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Abstract
Computability theorists have introduced multiple hierarchies to measure the complex-
ity of sets of natural numbers. The Kleene Hierarchy classifies sets according to the
first-order complexity of their defining formulas. The ErshovHierarchy classifies limit
computable sets with respect to the number of mistakes that are needed to approximate
them. Biacino and Gerla extended the Kleene Hierarchy to the realm of fuzzy sets,
whose membership functions range in a complete lattice. In this paper, we combine
the Ershov Hierarchy and fuzzy set theory, by introducing and investigating the Fuzzy
Ershov Hierarchy.
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1 Introduction

Suppose you wish to know exactly whether a certain object satisfies some property P .
Two sorts of difficulties may arise:

1. P may be graded, that is, some objects satisfy P only up to some degree;
2. Or rather, membership to P may be sharply defined but knowing whether an

arbitrary object satisfiesP may exceed the capabilities of any computer—or, equiv-
alently, of any human armed with pencil, paper, and endless patience.

The first case is studied in fuzzy mathematics; the second one in computability theory.
In this work, we’ll discuss a natural way of merging these approaches.

Crisp properties on a given domain D—i.e., properties whose membership func-
tions range in the set {0, 1}—can be naturally identifiedwith subsets ofD. By adopting
this perspective, onemay regard classical computability theory as the study of the com-
plexity of crisp properties on the set ω of the natural numbers: e.g., “being even” and
“being the code of a Turing machine which halts on a blank tape” are examples of,
respectively, a decidable crisp property and an undecidable one.

Computability theorists have introduced multiple hierarchies to measure the com-
plexity of crisp properties. Two such hierarchies will be relevant for the present paper.
The Kleene Hierarchy classifies subsets of ω according to the first-order complexity
of their defining formulas within arithmetic. The Ershov Hierarchy concentrates on
an important initial segment of the Kleene Hierarchy, that of �0

2 sets (which coincide
with the sets that are computable in the limit), by classifying such sets with respect to
the number of mistakes that are needed to approximate them.

Fuzzy sets, introduced by Zadeh (1965) and later developed into a broad area of
research, allow to mathematically study graded properties, such as those properties
with blurry boundaries, and to extend the scope of logic to approximate reasoning.

It is natural to ask how to introduce computability theorywithin fuzzymathematics.
A first approach is to define fuzzy algorithms (as in, e.g., Bedregal and Figueira (2006),
Santos (1970),Wiedermann (2002), andZadeh (1968)), and then rebuild computability
theory by permitting fuzzy computations. A parallel approach is to maintain ordinary
Turingmachines and just adopt them to calibrate the complexity of fuzzy sets. After all,
well-established computability-theoretic hierarchies could be extended to the realm
of fuzzy objects. This is the case for the Kleene Hierarchy, which has been extended
to fuzzy sets by Biacino and Gerla (1989), see also Gerla (2001), Harkleroad (1984),
and Harkleroad (1988).

In this paper, we introduce and investigate the Fuzzy ErshovHierarchy (FEH). That
is, we focus on the complexity of approximating fuzzy objects which belong to the
class �0

2. The key idea for evaluating this complexity is that of a mind-change, which
is borrowed from Ershov (1968a, 1968b, 1970) (and it has been intensively studied—
see, e.g., Bazhenov et al. (2020), Cooper et al. (1991), Downey and Greenberg (2020),
and Stephan et al. (2009)). Intuitively, mind-changes allow to improve knowledge of a
given propertyP through time. For example, suppose thatP is the following property:
“being a theorem of Peano Arithmetic”. Such a property is certainly crisp but, as is
well-known, is also undecidable—that is to say, there can be no algorithm which,
for all arithmetic formulas ϕ, can determine, in finitely many steps, whether Peano
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Arithmetic proves ϕ or not. Yet, an ideal agentA, which is allowed to change its mind,
can eventually achieve knowledge of P as follows:

• At first, A believes that only the axioms of Peano Arithmetic satisfy P;
• Next, A lists, one-by-one, all the consequences of such axioms;
• Finally, whenever a formula ϕ appears in the above list, A changes its mind about
the theoremhood of ϕ, by declaring that ϕ does satisfy P .

Hence, following this procedure, A can gradually increase knowledge of P in such
a way that, in the limit, A will correctly guess the theoremhood of all arithmetic
formulas, and for any such formula at most one mind-change will be required.

In the classical setting, an approximation to a set A changes its mind on a given
input x by switching its guess on whether x belongs to A or not. Moving to fuzzy sets,
mind-changes will be formalized by changes in the monotonicity of approximating
functions. We will prove that, by allowing more and more mind-changes, we will be
able to capture larger and larger sub-classes of�0

2 fuzzy sets. In particular, it will follow
that there are fuzzy sets which cannot be approximated only from above or below, but
they require approximations which oscillate “up and down” on themembership degree
of x , for some inputs x .

The paper is arranged as follows. In Sect. 2, we recall preliminaries concerning
fuzzy sets, effective reals, and the Ershov Hierarchy. In Sect. 3, we introduce FEH,
and we prove some of the main results of the paper. First, the hierarchy does not
collapse (Proposition 5). Second, in analogy with the classical case, sets lying at the
so-called finite levels of FEH can be represented as Boolean combinations of fuzzy
sets belonging to the first level, i.e., c.e. fuzzy sets (Theorem 6). Third, contrary to the
classical case, FEH does not exhaust the class of all �0

2 fuzzy sets (Proposition 8).
In Sect. 4, we investigate two natural ways of broadening FEH. First, we refine the
proposed hierarchy, by keeping track of all updates needed to approximate a�0

2 fuzzy
set, rather than focusing exclusively on those updates which determine a change of
monotonicity in the approximating function. We show that such a refined hierarchy is
quite wild (Theorem 10). Second, in analogy with the Classical Ershov Hierarchy, we
extend FEH to the transfinite. Yet, in sharp contrast with the classical case, we note
that even including all transfinite levels, we still do not exhaust all �0

2 fuzzy sets.

2 Preliminaries

We assume that the reader is familiar with the basic notions of computability theory.
For the background,we refer to themonographs (Rogers, 1967; Soare, 2016). Anyway,
let us include here definitions of the most basic notions:

• A (partial) function f : ω → ω is computable if there is a Turing machineM f so
that, for all natural numbers x and y, f (x) = y holds if and only ifM f , having a
suitable coding of x printed on its input tape, halts after finitely many steps with
a suitable coding of y printed on its output tape;
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• A (crisp) set A ⊆ ω is computable if its characteristic function, defined by

χA(x) :=
{
1 x ∈ A,

0 x /∈ A,

is computable.
• A (crisp) set A ⊆ ω is computably enumerable (c.e.) if it is the image of a com-
putable function. Equivalently, c.e. sets can be seen as those sets which are the
domain of some computable function.

Note that, as is now custom in computability theory, this paper uses the term com-
putably enumerable (or c.e.) in place of recursively enumerable. For a set X , by |X |
we denote the cardinality of X .

The preliminaries on fuzzy sets mainly follow Gerla (2001). As usual, one fixes
an effective bijection ν : Q → ω. This convention allows to transfer familiar
computability-theoretic notions to the rationals: for example, a crisp set X ⊆ Q is
computable iff ν(X) is a computable subset of ω.

2.1 Fuzzy subsets

LetL be a complete lattice. A fuzzy subset (or anL-subset) ofω is an arbitrary function
A : ω → L. In this paper, for the sake of simplicity, we consider the case when L is
equal to the real interval [0, 1]R. A fuzzy subset A is crisp if A(x) ∈ {0, 1} for all
x ∈ ω.

