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Abstract

Even though complexity is a concept that is ubiquitously used by biologists and
philosophers of biology, it is rarely made precise. I argue that a clarification of the con-
cept is neither trivial nor unachievable, and I propose a unifying framework based on
the technical notion of “effective complexity” that allows me to do justice to conflicting
intuitions about biological complexity, while taking into account several distinctions
in the usage of the concept that are often overlooked. In particular, I propose a distinc-
tion between two kinds of complexity, “mechanical” and “emergent”, which can be
understood as different ways of relating the effective complexity of mechanisms and
of behaviors in biological explanations. I illustrate the adequacy of this framework by
discussing different attempts to understand intracellular organization in terms of path-
ways and networks. My framework provides a different way of thinking about recent
philosophical debates, for example, on the difference between mechanistic and topo-
logical explanations and about the concept of emergence. Moreover, it can contribute
to a proper assessment of metascientific arguments that invoke biological complexity.

Keywords Complexity - Molecular biology - Systems biology - Network - Pathway -
Emergence - Mechanistic explanation - Topological explanation

1 Introduction

Everybody agrees that living systems are complex. An altogether different question,
however, is whether everybody agrees about what they actually mean by “complex”.
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This question is not easy to answer because when using the term, biologists mostly
do not engage in much further reflection on its meaning. One exception is the debate
around the controversial question of whether evolution shows a trend of increasing
complexity (e.g. Bonner 1988; Smith and Szathmary 1995; Gould 1996). In order
to understand whether complexity changes across episodes of evolutionary change,
evolutionary biologists have tried to come up with quantitative measures for the com-
plexity of an organism, or of some of its structural features (e.g. McShea 2005). Yet,
even in this context, as one of the involved scientists soberly remarks, “[m]ost agree
...that nobody knows precisely what is meant by the word ‘complexity’ when referring
to a biological organism” (Adami 2002, p. 1085).

Complexity is not untypical in this regard, of course. Biologists are mainly con-
cerned with using concepts and not with clarifying or defining them. So if we want
to get a clearer picture, we should perhaps consult the work of philosophers, one of
whose core businesses is, after all, the analysis of concepts. It turns out, however, that
here we are faced with a similar problem. Just like biologists themselves, philosophers
of biology frequently talk about complexity, but they typically do not make explicit,
or are at least not very precise about, what they mean by it. One reason could be that
complexity is simply a rather trivial concept and clarification not worth any serious
effort. Alternatively, further clarification might be impossible because the concept
itself is too complex.

In this paper, I argue that further clarification of the notion of biological complexity
is an important, non-trivial, and achievable task. I propose a unifying framework based
on Murray Gell-Mann’s notion of “effective complexity” that allows me to make sense
of different and partially conflicting intuitions about biological complexity and to take
into account some distinctions in the usage of the concept that are often overlooked
in the philosophical literature. In particular, I argue that in the context of biology
“complexity” is both used with reference to the behavior of a system and with reference
to the underlying mechanism. Different perspectives on complexity can be understood
as different ways of relating these two uses of the term. My illustrations are mainly
taken from the fields of molecular and cell biology because they provide particularly
instructive examples, but I think that the basic concepts can be applied to biology more
generally.

The paper is structured as follows. In Sect. 2, I motivate the claim that the concept
of biological complexity needs further clarification. Section 3 discusses a number
of distinctions that a clarified account of complexity must take into consideration.
Section 4 outlines my unified perspective on biological complexity, while Sect. 5
shows the adequacy of this perspective by applying it to concrete examples of research
in molecular and cell biology. I conclude with some remarks on the relevance of my
framework for recent debates in philosophy of biology.

2 Ambiguity and vagueness around biological complexity

In two seminal works on biological complexity, Bechtel and Richardson’s Discovering
Complexity and Sandra Mitchell’s Biological Complexity and Integrative Pluralism,
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one finds surprisingly little explicit discussion of the meaning of “complexity”. Bechtel
and Richardson, for example, write that

[m]any machines are simple, consisting of only a handful of parts that interact
minimally or in a linear way. In these machines we can trace and describe the
events occurring straightforwardly, relating first what is done by one component,
then how this affects the next. Such machines induce little cognitive strain. Some
machines, however, are much more complex: one component may affect and be
affected by several others, with a cascading effect; or there may be significant
feedback from “later” to “earlier” stages. In the latter case, what is functionally
dependent becomes unclear. Interaction among components becomes critical.
Mechanisms of this latter kind are complex systems. In the extreme they are
integrated systems. In such cases, attempting to understand the operation of the
entire machine by following the activities in each component in a brute force
manner is liable to be futile. (Bechtel and Richardson 2010, p. 18)

And the closest Mitchell comes to something like a general definition is in the following
passage:

Minimally, complex systems can be distinguished from simple objects by having
multiple parts that stand in nonsimple relations. That is, there is structure or order
in the way in which the whole is composed of the parts. (Mitchell 2003, p. 5)

While highly suggestive, these characterizations raise more questions than answers.
What does it mean, for example, that interactions in a system are critical? What is a
nonsimple relation? When do we say that there is structure or order in a system? Thus,
they are hardly sufficient guides when it comes to determining whether, or in what
way a particular system is complex, or when we want to compare the complexity of
different systems.

