training process, all representations are just
random strings of numbers, without any informational content. The algorithm now
repeatedly - many hundred-thousand times - takes chunks of text of a certain size (the
window size, which we set in our model to a value of 13), then selects the word in
the middle of the chunk as the target word, while the surrounding words are kept as
context words. It looks up the representations of all the sub-word representations of
this word and sums them together with the word representation itself. It then retrieves
all the representations that we have gotten so far for the context words, as well as
some additional randomly chosen ’contrast’ words (in our case 15 of them). Through
a process called stochastic gradient descent, it then ’jitters’ the representations of the
context words in a way that makes them more similar to that of the target word, while
at the same time moving them away from those of the randomly chosen contrasts.
We illustrate this feedback process called backpropagation in Fig. 7. In each step,

33 This was an especially important feature of FastText compared to other models of the period, as it
improved the quality of representations for languages that tend towards long word-combinations. The
German ‘Aufmerksamkeitsdefizit-Hyperaktivitätsstörung’ (ADHD), might in itself be for example a very
rare word, but it contains the n-grams from its constituting words, ‘Aufmerksamkeit’, ‘Defizit’, etc. from
which its meaning can be (at least roughly) reconstituted.
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the representations are changed only a little bit. But over many training steps, the
representations begin to encode the relations between words remarkably well. This
process opens up several applications. Using the finished representations, we can find
synonyms in the corpus by searching for the words most similar to a query word,
predict missing words from a text, or, as we will see now, judge how similar two texts
are, based on the representations of the words they contain.34

At this point though, in our application, we are not interested in words. Instead, we
apply the FastText algorithm to the tuples that we built earlier from the parsing trees
of formulas. These tuples arise from the connections of particles of equations along
the order of operations, meaning that they can encode both structural properties and
differences between symbols. In this way, we find representations of the particles of
formulas that encode relationships like the similarity between 1

n ∗ m and 1
n ∗ k, but

can encode also the difference between ’i =’ in the formula
∑n

i=1 i and ’i squared’
in the formula i2 = −1. But what to do now with these encoded tuples? Recall from
earlier, that the representations of the tuples which we have learned through FastText
are simply long columns of numbers. So, to get back to formulas, for each formula
we simply select the representations of all the tuples that are present in it, and take the
mean along one axis, so that the result is a new representation that is influenced by the
representations of all the tuples present in the formula. Formulas that contain the same,
or very similar elements, will end up with more similar aggregated representations,
while formulas that have little in common on the tuple level, will end up with very
dissimilar ones.

Concretely, we extract from the collected arXiv preprints all LATEX equation envi-
ronments and math modes that are longer than 15 and shorter than 800 letters. The
underlying idea is, that we largely want to avoid formulas that are just tiny particles,
or value assignments (expressions like n = 30), as well as certain misappropriations
of the formula environment, e. g. when authors use it to typeset longer pieces of texts.
In the case of the bioRxiv, formulas are presented not in LATEX originally, but we
have to convert them from images to a uniform LATEX-format using the webservice
mathpix.com. In this case, we limit ourselves to images that are smaller than 800×100
and larger than 200 × 40 pixels. We also limit in both cases the number of formu-
las per article to a maximum of 20 randomly selected ones out of all eligible ones,
to avoid very formula-rich articles overpowering the others with their influence. On
the whole, this leaves us with 1.691.372 formulas, from which 1.656.929 originate
from the arXiv, and 34.443 from the bioRxiv. All of these formulas are used in the
training process of the model, but because of computational limitations, only 500.000
randomly selected formulas are used in the analysis.

Moving forward in our analysis, after producing representations for each of our
tuples, we can use them to build representations of our formulas by taking the repre-
sentations of each tuple and taking the mean of them, yielding one single new formula
vector. We can check whether this works as well as in Mansouri et al. (2019), by
querying example formulas to the resulting model, and see, which formulas the model
suggests are most similar to them. The result of one such test is reported in Table 1.

34 The important point here is, that we can do this even for texts that have no specific words in common,
as we have learned semantic representations.

123



107 Page 16 of 22 Synthese (2023) 201 :107

Table 1 Formulas in our dataset,
which our model considers most
similar to a common expression
of the normal-distribution:

f (x) = 1
σ
√
2π

e−
1
2
x−μ
σ

2
, in

decreasing order of similarity.
We note that while the most
similar results at the top are
virtually identical, less similar
ones towards the bottom switch
out individual letters, or modify
the formula with additional
terms

Result Dist. to query

f (i) = 1
σ
√
2π

e−
1
2 (

i−μ
σ )2 0.001

f (x) = 1
σ
√
2π

e
− 1

2

(
x−μ
σ

)2

0.01

g(ε) = 1√
2πσ

e−ε2/2σ2
0.011

wx = 1
σ
√
2π

e−(ηx (B)−μ)2/2σ2
0.012

P(x) = 1
σ
√
2π

e−(x−μ)2/2σ2
0.013

And in the same way, in which we laid out the articles by their semantic similarity
using UMAP, we can lay out the formulas, after calculating the similarities between
them, using UMAP. The resulting formula map is reproduced in Fig. 8.

We should note here, that the notion of similarity between formulas, which our
measure encapsulates is not necessarily one of deeper mathematical connections. The
formulas that UMAP groups together into one cluster, will not necessarily all have a
single structure in common. Rather they will have multiple overlapping similarities. In
this application, we switch due to the large sample size to another clustering algorithm,
hDBSCAN,35 which is commonly suggested to be paired with UMAP.