As mentioned in the introduction, a fundamental tool for classifying the complexity
of crisp subsets of ω is provided by the Kleene Arithmetical Hierarchy (Kleene, 1943)
(see, e.g., Chapter 4 in Soare (2016) for a detailed discussion). Biacino and Gerla
(1989) extended the Kleene Hierarchy to fuzzy subsets. In our paper, we work only
with fuzzy subsets belonging to the levels �0

1 , �
0
1, and �0

2 of the Kleene Hierarchy.
Hence, we give formal definitions only for these levels. For more details, the reader
is referred to Biacino and Gerla (1989) and Sect. 11.5 in Gerla (2001). By [0, 1]Q we
denote the set of all rational numbers q such that 0 ≤ q ≤ 1.

Definition 1 ((Biacino & Gerla, 1989), see also Sect. 11.2 in Gerla (2001)) A fuzzy
set A is computably enumerable (or belongs to the class �0

1) if there is a computable
function f : ω × ω → [0, 1]Q such that, for all x ∈ ω, we have:

• lims→∞ f (x, s) = A(x);
• (∀s)( f (x, s + 1) ≥ f (x, s)).

We say that such function f is a �0
1-approximation of the fuzzy set A.

Note that without loss of generality, one can always assume that in the definition
above, f (x, 0) equals 0. Hence, c.e. fuzzy sets may intuitively be regarded as fuzzy
sets which can be approximated “from below”, in the sense that approximations to
c.e. fuzzy sets can only increase over time.

If A and B are fuzzy sets, then one can define set-theoretic operations on them:
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• Union: (A ∪ B)(x) = max{A(x), B(x)}.
• Intersection: (A ∩ B)(x) = min{A(x), B(x)}.
• Complement: A(x) = 1 − A(x).

A fuzzy set A is co-computably enumerable (or belongs to the class �0
1) if its

complement A is c.e. Equivalently (see Theorem 5.2 in Gerla (2001), Chap. 11), A is
co-c.e. if and only if there is a computable function f : ω2 → [0, 1]Q such that, for
all x ∈ ω, we have:

(a) lims→∞ f (x, s) = A(x);
(b′) (∀s)( f (x, s + 1) ≤ f (x, s)).

In the �0
1 case, we may assume that f (x, 0) = 1, for all x . So, co-c.e. fuzzy sets may

be regarded as fuzzy sets which can be approximated “from above”.
Finally, the main object of study of this paper are �0

2 fuzzy sets. A fuzzy set A
belongs to the class�0

2 if A lies in both classes�0
2 and�0

2 of the Kleene Hierarchy. In
this paper, we adopt the following equivalent definition (see Proposition 5.4 in Gerla
(2001), Chap. 11).

Definition 2 A fuzzy set A is�0
2 if and only if there is a computable function f : ω2 →

[0, 1]Q such that lims→∞ f (x, s) = A(x), for all x ∈ ω.We call such function f (x, s)
a �0

2-approximation of the fuzzy set A.

2.2 Effective reals

Here we briefly discuss some simple results which connect fuzzy subsets of ω with
effectively approximable reals. Informally speaking, a realα ∈ R is effectively approx-
imable if there exists an algorithm which provides an approximation of α (typically,
one can view an approximation as a sequence of rational numbers). One of the first
mathematical formalizations of this concept was given by Turing (1936): he defined
computable real numbers as those reals that have a binary expansion which can be
computed by a Turing machine. Computability theorists also consider weaker notions
of effective approximability—for example, left-c.e. reals are precisely those reals α

such that the set of all rationals q < α can be enumerated by a Turing machine (a more
formal definition of a left-c.e. real is given below). We refer to Chapter 5 in Downey
and Hirschfeldt (2010) for further details.

We consider reals α ∈ [0, 1]R. A real α is left-c.e. if the set {q ∈ Q : q < α} is
c.e; α is right-c.e. if the set {q ∈ Q : q > α} is c.e. Moreover, a countable sequence
(αk)k∈ω is uniformly left-c.e. if the set

{(k, q) ∈ ω × Q : q < αk}

is c.e.; (αk)k∈ω is uniformly right-c.e. if the set

{(k, q) ∈ ω × Q : q > αk}

is c.e. By working with these definitions, it is not hard to prove the following result.

123



55 Page 6 of 25 Synthese (2023) 201 :55

Proposition 1 Let A be a fuzzy subset of ω.

1. A is c.e. if and only if the reals A(k), k ∈ ω, are uniformly left-c.e.
2. A is co-c.e. if and only if the reals A(k), k ∈ ω, are uniformly right-c.e.

A real α is �0
2 if there is a computable sequence (qs)s∈ω of rationals such that

α = lims→∞ qs (see, e.g., Theorem 5.1.3 in Downey and Hirschfeldt (2010)). We
also observe the following, which is an immediate consequence of the definitions:

Proposition 2 A fuzzy set A is �0
2 if and only if the reals A(k), k ∈ ω, are uniformly

�0
2, i.e., there is a computable sequence (qk,s)k,s∈ω of rationals such that A(k) =

lims→∞ qk,s , for all k.

2.3 The Classical Ershov Hierarchy

We give few preliminaries on the Ershov (1968a, 1968b, 1970); to distinguish it from
the fuzzy analogue introduced below, we refer to this hierarchy as the Classical Ershov
Hierarchy. For the sake of simplicity, here we discuss only the finite levels of the
hierarchy (these finite levels are also called Difference Hierarchy in the literature). In
this section, all subsets of ω are crisp.

Definition 3 Let n ≥ 1. A set A ⊆ ω is n-computably enumerable (or n-c.e., or
belongs to the class �−1

n ) if there is a computable function f : ω × ω → {0, 1} such
that for all x ∈ ω, we have

• lims→∞ f (x, s) = A(x);
• f (x, 0) = 0;
• |{s : f (x, s) �= f (x, s + 1)}| ≤ n.

A set A is co-n-computably enumerable (or co-n-c.e., or belongs to the class �−1
n ) if

its complement A is n-c.e.

Remark 1 It is common to refer to the numbers labeled by the variable s in the last
definition as stages. This reflects the intuition that f is a procedure to approximate A
through time (that is, by stages). So, in plain terms, a set A is n-c.e. if one is eventually
able to achieve complete knowledge of A by some stage-by-stage procedure which,
for each number x , has at most n many mind-changes as to whether the property “x
belongs to A” holds or not.

Historically, the notion of n-c.e. sets was introduced by Putnam (1965) and Gold
(1965). Note that

�−1
n ∪ �−1

n ⊆ �−1
n+1 ∩ �−1

n+1.

Ershov (1968a) proved that, for each n ≥ 1, there exists an n-c.e. set Sn such that
every n-c.e. set A is many-one reducible to Sn (i.e., there exists a computable function
f so that

x ∈ A ⇔ f (x) ∈ Sn,
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for all x ∈ ω). In addition, Sn does not belong to �−1
n . In particular, this implies that

the Classical Ershov Hierarchy does not collapse.
Sets from the class �−1

n can be represented as Boolean combinations of c.e. sets:

Theorem 3 (Ershov, 1968a) Let k be a natural number. A set A ⊆ ω is (2k + 1)-c.e.
if and only if there are c.e. sets W1,W2, . . . ,W2k−1,W2k,W2k+1 such that

A = (W1 \ W2) ∪ (W3 \ W4) ∪ · · · ∪ (W2k−1 \ W2k) ∪ W2k+1.

A set A is (2k + 2)-c.e. if and only if there are c.e. sets W1,W2, . . . ,W2k+1,W2k+2
such that

A = (W1 \ W2) ∪ (W3 \ W4) ∪ · · · ∪ (W2k−1 \ W2k) ∪ (W2k+1 \ W2k+2).

We refer the reader to the survey (Stephan et al., 2009) for more details on the
Classical Ershov Hierarchy.