Is this a problem? Perhaps not. Perhaps the concept of biological complexity is
intuitively clear enough, or even trivial, and any attempt at further clarification would
amount to the superfluous exercise of spelling out what everybody already knows.
Conversely, one may think that attempts of further clarifying complexity are futile
because the notion itself is too complex. Perhaps it simply does not allow for one
unifying definition but requires many different accounts depending on the context.
A third possibility is that nothing much hinges on the exact meaning of the term.
Biologists and philosophers may often use it, but it may in most contexts not play
an important theoretical role. Perhaps complexity, just like the concept of life itself,
refers to a feature that is so fundamental in biology that it rarely comes to the fore?

The first option, according to which an intuitive notion is clear enough, does not
seem plausible. In particular, it would imply that Bechtel and Richardson and Mitchell
allude to the same “simple” idea of complexity. But when considering the quotes above,
one can already see that potentially diverging intuitions are involved. While Bechtel
and Richardson emphasize the fact that complex systems resist simple description,
Mitchell takes order to be a hallmark of complexity, and thus a feature that prima
facie makes our attempts at describing and understanding a system easier. A clarified
account of complexity would minimally need to spell out how one should balance the

@ Springer



12076 Synthese (2021) 199:12073-12102

idea of complexity as related to structure or order against the idea of complexity as
“complicatedness”.

The second option, according to which a unified idea of complexity is not available
because the concept itself is too heterogeneous, seems to be what Sandra Mitchell has
in mind:

The multiplicity of definitions of “complexity” reflects not confusion on the part
of scientists but the actual variety of ways that systems are complex. (Mitchell
2003, p. 4)

Mitchell is specifically referring to the observation that while many different measures
of complexity have been proposed for various purposes, no single measure seems to
work in every context (Lloyd and Pagels 1988). A similar view on the “complexity of
complexity” has been articulated by Rescher (1998). In response to this observation,
Mitchell provides a “taxonomy” of complexity, distinguishing between constitutive,
dynamic, and evolved complexity. While constitutional complexity applies to systems
that are composed of different kinds of parts, such as a multicellular organism, dynamic
complexity is related to mathematical features of descriptions of the processes occur-
ring in certain systems, such as non-linearity or self-organization. Evolved complexity,
finally, refers to diversity that is due to the contingency and randomness involved in
evolutionary processes. However, it is clear that Mitchell thinks of these different types
of complexity as related in some way given that “complexity” in an unqualified sense
plays a central role in some of her general arguments. This raises the question whether
it is possible to say something non-trivial about the common core underlying these
different types.

The final option, according to which the concept does not play an important theo-
retical role (or is too fundamental to be of direct relevance), is actually not implausible
as far as the usage by biologists is concerned. In most contexts “complexity” is used in
arather casual way and does not figure in actual scientific descriptions or explanations
of biological phenomena. There are exceptions, however. In some areas of biology
complexity itself becomes a feature of interest or plays a relevant theoretical role. One
case is the debate on complexity trends in evolution that was already mentioned in
the introduction. Another example comes from parts of ecology, in which complexity
is taken to describe the state of an ecosystem and related to other properties, such as
diversity or resilience (Parrott 2010). But even if complexity were not of theoretical
interest to biologists at all, this would not mean that there is no interest for philosophers
to have a clarified idea of biological complexity. In particular, biological complexity
does seem to play an importantrole in philosophical arguments. According to Mitchell,

the complexity of the subjects studied by the various sciences and the limita-
tions of our representations of acquired knowledge jointly entail an integrative,
pluralistic model of science. (Mitchell 2003, p. 2)

And Bechtel and Richardson argue

[i]lmplicit in our discussion of organization, complexity, and emergence in the
previous section is the basis for rejecting ruthless reductionism and for distin-
guishing mechanistic reduction from ruthless reduction or any other account that
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construes lower levels as the source of all explanation. (Bechtel and Richardson
2010, p. xxxvii)

It should be noted that similar “metascientific”” arguments from complexity are also
sometimes put forward by scientists themselves. For example, some systems biolo-
gists argue that reductionist approaches are misguided because of the complexity of
biological systems:

Biological systems are extremely complex and have emergent properties that
cannot be explained, or even predicted, by studying their individual parts. The
reductionist approach (...) underestimates this complexity and therefore has
an increasingly detrimental influence on many areas of biomedical research.
(Van Regenmortel 2004, p. 1016)

Given that complexity figures as an essential ingredient in important metascientific
arguments, it does seem to be quite relevant what complexity means in biological
contexts, and it is unlikely that an appeal to an intuitive notion of complexity will be
sufficient to properly assess the merits of these kinds of arguments.

In summary, I have suggested that, even though omnipresent in the work of biolo-
gists and philosophers of biology, the meaning of “complexity” is rarely made precise
in biological contexts. Furthermore, [ have argued that there are good reasons to insist
on a further clarification of the term. In particular, this is important because there are
arguments about science, advanced both by scientists and philosophers, in which a
notion of biological complexity figures as an essential ingredient. If complexity does
not have a clear meaning, or if there are conflicting ideas about what complexity
actually consists in, then a proper assessment of these kinds of arguments will not be
possible.

3 Clarifying complexity

In this section I introduce several major distinctions that suggest that “complexity” has
multiple and very different meanings. In the end, however, I argue that it is possible
and productive to consider these distinctions from a unified perspective.

3.1 Ontic and epistemic complexity

As a first step of clarification, it is useful to notice that there are generally two broad
senses in which the term “complexity” is applied in the scientific realm. First, com-
plexity is studied as an interesting property of particular systems. Scientists investigate
the ways in which systems are complex or exhibit complex behavior, and they try to
explain how complexity as a feature of the world can evolve or emerge under certain
circumstances. In line with Hans-Jorg Rheinberger, I will refer to this sense as ontic
complexity (Rheinberger 1997; see also Kaiser et al. 2014). On the other hand, sci-
entists speak of “complex problems”, just as we do in everyday life, to indicate that
they are particularly difficult. In this sense “complexity” does not directly refer to the
object under study itself, but to a task, usually cognitive, that relates to the understand-
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ing, prediction or control of its behavior. For this sense I will use the term “epistemic
complexity”.!