A quick glance at the mapping of formulas shows it to be much more disjoint than
the mapping of articles. To get some insights into what each formula cluster contains,
we have selected example formulas for some of them and arranged them in boxes
around the graphic. The example formulas were selected by calculating the mean of
all formula vectors which were assigned to the cluster in question, and then selecting
the formulas closest to the mean, which can thus be considered the primary examples
from their clusters. We can easily make out versions of some very commonly used
formulas, e.g. Bayes’ theorem, the root mean squared error, and the Sørensen-Dice
coefficient, or formulas reminiscent of the Ising model.

We now have everything in place to return to our initial question: How does the
thematic map of science, which corresponds to the common-sense picture of scientific
organization, correspond to the structure encoded in the distributions of formulas? To
analyze this correspondence, we have to check how thematically similar the articles
are, which are held together by each cluster of formulas. We can do so by going back
to the level of nearest neighbor graphs. For each formula in the embedding, we look
up its 5 nearest neighbors, or in other words, the 5 most similar formulas, which are
likely to be close in the UMAP-mapping.36 For each of these formulas we then look
up the SVD-vector corresponding to the paper from which the formula was drawn
and calculate the average thematic similarity of our original paper to the others. The
resulting score indicates for each formula, how thematically similar the papers are,

35 McInnes et al. (2017).
36 A process not dissimilar to the one proposed by Ovchinnikova and Anders (2020).
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Fig. 8 A mapping of 500.000 formulas by their similarity. A few clusters are annotated for illustration
purposes with example formulas that were selected from the formulas closest to the cluster centers. We note
several well-known patterns, such as, among others, Bayes’ theorem (2), χ2-statistics (6), and the Root
Mean Squared Error (5). We show the thematic composition of the articles from which the formulas in each
cluster originate in color bars, using the same colors as in Fig. 1. In (12) we show the overall distribution
of average thematic distances between the article from which each formula originates, and the articles of
origin for the five closest articles, and compare it to a random selection of articles. This measure suggests
that while there clearly is some thematic structure to the distribution of formulas - as evidenced e. g. in (7,
10, 11) - the broad distribution of mathematical forms is the rule, not the exception

from which the surrounding formulas are drawn. The map in Fig. 8 is colored by these
scores.

Now, if the distribution ofmathematicalmethodswere very specific to subject areas,
the formula map would exhibit very low distance scores. However, this is not what
we observe. While the thematic distances among formulas in our sample are clearly
smaller than among randomly sampled ones, the difference is not drastic, and high
thematic coherence seems to be mostly restricted to several small islands. The whole
graphic generally indicates a relatively high thematic dissimilarity of formulas that
are close to each other. Or in other words: The structure we have gathered from the
formulas does not reconstruct the thematic picture of science.
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5 Conclusion

In closing, we ought to mention some limitations to this preliminary work. The first
obvious limitation is that our sample, while rather large, does not include all areas of
science that would be of interest. Not only are we missing chemistry, but also most
parts of the social sciences, and works in the humanities that make use of formal
methods. Another important limitation of this current approach is that the focus on
formulas does miss out on the usage of models that are not explicitly introduced.
This might especially confuse our picture of the parts of science that are heavily
dependent on central software packages, which are already well understood by the
respective scientific communities, and thus need no formal introduction. We see many
opportunities for further work in this area that has to our knowledge not yet been
adequately explored by philosophers of science. A final limitation of this contribu-
tion is the focus on exploratory methods. While we think there is good reason to
think that the structures gathered through the proposed science-mapping approaches
are informative of actual structures present in the sciences, they remain visualization
methods providing orientation and background knowledge. It is at this point still an
open methodological question how they can be linked to more rigorous statistical
tests of hypotheses - although it might be also unclear whether this would increase
their usefulness to philosophers of science, instead of moving the nature of the results
firmly into the realm of scientometrics. Nonetheless, we would certainly like to see
an uptake of the presented approach in the scientometric literature. While data with
formulas in usable formats is certainly harder to procure for most areas than citations
or full texts, we believe that additional, even larger-scale work might yield very inter-
esting results here. Importantly, mathematical structures might not only be useful as
a contrast-case to texts (or citations) but might be used in conjunction to build richer
representations that do justice to complex phenomena of scientific transfer, such as
model templates.

In our initial motivation for the use of computational techniques in philosophy of
science, we suggested that themassive scale of contemporary science complicates case
study approaches to philosophy of science. In view of our present investigation, we
would thus suggest that it canbehelpful for case studies,which clearly are necessary for
any deeper understanding of interdisciplinary exchange, to be embedded into larger-
scale computational analyses, which help to evaluate the likelihood that their results
generalize.We imagine the relationship here as one ofmethodological triangulation, in
which a mismatch between the results of the two approaches can serve as an invitation
to reevaluate each one of them.

To summarize:We have asked how the common sense picture of scientific organiza-
tion, corresponds to a picture drawn fromsimilarities in the application ofmathematics.
To answer this question, we have introduced a new form of science mapping, and
have presented its results when applied to a large, contemporary sample of scien-
tific preprints. We have observed that even when taking a rather global view, the
structure of the usage of mathematics in science is largely dissolved from its the-
matic structure. This suggests that the interdisciplinary similarities of models that
have been observed by philosophers are by no means a niche phenomenon, or a
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mere curiosity, but represent a central organizational feature of contemporary sci-
ence.
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