3 Fuzzy Ershov Hierarchy

In this section, we extend the classical Difference Hierarchy to the class of fuzzy
subsets of ω (see Definition 5 below). We establish some initial properties of this
hierarchy: the hierarchy does not collapse (Sect. 3.1); it is connected to the Boolean
combinations of c.e. fuzzy sets (Sect. 3.2); the introduced levels of the hierarchy do
not exhaust all �0

2 fuzzy sets (Sect. 3.3).
As discussed in Remark 1, the Difference Hierarchy classifies �0

2 sets according to
the number of mind-changes that are needed to reliably approximate them. Now, note
that mind-changes are naturally associated to changes of monotocity of the function
f . Indeed, suppose that, for some input x and stage s, we have the following mind-
change: f (x, s) = 0 but f (x, s + 1) = 1 so that, on this input, f increases its output
from 0 to 1. Then, in order to witness some further mind-change, there must exist a
least stage t > s at which f , on the same input, decreases from 1 to 0, thus switching
its monotonicity. In order to formally define the Fuzzy Ershov Hierarchy (FEH), we
will rely on this connection between mind-changes and changes of monotocity of the
approximating function.

We begin by illustrating the intuition behind Definition 5 with the following
example. A �0

2 fuzzy set A is called 3-computably enumerable if it possesses a �0
2-

approximation f (x, s), which changes its mind at most two times. So, for an element
x ∈ ω, the worst case behavior looks like this:

• First, our approximation (non-strictly) increases—i.e., there is a stage s1 such that
f (x, s) ≤ f (x, s + 1), for all s < s1.

• Second, the approximation starts to decrease until some stage s2 > s1: f (x, s1) >

f (x, s1 + 1) and f (x, s) ≥ f (x, s + 1), for s1 < s < s2.
• Then the final change of mind happens: the approximation will forever increase—

f (x, s2) < f (x, s2 + 1) and f (x, s) ≤ f (x, s + 1) for all s > s2.
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In order to make this idea formal, we introduce mind-change functions, which “track
down” the described mind-changes.

Definition 4 Let f be a total function from ω × ω to [0, 1]Q. Its �-mind-change

function m f
� : ω × ω → {−1, 1} is defined as follows.

1. m f
�(x, 0) = 1.

2. Suppose that m f
�(x, s) = 1.

• If f (x, s) ≤ f (x, s + 1), then m f
�(x, s + 1) = 1.

• If f (x, s) > f (x, s + 1), then m f
�(x, s + 1) = −1.

3. Suppose that m f
�(x, s) = −1.

• If f (x, s) ≥ f (x, s + 1), then m f
�(x, s + 1) = −1.

• If f (x, s) < f (x, s + 1), then m f
�(x, s + 1) = 1.

The �-mind-change function m f
�(x, s) is defined similarly to m f

� , with the following

key modification: we put m f
�(x, 0) = −1.

Notice the following: if a function f is computable, then both m f
� and m f

� are also
computable. Now we are ready to give the main definition.

Definition 5 Let n be a non-zero natural number. A fuzzy set A is n-computably
enumerable if there is a computable function f : ω × ω → [0, 1]Q such that for all
x ∈ ω, we have:

• lims→∞ f (x, s) = A(x);
• f (x, 0) = 0;
• |{s ∈ ω : m f

�(x, s + 1) �= m f
�(x, s)}| ≤ n − 1.

A fuzzy set A is co-n-computably enumerable if its complement A is n-c.e.

Remark 2 Notice that the third condition of Definition 5 contains a modification—
the upper bound n is changed to n − 1 (cf. the third condition of Definition 3). This
modification is of a technical nature. We illustrate the reason behind the modification
by an example.

Let A be a crisp 3-c.e. set, and let x be a natural number. For simplicity, we assume
that for this x , the function f from Definition 3 behaves as follows: f (x, 0) = 0,
f (x, 1) = 1, f (x, 2) = 0, and f (x, s) = 1 for all s ≥ 3. So, the upper bound n = 3
is achieved by the number x :

|{s : f (x, s) �= f (x, s + 1)}| = 3 = n.

Now we calculate the corresponding �-mind-change function:m f
�(x, 0) = m f

�(x, 1)

= 1, m f
�(x, 2) = −1, and m f

�(x, s) = 1 for all s ≥ 3. We have

|{s : m f
�(x, s + 1) �= m f

�(x, s)}| = 2 = n − 1.
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The example illustrates the following: if f (x, ·) changes its values at most n times,
then the corresponding functionm f

�(x, ·) can change its values only atmostn−1 times.
Since we want any crisp n-c.e. set to be also a fuzzy n-c.e. set, we have introduced the
discussed modification in Definition 5.

Note that 1-c.e. fuzzy sets are precisely the c.e. sets from Definition 1. In addition,
the following fact is immediate.

Proposition 4 Let n ≥ 1. A fuzzy set A is co-n-c.e. if and only if there is a computable
function f : ω × ω → [0, 1]Q such that for all x ∈ ω, we have:

• lims→∞ f (x, s) = A(x);
• f (x, 0) = 1;
• |{s ∈ ω : m f

�(x, s + 1) �= m f
�(x, s)}| ≤ n − 1.

3.1 The hierarchy does not collapse

In order to show the non-collapse of the hierarchy, it is sufficient to prove the following:

Proposition 5 Let A be a crisp subset of ω. Then A is n-c.e. in the Classical Ershov
Hierarchy if and only if A is n-c.e. in FEH. A similar fact is true for co-n-c.e. sets.

Indeed, since the Classical Difference Hierarchy does not collapse, Proposition 5
implies that our hierarchy is also non-collapsing.

Proof of Proposition 5 (⇒). Suppose that A is n-c.e. in the classical sense. We fix a
computable function f : ω2 → {0, 1} satisfying the conditions from Definition 3. It
is clear that f (x, s) is a �0

2-approximation of A, treated as a �0
2 fuzzy set.

For an element x ∈ ω, consider all stages s1 < s2 < · · · < sk (note that k ≤ n)
such that f (x, si ) �= f (x, si + 1). A straightforward analysis shows the following:

• If s ≤ s1, then f (x, s) = 0 and m f
�(x, s) = 1.

• If s2
+1 + 1 ≤ s ≤ s2
+2, then f (x, s) = 1 and m f
�(x, s) = 1.

• If s2
+2 + 1 ≤ s ≤ s2
+3, then f (x, s) = 0 and m f
�(x, s) = −1.

This implies that |{s : m f
�(x, s + 1) �= m f

�(x, s)}| ≤ k − 1 ≤ n − 1. We deduce that
the approximation f witnesses that the fuzzy set A is n-c.e.

(⇐). Suppose that a crisp A is n-c.e. Fix a �0
2-approximation f : ω2 → [0, 1]Q

satisfying Definition 5. We define a new approximation

g(x, s) =
{
1, if f (x, s) > 1/2,

0, if f (x, s) ≤ 1/2.

Since A is crisp, it is clear that A(x) = lims→∞ g(x, s). Notice that g(x, 0) =
f (x, 0) = 0.
For an element x ∈ ω, consider all stages s1 < s2 < · · · < sk such that g(x, si ) �=

g(x, si + 1). For i ≤ k, one can show the following:
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• If i = 2
 + 1, then f (x, si ) ≤ 1/2, f (x, si + 1) > 1/2, and m f
�(x, si + 1) = 1.

• If i = 2
 + 2, then f (x, si ) > 1/2, f (x, si + 1) ≤ 1/2, and m f
�(x, si + 1) = −1.

In turn, this implies k − 1 ≤ |{s : m f
�(x, s + 1) �= m f

�(x, s)}| ≤ n− 1. Hence, k ≤ n,
and the function g(x, s) witnesses that the set A is n-c.e. in the classical sense.

3.2 Boolean combinations of fuzzy c.e. sets

We show that similarly to the Classical Ershov Hierarchy (Theorem 3), n-c.e. fuzzy
sets admit natural presentations via Boolean combinations of c.e. sets.