The distinction between the complexity of a system and the complexity of a problem
will perhaps seem obvious. However, when talking about biological complexity both
scientists and philosophers often tacitly shift between these two meanings of complex-
ity. The following quote from Warren Weaver’s 1948 article Science and Complexity

may Serve as an example:

Living things (...) present situations in which a half-dozen, or even several
dozen quantities are all varying simultaneously, and in subtly interconnected
ways. Often they present situations in which the essentially important quantities
are either non-quantitative, or have at any rate eluded identification or measure-
ment up to the moment. Thus biological and medical problems often involve
the consideration of a most complexly organized whole. (Weaver 1948, p. 536,
emphasis added)

Here complexity refers, on the one hand, to the “subtly interconnected ways” in which a
system is organized as a “most complexly organized whole” and, therefore, to intrinsic
features of the system. On the other hand, Weaver invokes the fact that our information
about the system is limited, because some quantities have “eluded identification or
measurement”, which suggests complexity in an epistemic sense.

While it seems very plausible that those systems that are ontically complex are
also the ones that are hard to study, the link is perhaps not as obvious as it may
seem at first, and it does not justify a conflation of the two concepts. If complexity is
understood as an intrinsic property of a system, it should not depend on the state of
knowledge of the investigator and the currently available tools of analysis. By contrast,
if complexity is understood in an epistemic sense, we must precisely take into account
the investigator’s particular cognitive limitations and her access to information about
the system. As I will show in the following, there is a clear link between the two
concepts because ontic complexity can be understood in terms of the complexity of
describing particular aspects of a system, and thus in terms of an epistemic task.
However, the link is non-trivial because many epistemic tasks referred to as complex
go beyond the merely descriptive, for example by relating different descriptions with
the aim of providing a scientific explanation.

3.2 Emergent and mechanical complexity

We have already seen above that there is a certain tension between different intuitions
about complexity, even if the concept is clearly understood as a property of biological
systems, and thus used in an ontic sense. One intuition is that complexity is basically
a measure of the complicatedness of a system, which suggests a close connection with

! Note that there are other ways in which the term “epistemic complexity’ has been used in the philosophical
literature. Some people use it to refer to the external description of a system as given by the knowing subject
(Bailly and Longo 2003), while others mean by it the knowledge embedded in a system (Kovac 2007;
Dasgupta 2013). Rheinberger himself uses the term “experimental complexity” to refer to the complexity
of the experimental landscape that emerges in parallel with scientists’ attempts to cope with the ontic
complexity of the research object.
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complexity in an epistemic sense (because complicated systems are difficult to under-
stand). On the other hand, complexity is often associated with order and organized
structure, which suggests that the link between ontic and epistemic complexity is not
as straightforward.

A notion of complexity that is related to order and structure seems to be the main
focus of what is often called “complexity science”. In this context, complexity is typi-
cally understood as a property exhibited by certain classes of dynamical systems. These
systems are characterized by features like chaos, nonlinearity, or self-organization.
Starting in the 1960s and 1970s, in the course of what some have referred to as the
“complex systems revolution”, systems with such features came to be widely studied
by mathematicians, physicists and other theoretical scientists (Hooker 2011).

Ladyman et al. (2013), and more recently Ladyman and Wiesner (2020), have
attempted to provide a tentative definition of complexity which is very much in the
spirit of complexity science. According to their analysis

[a] complex system is an ensemble of many elements which are interacting in a
disordered way, resulting in robust organization and memory. (Ladyman et al.
2013, p. 57)

One often invoked paradigm for such systems is a flock of birds, a system which
consists of individual units that locally interact more or less randomly, but that give rise
to robust and coherent patterns at a higher level without requiring any kind of central
control or pre-determined program. Proponents of this perspective often conceive of
complexity as an emergent property. I will therefore refer to it as emergent complexity.”

While this is certainly one way in which the term “complexity” is used, and while
we will later see that there are scientists who think of living systems as complex and
self-organized in precisely this way, there seem to be aspects of biological complexity
that are not captured by this perspective. Consider the following quote from a textbook
in molecular biology:

The increased complexity of eukaryotic replication machinery probably reflects
more elaborate controls. For example, the orderly maintenance of different cell
types and tissues in animals and plants requires that DNA replication be tightly
regulated. (Alberts et al. 2015, p. 254)

This doesn’t sound as if complexity simply “emerged” from lower level disorder. The
ways in which the components of a eukaryotic cell interact appear to be extremely
specific and have been shaped by a long evolutionary process. Rather than originating
in lower level randomness, the complexity of the system seems to be related to the fact
that its parts are tightly controlled and cooperate in a highly orderly fashion, much
like a mechanical system in which each component plays a very specific role. The
paradigm of such a system is of course the mechanical clock. If we take Ladyman
et al.’s definition seriously, then a clock is not a complex system at all because it
does not consist of elements interacting in a disordered way, and, probably, because a
clock is not robust in the relevant sense. This suggests that there is a second important

2 This is for now a purely terminological choice and does not presuppose any particular philosophical
position on the concept of emergence.
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sense in which “complexity” is used by biologists, which I will refer to as mechanical
complexity.?