Theorem 6 Let n ∈ {2k + 1, 2k + 2}. A fuzzy set C is n-c.e. if and only if there are
c.e. fuzzy sets A1, B1, A2, B2, . . . , Ak+1, Bk+1 such that:

• C = (A1 ∩ B1) ∪ (A2 ∩ B2) ∪ · · · ∪ (Ak+1 ∩ Bk+1);
• if n = 2k + 1, then Bk+1 = ∅.

Proof (⇒). Let f (x, s) be a �0
2-approximation which witnesses the fact that C is

n-c.e. We define the desired c.e. fuzzy sets Ai and Bi via their�0
1-approximations hAi

and hBi (in the sense of Definition 1), respectively.
The intuition behind these c.e. sets is as follows. For an element x ∈ ω, we split

ω into disjoint intervals: [0, a0), [a0, b0), [b0, a1), [a1, b1), etc. Our function f (x, ·)
(non-strictly) increases on the intervals [0, a0), [b0, a1), [b1, a2), etc. The function
decreases on the rest of the intervals.

• The approximation hA1 of the set A1 looks like this: it copies f (x, ·) on the interval
[0, a0), and then stabilizes, i.e. hA1(x, s) = hA1(x, a0 − 1) for all s ≥ a0.

• The function hB1(x, ·) equals zero on [0, a0). Then it copies 1 − f (x, ·) on the
interval [a0, b0). After that, hB1(x, ·) equals one.

• The function hA2 equals zero on [0, b0). Then it copies f (x, ·) on the interval
[b0, a1); after that hA2 stabilizes.

• Et cetera.

Formally speaking, for a non-zero i ≤ k + 1, we define:

hAi (x, s) =

⎧⎪⎨
⎪⎩
0, if |{t ≤ s : m f

�(x, t + 1) �= m f
�(x, t)}| < 2i − 2,

f (x, s), if |{t ≤ s : m f
�(x, t + 1) �= m f

�(x, t)}| = 2i − 2,

hAi (x, s − 1), otherwise;

hBi (x, s) =

⎧⎪⎨
⎪⎩
0, if |{t ≤ s : m f

�(x, t + 1) �= m f
�(x, t)}| < 2i − 1,

1 − f (x, s), if |{t ≤ s : m f
�(x, t + 1) �= m f

�(x, t)}| = 2i − 1,

1, otherwise.

It is not hard to see that these approximations induce c.e. fuzzy sets. In addition, if
n = 2k + 1, then Bk+1(x) = 0 for all x .

Let D be the fuzzy set (A1 ∩ B1) ∪ · · · ∪ (Ak+1 ∩ Bk+1). We consider its natural
�0

2-approximation

hD(x, s) = max{min{hAi (x, s), 1 − hBi (x, s)} : 1 ≤ i ≤ k + 1}. (1)
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Consider the value v∗ = |{t ∈ ω : m f
�(x, t + 1) �= m f

�(x, t)}|.
If v∗ = 2i − 2, then there is a stage s∗ such that for all s ≥ s∗, we have hD(x, s) =

hAi (x, s) = f (x, s). This implies that D(x) = C(x).
If v∗ = 2i − 1, then consider the highest index s0 such that hAi (x, s0) = f (x, s0).

Then for every s ≥ s0 + 1, we have hAi (x, s) = f (x, s0), hBi (x, s) = 1 − f (x, s),
and

hD(x, s) = min(hAi (x, s), 1 − hBi (x, s)) = min( f (x, s0), f (x, s)) = f (x, s).

Again, D(x) = C(x). We deduce that the fuzzy sets C and D are equal.
(⇐). Let D be a�0

2 fuzzy set defined via the approximation hD from (1). We prove
that this approximation hD witnesses the fact that D is n-c.e.

First, we note the following easy observation (it follows from computable enumer-
ability of fuzzy sets Ai and Bi ):

(∗) If 1−hBi (x, s0) < hAi (x, s0) for some s0, then we have 1−hBi (x, s) < hAi (x, s)
for all s ≥ s0.

An informal intuition concerning further proof is as follows. Every (approximation of
the) real (Ai ∩ Bi )(x) can be treated as a “hill”: first we go up, copying the function
hAi (x, ·). When we see the inequality 1 − hBi (x, s0) < hAi (x, s0), we can only go
down. Coming back to the whole picture of hD: whenever the mind-change function
mhD

� (x, ·) changes from +1 to −1, it happens because we encountered the top of one
of the “hills”.

At a stage s, consider the following sets: Xs = {i : 1− hBi (x, s) < hAi (x, s)} and
Ys = {1, 2, . . . , k + 1}\Xs . Observation (∗) implies that Xs ⊆ Xs+1 for every s. In
addition, X0 = ∅.

It is not hard to deduce the following equation:

hD(x, s) = max{max{1 − hBi (x, s) : i ∈ Xs},max{hAi (x, s) : i ∈ Ys}}.

Note that for a fixed non-empty set Z , the function max{1 − hBi (x, s) : i ∈ Z} is
non-increasing, and max{hAi (x, s) : i ∈ Z} is non-decreasing.

Suppose that mhD
� (x, s) = 1 and mhD

� (x, s + 1) = −1. Choose the greatest s′ < s

such that either s′ = 0, or s′ > 0 and mhD
� (x, s′) = −1. Towards a contradiction,

assume that Xs+1 = Xs′ .
Then on one hand, we have

hD(x, s) = max{1 − hBi (x, s) : i ∈ Xs′ } > max{hAi (x, s) : i ∈ Ys′ }.

Indeed, if hD(x, s) equals max{hAi (x, s) : i ∈ Ys′ }, then we would have

hD(x, s + 1) = max{hAi (x, s + 1) : i ∈ Ys′ } ≥ hD(x, s),

which contradicts the fact that mhD
� (x, s + 1) = −1.
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On the other hand, every t such that s′ < t ≤ s satisfies

hD(x, t) = max{hAi (x, t) : i ∈ Ys′ }.

We obtain a contradiction. Therefore, Xs+1 �= Xs′ .
We deduce that for each stage s with mhD

� (x, s) = 1 and mhD
� (x, s + 1) = −1, at

least one new element is added to the growing set X = ⋃
t∈ω Xt .

Suppose that n = 2k + 2. Then one can show that |X | ≤ k + 1. We notice the
following: if |X | is less than k + 1, then the number of monotonicity breaks (of the
function mhD

� (x, ·)) will be strictly less than the corresponding number for the case
|X | = k + 1. Hence, one can consider only the case when |X | = k + 1.

If |X | = k + 1, then there is a stage s∗ such that for all s ≥ s∗, we have hD(x, s) =
max{1 − hBi (x, s) : i ∈ X}, and this function can only decrease. A not difficult
combinatorial argument shows that |{s ∈ ω : mhD

� (x, s +1) �= mhD
� (x, s)}| ≤ 2k+1.

If n = 2k + 1, then |X | ≤ k. An argument similar to the one above shows that one
can consider only the case when |X | equals k.

If |X | = k, then there is a stage s∗ such that for s ≥ s∗, we have

hD(x, s) = max{max{1 − hBi (x, s) : i ∈ X}, hAk+1(x, s)}.

One can show that in this case, |{s : mhD
� (x, s + 1) �= mhD

� (x, s)}| ≤ 2k. Theorem 6
is proved.

Corollary 7 Every finite Boolean combination of c.e. fuzzy sets is an n-c.e. set, for
some n ≥ 1.

3.3 The introduced hierarchy is not enough

Here we show that the introduced levels of FEH do not exhaust the class of all �0
2

fuzzy subsets of ω.

Proposition 8 There exists a �0
2 fuzzy set A such that for any �0

2-approximation

f (x, s) of A, the sequence (m f
�(0, s))s∈ω diverges when s tends to infinity. In partic-

ular, A is not n-c.e., for all n ≥ 1.

Proof Choose an arbitrary �0
2 real α, which is not left-c.e. and not right-c.e. (see, e.g.,

Theorem 5.1.10 in Downey and Hirschfeldt (2010) for an example of such real). The
desired fuzzy set A is defined as follows: put A(k) = α, for all k ∈ ω. Since α is �0

2,
Proposition 2 implies that the set A is �0

2.
Towards a contradiction, assume that f (x, s) is a �0

2-approximation of A such that

the sequence (m f
�(0, s))s∈ω converges. There are two possible cases.

Case 1 Suppose that lims→∞ m f
�(0, s) = 1. Then choose a stage s∗ such that

m f
�(0, s) = 1 for all s ≥ s∗. It is not hard to show that the set {q ∈ Q : q < α} is

equal to {q : (∃s ≥ s∗)[q < f (0, s)]}, and hence, this set is c.e. Then the real α is
left-c.e., which gives a contradiction.
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Case 2 Otherwise, lims→∞ m f
�(0, s) = −1. Then a similar argument shows that

the real α is right-c.e.—again, a contradiction.
We deduce that our fuzzy set A has all desired properties.

4 Broadening the Fuzzy Ershov Hierarchy

In this section, we investigate two natural options for, first, refining the FEH, and,
secondly, extending the finite levels of the hierarchy.

4.1 Counting updates

We say that a �0
2-approximation f of a fuzzy set A has an update if f (x, s + 1) �=

f (x, s), for some x, s ∈ ω. Observe that our notion of mind-change, as in Defini-
tion 5, keeps track only of those updates which determine a change of monotonicity
in the approximating function: e.g., if f (x, s) is a �0

2-approximation of a fuzzy set

A, m f
�(x, s) = 1, and f (x, s + 1) > f (x, s), then m f

�(x, s + 1) remains equal to
1. So, one may explore what happens if one keeps track of all updates for a given
�0

2-approximation. To motivate such approach, consider the following example given
by Harkleroad (1984).

Example 1 As usual, K denotes the Halting problem. Define

H(x) =
{
1 if x ∈ K ,
1
2 otherwise.

It is easy to see that H is a c.e. fuzzy set. But note that, for any c.e. approximation
h of H (recall that one assumes h(x, 0) = 0 for all x), there must be an infinite crisp
set Z ⊆ ω such that h requires at least two updates to approximate each x ∈ Z , as
otherwise, K = {x : (∃s)(h(x, s) = 1)} would be computable.

So, to distinguish H from those c.e. fuzzy sets which can be approximated with at
most one update, we propose the following definition.

Definition 6 A fuzzy set A is [n]1-c.e. if there is a �0
2 approximation f (x, s) to A

such that, for all x :

• f (x, 0) = 0;
• (∀s)( f (x, s + 1) ≥ f (x, s));
• |{s : f (x, s + 1) �= f (x, s)}| ≤ n.

It is immediate to note that, for all n, every [n]1-c.e. is a c.e. fuzzy set. The next
result establishes that the hierarchy of [n]1-c.e. sets does not collapse, but it also
doesn’t exhaust the class of all c.e. fuzzy sets.

Proposition 9 The following hold:

1. for all n, there is a [n + 1]1-c.e. set which is not [n]1-c.e.;
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2. there is a c.e. fuzzy set which is not [n]1-c.e., for all n.
Proof For the sake of exposition, we first re-prove that there is a [2]1-c.e. set which
is not [1]1-c.e. (as is illustrated by Example 1). In doing so, we will suitably modify
Harkleroad’s example, obtaining a module which is apt to be generalized.

LetU be a crisp 2-c.e. set which is not c.e., that is,U ∈ �−1
2 ��−1

1 . By Theorem 3,
there exist c.e. sets W1,W2 so that U = W1 � W2. Without loss of generality, one
may assume that W2 ⊆ W1: indeed, if W2 � W1, then we replace W1 with the c.e. set
W new

1 := W1 ∪ W2. Then we define the following c.e. fuzzy set:

H2(x) :=

⎧⎪⎨
⎪⎩
1 if x ∈ W2,
1
2 if x ∈ W1 and x /∈ W2,

0 otherwise.

It is easy to see that H2 is [2]1-c.e. Indeed, it suffices to define a �0
2-approximation

g0 which, on input x , has an update if, at some stage s0, x is enumerated into W1 but
not into W2, and then let g0 have the second (and last) update if, at stage s1 > s0, x is
also enumerated into W2.

On the other hand, suppose that there is a �0
2-approximation g1 which witnesses

that H2 is [1]1-c.e. Since g1 can have at most one update for each input, we would
have that

W1 � W2 = {x : (∃s)( f (x, s) = 1/2)},

contradicting the fact that U is not c.e.
More generally, to construct a fuzzy set which is [n + 1]1-c.e. but not [n]1-c.e.,

take a crisp set V ∈ �−1
n+1 � �−1

n . Without loss of generality, assume that n is even.
Theorem 3 guarantees that there are c.e. sets W1,W2, . . . ,Wn+1 so that

V = (W1 � W2) ∪ · · · ∪ (Wn−1 � Wn) ∪ Wn+1.

We assume that

Wn+1 ⊆ Wn ⊆ Wn−1 ⊆ · · · ⊆ W1.

As usual, this condition can be achieved in a “dynamic” way: For a non-zero i ≤ n+1,
the new set W new

i includes all numbers x such that there exists a sequence of stages
0 = s0 < s1 < s2 < · · · < si with the following properties:

• for odd j ≤ i , the element x belongs to the finite set

Vs j = (W1,s j � W2,s j ) ∪ · · · ∪ (Wn−1,s j � Wn,s j ) ∪ Wn+1,s j ,

where for s ∈ ω, the finite setWk,s contains all elements ofWk enumerated by the
stage s;

• for even j ≤ i , the number x does not belong to the set Vs j .
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Next, define Hn+1 as follows,

Hn+1(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if x ∈ Wn+1,
1
2 if x ∈ Wn and x /∈ Wn+1,

. . .
1

n−k+2 if x ∈ Wk and x /∈ Wk+1,

. . .
1
n if x ∈ W2 and x /∈ W3,
1

n+1 if x ∈ W1 and x /∈ W2,

0 otherwise.

The fuzzy set Hn+1 is clearly [n + 1]1-c.e.. By reasoning as above, it is not hard
to deduce that it cannot be [n]1-c.e. (or, a fortiori, [k]1-c.e. for any k < n). Indeed,
suppose that there is a �0

2-approximation g2 witnessing that Hn+1 is [n]1-c.e.. Then,
we would be able to approximate whether any given x belongs to V with at most n
mind-changes, contradicting the choice of such V .

(2) To construct a c.e. fuzzy set which is not [n]1-c.e., for all n, it suffices to join
all the sets Hn’s defined in item (1). For all x and n, let

Ĥ(〈x, n〉) := Hn(x),

where 〈·, ·〉 denotes a Cantor pairing function, i.e., an effective bijection from ω2 onto
ω. Towards a contradiction, suppose that there is a �0

2-approximation h0 witnessing
that Ĥ is [n]1-c.e., for some n. Let m > n and define

h1(x, s) := h0(〈x,m〉, s),

for all x and s. Then, h1 would witness that Hm is [n]1-c.e., a contradiction.

Now, we shall similarly stratify each level of FEH, by counting the number of
updates that are needed to approximate n-c.e. fuzzy sets. Intuitively, we say that a
fuzzy set A is [n1, . . . , nm]m-c.e., if there is a �0

2-approximation f of A that, for each
input x , can go up at most n1 times, and then go down at most n2 times, etc.—for
m-many ups and downs.