The two senses of complexity that I have just delineated should not be thought
of as referring to radically different kinds of objects, but rather as two extremes of a
spectrum. In fact, if asked directly, most biologists would probably agree that regard-
ing their complexity biological systems are situated somewhere between mechanical
clocks and flocks of birds.

The difference between the two kinds of complexity bears some similarity to the
distinction made by Warren Weaver between “organized” and “disorganized com-
plexity”. Weaver describes a problem of disorganized complexity in the following
way:

It is a problem in which the number of variables is very large, and one in which
each of the many variables has a behavior which is individually erratic, or perhaps
totally unknown. However, in spite of this helter-skelter, or unknown, behavior
of all the individual variables, the system as a whole possesses certain orderly
and analyzable average properties. (Weaver 1948, p. 538)

The paradigmatic illustration for disorganized complexity in Weaver’s sense is the
statistical description of a gas. While it is completely impossible to determine the
trajectories of the individual molecules constituting the gas, one can describe higher-
level regularities with the help of statistical methods, averaging over the behavior
of the molecules. Problems of organized complexity, by contrast, involve “dealing
simultaneously with a sizable number of factors which are interrelated into an organic
whole” (Weaver 1948, p. 539). According to Weaver, these kinds of problems are
predominantly found in biology, but also arise in the psychological, economic, and
political sciences.

We have to note, however, that Weaver’s idea of disorganized complexity does not
exactly match Ladyman et al.’s definition because Weaver also includes systems in
which there is no organization at all. In Ladyman et al.’s view, by contrast, complexity
has to be found somewhere between perfect order and complete disorder.

In Sect. 4 T will suggest a way in which all these different ideas can be taken into
account within a single framework. Before getting there, however, one further issue
has to be addressed.

3.3 Complexity of mechanism and complexity of behavior

When observing how biologists use the term “complexity”, one notices a further dis-
tinction that has not yet received much attention in philosophical discussions. Compare
the following statements:

Although they are single cells, protozoa can be as intricate, as versatile, and as
complex in their behavior as many multicellular organisms. (Alberts et al. 2015,
p- 30).

3 Apart from emphasizing the relation to engineered mechanical systems, I use “mechanical” instead of
“mechanistic” to distinguish this concept from the complexity of mechanism as introduced in Sect. 3.3.
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Although bacteria also have cell memory mechanisms, the complexity of the
memory circuits in higher eukaryotes is unparalleled. (Alberts et al. 2015, p.
206)

In the first case, “complexity” refers to the behavior of a system. The attribution of
complexity seems to derive from the fact that some capacity or range of capacities
of the system is in some sense impressive. In the second case, “complexity” refers to
a mechanism. Here, the attribution of complexity seems to express the idea that the
structure or the organization of the system is complicated. Thus, it is natural in the
biological context to conceptually distinguish between the complexity of behaviors
and the complexity of mechanisms. * While this distinction bears some similarity to
the distinction between ontic and epistemic complexity, and also to the distinction
between mechanical and emergent complexity, it introduces a new aspect because
it can be understood as relating different meanings of complexity respectively to the
explanans and to the explanandum in biological explanations. In many areas of biology
the explanans is provided by the description of a mechanism, while the explanandum
is a phenomenon or behavior of interest (Wimsatt 1974; Machamer et al. 2000).

Complexity of behavior is related to the capacities of a biological system, for
example to the number of functions it can perform, to its adaptive response to varying
contexts, or to its robustness in the face of perturbations. Complexity of mechanism,
by contrast, is more straightforwardly related to how complicated a system is, for
example to the number of components, to the complexity of interactions (e.g. linear
vs non-linear), or to its topological structure. A very clear example is provided by the
central nervous system, which is often called complex with reference to its behavior,
i.e. because of the many different tasks it controls or is involved in, and because of its
capacity for adaptive behavior and learning. On the other hand, itis called complex with
reference to its structure, i.e. the architecture of different parts and the unimaginably
large number of neurons and their patterns of connection.

A priori these are two independent notions, but biologists of course expect that the
complexity of a behavior and the complexity of the underlying mechanism will more
or less match in degree. However, cases where these kinds of expectations are con-
founded, i.e. when seemingly complex behaviors are the result of surprisingly simple
mechanisms, or when the mechanism underlying a simple behavior appears unnec-
essarily complex, can be particularly instructive. Instances of the former are found
for example in developmental biology, where the mechanisms underlying complex
morphological patterns have often been found to be simpler than expected (e.g. von
Dassow et al. 2000; Lewis 2003). Interestingly, these are typically cases where intu-
ition fails and mathematical methods have to be employed to explain the phenomenon
in terms of the underlying mechanism. This shows that epistemic complexity, i.e.
the complexity of the explanatory task, is not related in a straightforward way to the
complexity of the system.

4 Here, I have a maximally broad conception of “mechanism” in mind that encompasses basically any kind
of causal structure underlying a phenomenon. In particular, I do not want to endorse any stronger require-
ments that are sometimes associated with accounts of mechanistic explanation, such as decomposability or
functional localization (cf. Silberstein and Chemero 2013) because I do not want my account of complexity
to be restricted to biological systems that are “well-behaved” in some sense.
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To summarize this section, I have discussed three distinctions that should be taken
into account when looking for a clarified picture of biological complexity. Ontic and
epistemic complexity apply to different categories: ontic complexity directly refers
to the systems studied by scientists, whereas epistemic complexity refers to a sci-
entific task or problem. Mechanical and emergent complexity are two different and
somewhat conflicting ways in which the notion of ontic complexity can be further
spelled out. Mechanical complexity captures the intuition that a system is complex if
its components interact in very specific and tightly controlled ways, whereas emer-
gent complexity is the idea that a system is complex if it exhibits some degree of
structure or organization that arises from underlying disorder. Finally, the distinction
between complexity of mechanism and the complexity of behavior was introduced to
take into account the fact that biologists, even when talking about the same system,
apply the notion of complexity differently depending on whether they use it with ref-
erence to the explanans or the explanandum. It is important to note that in my account
mechanical complexity and complexity of mechanism are very different notions. In my
usage, “mechanism” or “mechanistic” refers primarily to the logical role of being the
explanans in the (causal) scientific explanation of a phenomenon, while “mechanical”
refers to a particular idea of the structure and organization of a system.