More formally, let f be a �0
2-approximation of a fuzzy set A. For simplicity,

we shall also assume that, for all x , f (x, 0) = 0. Let α ∈ ωω and denote α as
(α0, α1, . . . , αk, . . .). To calculate if α bounds the number of updates produced by f ,
we shall run the following algorithm (called Bounding) for all x ∈ ω:

• Stage 0. Set γ to 0 and let ν(x, 0) := αγ .
• Stage s + 1. We distinguish two cases:
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(i) m f
�(x, s + 1) = m f

�(x, s) (that is, f preserves its current monotonicity on x).
Then,

ν(x, s + 1) :=
{

ν(x, s) − 1 if f (x, s + 1) �= f (x, s),

ν(x, s) otherwise.

(ii) m f
�(x, s + 1) �= m f

�(x, s) (that is, f changes its current monotonicity on x).
Then update the value γ to γ + 1. Next, let ν(x, s + 1) := αγ − 1.

The algorithm returns no, if ν(x, s + 1) < 0.

If Bounding never outputs no, for all input x , then we say that f is bounded by α.

Definition 7 Let (n0, n1, . . . , nk) be a tuple of natural numbers containing no zeros.
A fuzzy set A is [n0, n1, . . . , nk]k-c.e. if there is a �0

2-approximation f of A which
is bounded by

n0
�n1

� · · ·� n�
k 0∞,

where 0∞ denotes the sequence consisting of infinitely many zeros.

Remark 3 Let ρ ∈ ωk be a k-tuple of natural numbers. For notational simplicity, if
a �0

2-approximation f is bounded by ρ�0∞, we may just say that f is ρ-bounded.
Similarly, we may simply write that A is ρ-c.e. (rather than [ρ]k-c.e.).

By the last definition, we have refined FEH with a plethora of new sub-levels.
It is natural to ask how these sub-levels compare with each other. For example, can
there be a fuzzy set which is [2, 1, 1]3-c.e. but not [1, 10, 10]3-c.e.? At first sight,
one may guess that the answer is no, as it may seem plausible that the behavior of a
�0

2-approximation f which is constrained to have at most 4 updates, for each input,
could be always emulated by a function bounded by (1, 10, 10). But this is not the
case.

Theorem 10 For every natural number k, the class of [n0, n1, . . . , nk]k-c.e. sets is
contained in the class of [m0,m1, . . . ,mk]k-c.e. sets if and only if

(n0, n1, . . . , nk) is bitwise below (m0,m1, . . . ,mk),

that is, ni ≤ mi , for all i ≤ k.

Proof Let ρ, σ be k-tuples with ρ bitwise below σ . It follows immediately from
Definition 7 that, if f is ρ-bounded, then f is also σ -bounded. Hence, any fuzzy set
which is ρ-c.e. must also be σ -c.e.

On the other hand, suppose that ρ = (n0, . . . , nk) is not bitwise below σ =
(m0, . . . ,mk). In particular, let i be the least number so that ni > mi . For the sake of
exposition, assume that i is even (the other case being symmetric): this means that ni
correspond to a sequence of increasing updates. Now, we shall construct a fuzzy set A
which is ρ-c.e. but not σ -c.e. To do so, wewill construct by stages a�0

2-approximation
f of A which meet the following infinite list of requirements:
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• P: f is ρ-bounded;
• Re: If the function φe is σ -bounded, then

lim
s→∞( f (e, s)) �= lim

s→∞(φe(e, s)).

Note that the combination of all R-requirements ensures that A cannot be approxi-
mated by any function which is σ -bounded.

Through this construction, it will be very convenient to view f dynamically. That
is, rather than defining f (x, s), for all s, we just let f (x) change its value during the
construction, and we will interpret lims→∞( f (x, s)) as the limit value (if any) of such
a sequence of changes. Similarly, by referring to the current value of φe(e), we simply
mean φe(e, s), for the current stage s of the construction.

Strategy to meet the requirements For a computable function φe, the property
of being σ -bounded is �0

1. But to address Re, it suffices to restrict the focus to the
behavior of the algorithm Bounding on e, up to k many changes of monotonicity.

The basic idea of the strategy is straightforward. We shall act whenever we witness
that the current value of f (e) coincides with the current value of φe(e). Yet, our actions
are implemented in different ways, corresponding to three distinct phases:

• In Phase I, to ensure that f (e) differs from φe(e)we simply alternate, whenever
is necessary, between 0 and 1. That is, if we witness that

f (e) = φe(e) = j,

for j ∈ {0, 1}, we respond by updating f (e) to 1 − j . We perform this action for
at most i times. Then we move to Phase II.

• When we enter Phase II, both f and φe have changed monotonicity (on input
e) i − 1 times. Moreover, since we are under the assumption that i is even, we
have that the value of f (e), when Phase II starts, is 0. Now, ρ bounds f to
a sequence of ni many increasing updates, while σ bounds φe to only mi many
increasing updates. We take advantage of the fact that ni > mi by performing two
sorts of actions:

(i) If we witness that f (e) = φe(e), we respond by increasing the current value
of f (e) to the midpoint between f (e) and 1, that is, we update f (e) to f (e)+1

2 .
If we also see that φe exhausted all its mi many updates, we move to the
Transition phase.

(ii) If we witness that f (e) < φe(e), we immediately move to the Transition
phase.

• We may start the Transition phase with either f (e) > φe(e) or f (e) <

φe(e):

(a) In the first case, we wait to see if, at some further stage, φe(e) equals fe(e). If
this happens, we let f (e) = 0 and we go back to Phase I.

(a) In the second case, we again wait to see if φe(e) equals fe(e). If this happens,
we now let f (e) = 1 and we go back to Phase I.
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There are no interactions between different strategies.
The construction At any stage, each requirement, independently from all others,

can either be inPhase I, or inPhase II, or in theTransition phase.We use
a collection of dynamic counters (ce)e∈ω to record how many times we have changed
themonotonicity of f . Recall thatρ is of the form (n0, n1, . . . , nk), hence in defining f
we are constrained to atmost kmany changes ofmonotonicity.We also use a collection
of parameters (de)e∈ω, which range on the set {−1, 1}, to distinguish the actions of
the Transition phase. Finally, at any given stage s, φe is σ -compatible, if the
algorithm Bounding on input e does not return no within s many stages.

• Stage 0. For all e, let ce = de = 0. Say that every requirementRe is in Phase I.
• Stage s + 1 = 〈e, t〉. We deal with Re. If φe is not σ -compatible or ce > k, then
we do nothing. Otherwise, we act accordingly to the current phase of Re.

– Re is in Phase I and the current value of fe(e) is j , for j ∈ {0, 1}:
If we witness that φe(e) currently equals j , we update the value of fe(e) to
1 − j . We then increase the counter ce by 1. If, after this action, ce equals i ,
we enter Phase II; otherwise, we remain in Phase I.

– Re is in Phase II and the current value of fe(e) is u, for u ∈ [0, 1):
We distinguish three sub-cases, corresponding to the current value of φe(e):
1. If φe(e) < u, we do nothing and we remain in Phase II;
2. If φe(e) = u, we update f (e) to f (e)+1

2 . If it is also the case that φe(e)
already had mi many consecutive increasing updates, we set de to 1 and
we move to the Transition phase; otherwise, we remain in Phase
II;

3. If φe(e) > u, we set de to −1 and then we move to the Transition
phase.

– Re is in the Transition phase and the current value of fe(e) is v, for
v ∈ [0, 1]:
If we witness that φe(e) currently equals v, we distinguish two sub-cases:
1. If de = 1, we update the value of f (e) to 0. Then, we increase the counter

ce by 1, and we go back to Phase I;
2. If de = −1, we update the value of f (e) to 1 andwe go back toPhase I,

without updating ce.

This concludes the construction.
The verification To conclude that A is ρ-c.e. but not σ -c.e., it is sufficient to show

that all requirements are eventually satisfied. First, note that the construction ensures
that the evolution of phases of eachR-requirement follows the next diagram (possibly
completing only an initial segment of it):

Phase I → Phase II → Transition phase → Phase I.

To see that the global P-requirement is satisfied, it is sufficient to note that, for all e,
the following hold:
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1. In Phase I, each action forces f to change monotonicity on e. The same is true
for the Transition phase with de = 1. So, for all i∗ �= i with i∗ ≤ k, we
have that f consumes only 1 update and so it is certainly bounded by ni∗ ;

2. Theupdates consumedby f inPhase IImust beboundedbyni . This is satisfied,
as the construction ensures that, in this phase, f has:

• at most mi + 1 many updates (with mi < ni ), if de = 1; or
• at most mi many updates, plus one additional update in the subsequent
Transition phase if de = −1.

3. Finally, if f changes monotonicity k many times, then no further action is allowed,
and thus f has no more updates on e.

Thus, f is ρ-bounded. But, in fact, it is even bounded by (1, . . . , 1, ni , 1, . . . , 1).
It remains to prove that allR-requirements are satisfied. Suppose otherwise. Let e

be so that φe is σ -bounded and, for all x , the limit value of φe(x) coincides with the
limit value of fe(x). Let s be the first stage such that, after s, neither f (e) nor φe(e)
are updated. Towards a contradiction, we now discuss in which phase Re is, at the
least stage 〈e, t〉 > s. Suppose that, at this stage,Re is in Phase Iwith ce < i . If so,
the construction allows to update f (e) to either 0 or 1, ensuring that f (e) differs from
φe(e), a contradiction. Next, suppose that Re is in Phase II. If so, since ni > mi ,
the construction allows again to make f (e) different from φe(e), a contradiction. A
similar reasoning excludes that Re is in the Transition phase.

The only remaining case is that Re is in Phase I with ce ≥ i . Now, the key
observation is that, when Re visits Phase I for the second time, it must be the
case that f (e) consumed strictly less changes of monotonicity than φe(e). To see
this, we reconstruct the behavior of f and φe on e, when moving from Phase II
through the Transition phase to Phase I. When Phase II ends, both f
and φ had i many changes of monotonicity on input x . Then we separate two cases.
If de = −1, then φe(e) needs to change monotonicity to reach f (e), but we respond
by increasing f (e) to 1 without changing the monotonicity of f (see item 2 of the
Transition phase above). Hence, if Re is in Phase I at stage 〈e, t〉, then,
from the fact that φe(e) is again equal to f (e), we deduce that, on input e, φe and
f changed monotonicity i + 2 and i + 1 many times, respectively. The case de = 1
is similar. Note in particular that, in this case, Phase II ends with f (e) > φe(e)
and the next sequence of updates that φe can use are decreasing. Hence, it requires
two changes of monotonicity for φe(e) to reach f (e) (this is vacuously true, even if
φe consumes no decreasing update from the ni+1 sequence, as φe would still need to
consume the ni+2 sequence to copy f ). It follows that, if de = 1, ce ≥ i , Re is in
Phase I, and φe(e) = f (e), then, on input e, φe and f changed monotonicity i + 3
and i + 1 many times, respectively.

To sum up, if φe copies the behavior of f enough times, then the construction
reaches a stage in which Re is in Phase I and f (e) has consumed strictly less
changes of monotonicity than φe(e). Such a difference in the number of changes of
monotonicity of f and φe will then be preserved by any further action of Phase I.
So, we will be able to respond to any threat of φe, guaranteeing that eventually f (e)
will differ from φe(e).
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This proves that all R-requirements are satisfied. Thus, A, which is ρ-bounded,
cannot be approximated by a function which is σ -bounded. This concludes the proof
of Theorem 10.

We just proved that the refined hierarchy discussed in this subsection is quite wild.
It is now time to discuss how to extend FEH.

4.2 Going transfinite

As is shown in Proposition 8, there are �0
2 fuzzy sets which are not n-c.e., for all

n ≥ 1. Let us consider another example of such a set.
Fix an effective enumeration of all c.e. fuzzy sets {Ve}e∈ω; one can recover such

an enumeration by applying Proposition 1 and re-arranging the enumeration of some
left-c.e. reals (as in Herbert et al. (2019)). With the help of Theorem 6, we could also
construct an effective uniform enumeration {V n

e }e∈ω of all n-c.e. fuzzy sets, for all
n ≥ 1. Since each V n

e is an n-c.e. set, there is a computable function f n(e, x, s) so
that:

• lims→∞ f n(e, x, s) = V n
e (x);

• f n(e, x, 0) = 0.

Next, we define a computable function g by diagonalization. That is, for all natural
numbers n, e, x , let

• g(x, 0) = 0;
• g(〈n, e, x〉, s + 1) = 1 − f n(e, 〈n, e, x〉, s);
The fuzzy set B(x), defined as lims→∞ g(x, s), is �0

2, but not n-c.e. for all n ≥ 1.
Indeed, assume that B is n-c.e. Then, there must be e so that B = V n

e . But this
contradicts the fact that the definition of g ensures that

B(〈n, e, x〉) = 1 − V n
e (〈n, e, x〉),

for every x ∈ ω.
Note that the fuzzy set B just defined is significantly different from the set A con-

structed in Proposition 8. For the set A, the �-mind-change sequence (m f
�(x, s))s∈ω

diverges for each x . For the set B, the corresponding sequence converges on each input
x—yet, there is no single upper bound n on the number of mind-changes required for
approximating all inputs. Hence, it is reasonable to relax the definition of FEH so
to include B. In the crisp world, sets like B are called ω-computably enumerable (or
ω-c.e.), and they represent the first transfinite level of the Classical Ershov Hierarchy.
Similarly, we define the ω-level of FEH as follows:

Definition 8 A fuzzy set A is ω-c.e. if there exist computable functions g : ω → ω

and f : ω × ω → [0, 1]Q such that, for all x ∈ ω, we have:

• lims→∞ f (x, s) = A(x);
• f (x, 0) = 0;
• |{s ∈ ω : m f

�(x, s + 1) �= m f
�(x, s)}| ≤ g(x).
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So, intuitively, a fuzzy set A is ω-c.e. if, for each x , we can fix a computable bound
(given by g) to the number of mind-changes required to approximate x . Or, in other
words, A(x) acts as an n-c.e. fuzzy set, where n equals g(x) + 1.

Next, similarly to Definition 5, one could introduce the notion of a co-ω-c.e. fuzzy
set. Here, we witness the first difference between the finite and the transfinite levels of
FEH. By Proposition 5, we know that, for all n, there is a fuzzy set which is co-n-c.e.
but not n-c.e. Moving to the transfinite levels, such a property fails:

Proposition 11 Every co-ω-c.e. fuzzy set is ω-c.e.

Proof Let A be a fuzzy setwhich is co-ω-c.e. Then, theremust be computable functions
g : ω → ω and f : ω × ω → [0, 1]Q such that for all x ∈ ω:

• lims→∞ f (x, s) = A(x);
• f (x, 0) = 1;
• |{s ∈ ω : m f

�(x, s + 1) �= m f
�(x, s)}| ≤ g(x).

We now define two new computable functions g′(x) and f ′(x, s) as follows:

g′(x, s) = g(x, s) + 1,

f ′(x, 0) = 0 and f ′(x, s + 1) = f (x, s)

It is easy to see that f ′ is a �0
2-approximation of A. In addition, the functions g′ and

f ′ witness that A is an ω-c.e. set.