4 A unified framework for biological complexity

What I have called emergent and mechanical complexity seem to be quite different,
even diametrically opposed notions. From the point of view of the emergent complexity
conception, mechanical complexity is not complexity at all since the order found in a
mechanically complex system does not arise from disorder. Conversely, from the point
of view of mechanical complexity, a system like a flock of birds is not complex because
its behavior does not seem to depend on the fine details of the structure of the system.
The distinction between complexity of mechanism and complexity of behavior adds
to the heterogeneity of the resulting picture.

In this section I propose a more encompassing perspective that aims at capturing
these different aspects based on the technical notion of effective complexity, intro-
duced by Murray Gell-Mann and Seth Lloyd (Gell-Mann and Lloyd 1996; Gell-Mann
2002). The basic idea underlying my framework is that biological complexity should
be understood as a quantitative relationship between the effective complexity of the
behavior of a system and the effective complexity of the underlying mechanism. This
allows me to understand emergent complexity and mechanical complexity as different
regimes of this relationship. At the same time it illuminates the way in which bio-
logical complexity is necessarily relative and cannot be attributed to systems in an
unqualified manner.

4.1 Effective complexity

As we have seen, it is a common idea that complexity is not a simple concept itself,
and that there is a plurality of views on the actual nature of complexity. Independently
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of this fact, it might nevertheless be possible to find a measure of complexity that
enables comparisons of different systems. This is not at all uncommon in science. For
example, measures of temperature were accepted long before there was any agreement
on the nature of the underlying phenomenon.

One quickly recognizes, however, that there are not only different perspectives about
what complexity is, but also that there exist numerous different measures of complexity
that are applied in different contexts (Lloyd 2001). Many complexity measures are
in some way based on numerosity, or the number of relevant components, processes,
interactions etc. of a system (cf. Ladyman and Wiesner 2020). Similarly, in the context
of statistical and mathematical modeling, complexity is often related to the number
of variables or of free parameters of a model. In biological contexts, the complexity
of organisms is often assessed based on the number of different genes or of cell
types. Other measures are based on variance. For example, McShea (2005) proposes
to compare the degree of internal variance between different organisms in order to
investigate possible complexity trends in evolution. The fact that there are different
measures of complexity in different contexts does not necessarily imply a multitude of
underlying concepts. These different measures might be understood as proxies that in
different ways provide information about the actual underlying complexity of a system.
A common trait of all these measures is that they directly relate the complexity of a
system to some property of a description of that system.

A generalized and formal version of this kind of measure can be found in the
concept of algorithmic complexity (Kolmogorov 1963), or algorithmic information
content, which is defined roughly as the length of the shortest set of instructions that
can reproduce a given string of letters or numbers. One may thus feel inclined to
say that a system is more complex than another if its description has higher algo-
rithmic complexity. However, a tension with intuitive ideas about complexity arises
here because maximal algorithmic complexity is assigned to a fully random string.
If we were to directly apply the idea of algorithmic complexity to the description of
systems, then a completely disordered system, such as a gas, would have to be con-
sidered maximally complex because we need to describe the motion of each particle
independently and have no way of compressing that information. This suggests that a
reasonable general measure for the complexity of systems must take into account in
some way the degree to which the system is structured or organized.

Gell-Mann and Lloyd (1996) proposed a measure of “effective complexity” in order
to capture this aspect. Gell-Mann explains the idea as follows:

It would take a great many different concepts to cover all our intuitive notions
of what is meant by complexity (and its opposite, simplicity), but the concept
that agrees best with the meaning in ordinary conversation and in most scientific
discourse is effective complexity (EC). Roughly, the EC of an entity is the length
of a very concise description of its regularities. (Gell-Mann 2002, pp. 13-14)

Thus, complexity is clearly related to algorithmic information content because
Gell-Mann and Lloyd understand “very concise description” exactly in terms of the
shortest program generating the description of an entity. But importantly, the relevant
description is restricted to certain features of the entity. More specifically, they argue
that the total algorithmic information can be decomposed into two terms that can be
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understood as describing the random and the regular features of an entity, respectively.
In order to achieve this decomposition, the entity of interest must be embedded within
an ensemble of comparable entities. These entities share certain features but may
be different in various other respects. Effective complexity is then defined as the
algorithmic information content of the ensemble. The choice of ensemble therefore
determines what the regular aspects of an entity are. The remaining part of the total
algorithmic information content of the entity is interpreted as a description of its non-
regular features. It can be understood as an entropy term because it measures our
ignorance about the entity if we would only know that it belongs to the ensemble.’
Intuitively, the larger this term, the more the members of the ensemble can vary among
each other.

The common idea behind both algorithmic complexity and effective complexity is
that they define complexity in terms of the properties of descriptions, i.e. of linguistic
objects that can in principle be represented by a sequence of symbols or string. Thus,
in order to illustrate the basic idea, let us consider the following two strings of binary
numbers:

sy =1[1,1,0,0,1,1,1,1,0,1,1,0,1,0,0,1,1,0,1,1] and
s2=10,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0, 1,0, 1].