To define all transfinite levels of FEH, we shall use the standard technology of
Kleene’s notations for computable ordinals 〈O,<O〉. An interested reader is referred
to Rogers (1967) for a classical exposition of Kleene’s O. Intuitively, such a system
of notations allows to build up ordinals in an effective manner, by providing suitable
codes for each ordinal that can be described in a computable way. For our current
purposes, it is sufficient to summarize some key features of 〈O,<O〉:
1. O ⊂ ω, and ≤O is a partial order on the set O;
2. If a ∈ O, then |a|O denotes the countable ordinal having notation a;
3. If a <O b, then |a|O < |b|O (with respect to the standard order on ordinals);
4. For each a ∈ O, the (crisp) set {b ∈ O : b <O a} is c.e.;
5. There are no infinite decreasing sequences in the poset 〈O,<O〉;
6. Every finite ordinal n has a unique Kleene’s notation.

For the sake of exposition, we start by recalling the definition of the transfinite levels
of the Classical Ershov Hierarchy. Note that different authors use slight variations of
the following definition, and thus one has to be careful aboutwhich type of terminology
is used when certain results are stated.

Definition 9 Let a ∈ O be a notation of a non-zero ordinal. A crisp set A ⊆ ω

belongs to the class �−1
a (correspondingly, �−1

a ) if there are computable functions
f : ω × ω → {0, 1} and h : ω × ω → {b ∈ O : b <O a} such that for all x and s:

• f (x, 0) = 0 (correspondingly, f (x, 0) = 1);
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• lims→∞ f (x, s) = A(x);
• h(x, s + 1) ≤O h(x, s); and
• if f (x, s + 1) �= f (x, s), then h(x, s + 1) �= h(x, s).

Ershov (1970) proved that the transfinite levels of the Classical Ershov Hierarchy
do not collapse. It is now time to define the classes �−1

a and �−1
a of FEH.

Definition 10 Let a ∈ O be a notation of a non-zero ordinal. A�0
2 fuzzy set A belongs

to the class �−1
a (correspondingly, �−1

a ) if there exist a �0
2-approximation f (x, s)

and a computable “counting” function h : ω2 → {b ∈ O : b <O a} such that for all
x and s:

• f (x, 0) = 0 (correspondingly, f (x, 0) = 1) and lims→∞ f (x, s) = A(x);
• h(x, s + 1) ≤O h(x, s);
• if m f

�(x, s + 1) �= m f
�(x, s) (correspondingly, m f

�(x, s + 1) �= m f
�(x, s)), then

h(x, s + 1) �= h(x, s).

Note that the above definition encompasses all finite levels of FEH: indeed, if a is
the notation for a finite ordinal n ≥ 1, then the class of �−1

a sets coincides with the
n-c.e. fuzzy sets. Moreover, by reasoning as in Proposition 11, it is not hard to see that
the classes �−1

a and �−1
a coincide when a is a notation for a limit ordinal.

To gently guide the reader through the proposed transfinite hierarchy, let us discuss
a fairly concrete example. Say that a is a Kleene’s notation for the ordinal ω + ω + 1.
In fact, for the sake of simplicity, let us freely identify notations with the ordinals that
they denote. Now, let A be a �−1

a fuzzy set, having a �0
2-approximation f (x, s) and a

counting function h(x, s). Then, for a given x ∈ ω, the behavior of f (x, s) and h(x, s)
may look like this:

• At first, the approximating function f increases and the counting function h just
outputs ω + ω (note that h is required to change its mind only if f changes
monotonicity). Hence, we cannot predict, or even bound, the number of future
mind-changes;

• Next, when f changesmonotonicity and it starts to decrease, the counting function
f must update its output to some ordinal strictly less than ω + ω, that is, to ω + n
for some natural number n;

• For the next n many mind-changes, our approximation may work as in the (n+1)-
c.e. case, that is, changing its monotonicity at most n many times;

• When the counting function becomes equal to ω, we cannot predict the remaining
number of mind-changes;

• The final block of mind-changes works as follows: The approximation changes
monotonicity, forcing the value of h to decrease to some finite ordinal k; next, the
approximation works as for a standard (k+1)-c.e. or co-(k+1)-c.e. set (depending
on whether the approximation was increasing or decreasing in the previous step).

More generally, for a fixed transfinite level of FEH, the approximation of any given
input x can always be represented as a finite sequence of blocks. This is because the
counting function is non-increasing and there are no infinite decreasing sequences of
notations. Each block works as an n-c.e. or a co-n-c.e. fuzzy set. A priori, we cannot
predict either the number of blocks or the size of each of them.
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Interestingly, the ordinal ω2 + 1 is able to encode any finite sequence of blocks
(of arbitrary but finite size), and thus it can bound the behavior of any approximation
lying at a given transfinite level of FEH. Indeed, let a ∈ O be an ordinal notation
for ω2 + 1. The counting function for a �−1

a fuzzy set starts with output ω2. Then,
it decreases its value to an ordinal stictly below ω2, that is, to an ordinal of the form
ω ×m + n, which corresponds to m many blocks of unknown size. This idea leads us
to the following result:

Theorem 12 For a �0
2 fuzzy set A, the following are equivalent:

1. for some a ∈ O, the set A belongs to the class �−1
a ;

2. there exists b ∈ O such that |b|O = ω2 + 1 and A belongs to the class �−1
b .

The proof can be obtained by straightforward computability-theoretic methods,
from a similar crisp theorem of Ershov (1970). For reasons of space, we omit the
formal construction. On the other hand, by reasoning as in Proposition 5, one obtains
that the transfinite hierarchy does not collapse:

Proposition 13 Let a ∈ O be a notation of a non-zero ordinal, and A be a crisp subset
of ω. Then A is in �−1

a in the Classical Ershov Hierarchy if and only if A belongs to
the class �−1

a in FEH. The same is true for �−1
a sets.

The proof is a direct generalization of the proof of Proposition 5: it is enough to
replace n (which bounds the number of mind-changes) with the counting functions of
Definitions 9 and 10.

As a concluding remark, we note that the classes �−1
a , a ∈ O, still do not exhaust

all�0
2 fuzzy sets. In fact, the same example given in the proof of Proposition 8 applies

to the transfinite case: the diagonalization is successful because, for any fuzzy�−1
a set

A and any x ∈ ω, the corresponding �-mind-change sequence (m f
�(x, s))s∈ω must

converge, since there are no infinite decreasing sequences in ordinal notations.

5 Conclusions

A major goal of this paper has been to highlight the fascinating interplay between
two formal approaches to the broad concept of “approximation”. That is, we have
combined fuzzy set theory, which provides a mathematical foundation to the idea of
approximate reasoning, and computability theory, which provides powerful tools to
deal with information approximated by stages. Building on previous work (Biacino &
Gerla, 1989; Gerla, 2001; Harkleroad, 1984, 1988), we introduced and explored the
Fuzzy Ershov Hierarchy (FEH), which allows to precisely measure how hard it is to
approximate certain fuzzy sets.We exhibited both analogies and disanalogies between
the Classical Ershov Hierarchy and its fuzzification.

Let us conclude by suggesting two natural ways of expanding our work, which may
motivate further research:

1. First, in Sect. 4, we have kept separated the analysis of the refined hierarchy and
the transfinite one. Yet, nothing forbids to merge these hierarchies and, e.g., to
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stratify a given �−1
a class of fuzzy sets by keeping track of all updates made by

a �0
2-approximation. It is reasonable to expect that by pursuing such a line of

research one will encounter several combinatorial intricacies;
2. Second, it is known that every �0

2 crisp set belongs to some transfinite level of the
Classical Ershov hierarchy (see Ershov (1968b), Theorem 6). As aforementioned,
no analogous result holds for fuzzy sets. Hence, it is natural to ask whether there
is a natural way of extending FEH, beyond the boundaries of Definition 10, so to
encompass all �0

2 fuzzy sets.
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