While the first string looks essentially random, the second exhibits a very simple
pattern. In line with this, the algorithmic complexity of s is smaller than that of s;.
This is because one can generate s, with the instruction to repeat [0, 1] ten times, and
thus by a relatively short program. By contrast, there does not seem to be a way to
reduce the description of s; and thus an instruction to write out the string needs to
contain some representation of the whole string itself.

In many contexts, notably in biology, we would not ascribe maximum complexity
to completely random configurations, but rather think of objects as complex if they
exhibit some degree of structure or organization. Applied to our toy example, what
we want to find is a measure that assigns higher complexity to s> than to s;. We can
imagine, for example, that the two strings represent the outputs of two differently
oriented telescopes, 77 and T3, that measure electromagnetic radiation coming from
space. Now let us assume that we repeat the measurement for both telescopes several
times and that for 77 we always get a different but random looking string, and that for
T, we always get a string with alternating Os and 1s. We would then be inclined to say
that what we measure for 77 is probably noise, and that what we measure for 7 is
an actual signal. In line with this scenario, the idea of effective complexity is to think
of the particular object under study as a typical member of a larger ensemble and to
consider the information that is needed to describe this ensemble as a measure of its
complexity. Thus, the string s1 has low complexity if we think of it as a typical member
of the ensemble of all binary strings of length 10 because this ensemble simply has no
specific properties that need to be described. And s, has higher complexity than s if
we consider it as a representative of the ensemble of binary strings of length 10 with

5 For a formal treatment, the reader should consult Gell-Mann (2002).
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alternating Os and 1s because we have to provide additional information to define this
ensemble.

From this perspective complexity is not an intrinsic property of the entity, but
depends on the particular choice of ensemble. To see this, consider an alternative
scenario where repeated measurements of 7 always result in exactly the same string
s1. In this case we would likely not think of it as noise but rather as a complex signal.
Effective complexity makes sense of this: the relevant ensemble has changed and does
not consist of all strings but only of s itself. Therefore, the effective complexity of 51
is now higher than that of s, because the description of this ensemble is considerably
longer than the description of the ensemble of s;.

Effective complexity matches the intuition that complexity is somehow related to
complicatedness (in this context the difficulty of describing a string), but only if this
complicatedness is relevant according to some external criterion which determines
the regular and random features of an entity, respectively. Note that there is some
ambiguity about the meaning of “regularity” in this context. Regularity can refer to a
pattern within a given entity, such as the alternating occurrences of 0 and 1 in s,. But it
can also refer to a seemingly random pattern that recurs in different entities (such as the
irregular string 51 in the second scenario). Regularity in the former sense is related to
simplicity because it allows us to compress the description of a system. Regularity in
the latter sense is related to complexity because it suggests the importance of features
that need to be taken into account in a description.

Taken together, effective complexity makes sense of the two seemingly conflicting
intuitions that complexity depends to some extent on regularity or order, but is at the
same time related to complicatedness.

4.2 The relativity of complexity in biology

How can this idea be applied to real systems, and in particular to the context of biol-
ogy? While the actual definition of effective complexity in terms of a decomposition of
algorithmic information content is quite technical, the intuitive idea behind it actually
comes close to what biologists are usually interested in when describing phenomena
or their underlying mechanisms. In most cases, biologists do not aim to describe a par-
ticular entity in all its idiosyncratic detail, but rather to describe features common to
a particular class of entities (whether those objects are macromolecules, cells, organ-
isms, or ecosystems). Thus biology, as many other scientific disciplines, can be seen as
engaged in the study of ensembles of entities that share a set of relevant features despite
some random variation between them. Effective complexity matches these practices
well because it relates complexity to the description of these relevant features. At the
same time it makes sense of the seemingly paradoxical fact that complexity is both
somehow related to complicatedness and to order. Biologists think of a multicellular
organism as more complex than a random bag of cells, even though it seems more
difficult to describe the latter at the same level of detail. In analogy with the random
string s1 in Sect. 4.1, a description of the random bag of cells would require explicit
specification of the location of each cell. An organism, by contrast, can be described
in a more economical way because it is organized into spatially separated tissues and
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organs which contain certain cell types and not others. Nevertheless, the random bag
of cells is considered less complex because it is implicitly treated as a system that
has no particular configuration (even though every single bag of cells does have a
particular configuration), and thus as a member of a large ensemble of entities that do
not share any interesting features.

An important consideration to be taken into account, however, is that many for-
mal measures of complexity are defined with respect to idealized model systems. In
particular, they presume a canonical description of a system which uniquely deter-
mines its complexity. For real-world systems, by contrast, complexity is not uniquely
defined even given a fixed complexity measure because it also depends on the choice
of representation. One may represent a biological organism using just its weight and
the position of its center of mass, or one may describe all its components in detail
down to the molecular level. More generally, there is not necessarily one privileged
decomposition of a system into parts, nor even a unique way of determining what the
system’s behavior is. As Stuart Kauffman observes,

not only are multiple views about what a system is doing possible, but also any
system may be decomposed into parts in indefinitely many ways, and for any
such part, it too can be seen as doing indefinitely many things. (Kauffman 1976,
p- 259)

William Wimsatt, drawing on Kauffman’s ideas, argues that, as long as we do not
have one exhaustive and unifying theory, each theoretical perspective taken by itself
can only give an impoverished view of the real objects (Wimsatt 1972, reprinted in
Wimsatt 2007, Chapter 9). In particular, it seems that when we call a system “complex”
from a given theoretical perspective, we can in effect only judge the complexity of
our particular representation. This suggests that, in order to get an idea of the “actual”
complexity of a system, we must also consider how different theoretical perspectives
relate to each other. In this regard, Wimsatt offers two concepts—descriptive com-
plexity and interactional complexity—that may be seen as proxies for the possibly
inaccessible “actual” complexity of a system. A system is descriptively complex to
the extent that different theoretical perspectives pick out decompositions into parts
that do not spatially coincide. Scientists belonging to different biological disciplines
decompose an organism, like a fruit fly, differently into parts, e.g. according to cell
types, developmental fields, or physiological systems. In more descriptively simple
systems the decompositions according to different perspectives will tend to coincide
more.

In order to understand Wimsatt’s slightly more complicated concept of interactional
complexity, we have to consider the system in a state space representation, that is, in
a representation that describes the behavior of variables characterizing the system
over time. Each theoretical perspective picks out different properties of a system and
therefore works with a different set of variables. Depending on the desired level of
predictive accuracy, one can neglect causal links below a certain threshold of interac-
tion strength and thereby obtain a decomposition into subsystems with strong internal
bonds. A system is interactionally complex if many of these subsystems partly fall
into different perspectives. One will neglect important causal factors and not be able
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to predict its behavior with precision, unless one considers it from more than one
perspective.

Wimsatt’s analysis thus highlights a further important aspect of relativity: when
assessing the complexity of a system, not only must different theoretical perspectives
be taken into account, but also the desired level of precision. A system that seems to
behave in a very simple fashion when represented in a relatively crude way, such as a
mass of water flowing through a tube, appears extremely complex as soon as we aim
for a more precise description in which factors like viscosity and turbulence cannot be
neglected anymore. Thus, each theoretical perspective seems to give us only a rough
approximation of the “actual” complexity of a system and at best a lower bound.

Does this mean that any non-relative account of ontic complexity is out of reach?
Wimsatt suggests that it is difficult, or even pointless, to strive for an account of the
complexity of a system in an absolute sense. But maybe such an absolute concept is
not what is needed anyway in order to understand the role of the concept of complexity
in biology. If we take into account how and when biologists usually apply the concept,
it is not clear that a non-relative concept of complexity is even relevant. And the
distinction introduced in Sect. 3.3, between the complexity of mechanisms and the
complexity of behaviors, may in fact prove to be a solution to the problem of relativity
rather than an additional complication. As we have seen, biologists typically apply
the concept of complexity not simply to systems in an unqualified sense. Thus, they
do not ask “how complex is a fruit fly?”, but instead ask, for example, about the
complexity of the network underlying segmentation of the fruit fly embryo. Similarly,
when it comes to comparisons between different kinds of organisms, say, about the
differences between humans and other animals, what is at issue is not a difference in
complexity per se, but rather a difference in complexity with respect to a particular
set of biological capacities.

Thus, in biological contexts complexity is rarely unconditionally applied to sys-
tems, but either with reference to a specific behavior of a system or to a mechanism
underlying a specific behavior. The idea of complexity as a property that is uncon-
ditionally applied to systems may make sense from the perspective of complexity
science with its focus on formally specified systems, but it does not fit the situation of
biology.

The focus on mechanism and behavior allows us to elaborate on the application of
the concept of effective complexity in biology. As we have seen, embedding a system
in an ensemble effectively means to decide which are the relevant regularities of the
system. For the case of mechanisms this kind of relevance relation can in principle be
derived from the norms of mechanistic explanation. Thus, the relevant ensemble of a
mechanism underlying some behavior can be defined in terms of the regularities that
would need to be included in a description that counts as a successful explanation of
the behavior.® A similar strategy for accounts of biological behaviors appears more
problematic, however, because it seems that how these are described depends to a large
degree on the particular interests of the investigator. Does this threaten any objective
account of biological complexity after all? We can save some degree of objectivity if we
take into account the hierarchical structure of explanations in biology. The behaviors

6 Tam not hereby suggesting that there is consensus on these norms in the philosophical literature.
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that are the explananda in mechanistic explanations in biology are very often embedded
in a functional context themselves and figure as parts of the explanantia of yet other
behaviors (cf. Craver 2007). For example, the behavior of the heart is explained by the
pumping activity of the atria and ventricles, and the behavior of these components is
in turn explained with reference to the activity of components at an even lower level.
This suggests that descriptions of mechanisms and of behaviors are closely related in
biology.

McAllister (2003) argues that effective complexity is not a good measure of infor-
mation content because it is not uniquely defined and relative to the cognitive and
practical interests of investigators. It is not clear to what extent this is really a prob-
lem for Gell-Mann because he admits that his concept is relative in several regards.
But it certainly does not pose a problem for my conception of biological complexity
because the relevant features, or regularities, on which the application of the concept
of effective complexity depends are not arbitrarily determined by the observer, but
are constrained by the larger research context and the overarching aim of providing
scientific explanations.

4.3 Mechanical and emergent complexity reconsidered

Given this rough sketch of how the complexity of mechanisms and behaviors can both
be understood using the idea of effective complexity, we can now turn to the question if
we can make sense of the seemingly very different ideas of emergent and mechanical
complexity using this concept as well. I propose that we can consider both concepts
as derivative of the idea of effective complexity if we think of them as different ways
of relating the complexity of a behavior and the complexity of the corresponding
mechanism. Briefly, mechanical complexity describes instances where the effective
complexity of the behavior more or less matches the complexity of the mechanism,
whereas emergent complexity describes instances where the effective complexity of
the behavior is high compared to the complexity of the mechanism.

Recall that the idea of mechanical complexity was that of a system in which the
activity of each part is tightly controlled such that the behavior of the system results
from the orderly interplay of its components. A satisfactory description of the mecha-
nism underlying this behavior must be relatively detailed. Put differently, the relevant
ensemble is relatively small because many possible configurations of the same parts
must be excluded. As a consequence, high mechanical complexity is directly related to
high effective complexity of the mechanism. At the same time we would probably think
of such systems as complex only to the extent that the complexity of the mechanism
translates into something that the system is capable of doing. Thus, in mechanically
complex systems the complexity of mechanism and the complexity of behavior are
roughly of the same order. Given the evolutionary history of biological systems and
the contingent and random aspects of evolutionary processes, it is plausible to find
many instances in which the complexity of a mechanism seems out of proportion with
the the complexity of the corresponding behavior. Elliot Sober cites the example of
the surprisingly long loop in the tubing connecting the testes to the penis in mammals
as an example of a clear violation of “minimality” (Sober 2015, p. 153). The loop is a
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result of the particular evolutionary history and does not apparently contribute to the
functionality of the structure. Singh and Gupta (2020) have recently proposed the idea
of “unnecessary complexity” to describe deviations from “the minimum number of
gene-gene interactions and minimum biochemical path lengths necessary for a given
molecular function, trait or an organism” (Singh and Gupta 2020, p. 3). More gen-
erally, there are usually multiple ways to solve an adaptive problem, and it is widely
accepted that evolution does not necessarily produce the optimal solution (e.g. Parker
and Smith 1990), let alone the minimally complex solution. Thus, I propose to speak
of mechanical complexity when the complexity of the mechanism is similar to the
complexity of the behavior, and of unnecessary complexity when the complexity of
the mechanism is considerably higher than the complexity of the behavior.

In instances of emergent complexity the relationship between the complexity of
the mechanism and the complexity of the behavior is quite different. Here, we have
relative simplicity at the level of the mechanism and relative complexity at the level
of the behavior. Consider again the example of the flock of birds. Organized and
orderly behavior at the level of the flock is thought to “emerge” from disorder and
relatively simple interactions at the level of the individual birds. Disorder in this case
means that the initial exact configuration of birds does not matter, and that one needs
relatively little amount of detail to describe the setup of the system. The relevant
ensemble therefore consists of a large number of possible “bird configurations”. The
idea of low complexity in mechanism and high complexity in behavior also matches
the standard theoretical examples of complexity science, such as the logistic map
or the Lorenz system.” In both cases there is a relatively simple description of the
system in terms of the generating equations (corresponding to the mechanism), but
an unexpected complexity in the behavior exhibited by the system. Note that low
complexity of a mechanism does not imply that it is easy to understand how the
mechanism brings about the behavior. Explaining complex behavior in terms of a
simple mechanism is typically a task of high epistemic complexity and often requires
sophisticated mathematical tools. By contrast, explaining how the many components
of a mechanical clock bring about its time-keeping behavior is surely complicated
as well, but seems rather straightforward by comparison. This is presumably another
reason why many people are inclined to consider emergent complexity as the only
relevant kind of complexity.

In Fig. 1 three possible ways of combining the complexity of mechanism and the
complexity of behavior are represented in a schematic diagram. This representation
also suggests that there is not a clear separation between the different kinds of com-
plexity, but rather a continuous transition. A quantitative measure for the complexity
c(S) of asystem S that captures both emergent complexity and mechanical complexity
may tentatively be provided by the following expression:

cg(S)

c(S) =« -cp(S) with « = nS)

7 The logistic map is an equation that recursively defines a sequence of numbers according to the formula
Xp4+1 = rxp(l — xp). It can be interpreted as a very simple model of a growth process, but for certain
choices of the parameter r it exhibits complex periodic or chaotic behavior. The Lorenz system is a system
of three simple differential equations that has a set of chaotic solutions, the so-called Lorenz attractor.
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Here, cp stands for the complexity of the behavior of S, and cj; stands for the com-
plexity of the mechanism underlying S’s behavior. First of all, the equation expresses
the idea that overall complexity directly increases with the complexity of behavior.
The factor « takes into account the relationship between the complexity of mechanism
and the complexity of behavior. We can think of it as the “emergence factor” in the
following sense: Mechanical complexity corresponds to systems for which « =~ 1, and
thus complexity is directly proportional to the complexity of its behavior. Emergent
complexity is present when « >> 1, and the case of k < 1 corresponds to unnecessary
complexity.®

This relationship captures the idea that a system like the flock of birds is considered
complex not because it exhibits behavior that is particularly complex in absolute
terms, but because its behavior is complex relative to the complexity of the underlying
mechanism. Furthermore, it is consistent with Ladyman et al.’s sense of complexity
emerging from underlying disorder because ¢y is inversely related to the entropy or
degree of disorder, which directly follows from Gell-Mann (2002)’s analysis of total
algorithmic complexity as the sum of effective complexity and entropy. It also captures
in a rather straightforward sense the worn-out but rarely clarified idea that emergence
is present when the whole (i.e. the system’s capacities or behavior) is greater than
the sum of its parts (i.e. the underlying mechanism). Finally, the equation also shows
in what sense mechanical and emergent complexity can be understood as lying on
opposite ends of a spectrum because given a particular explanandum phenomenon
(i.e. cp(S) is held fixed), a proposed mechanism exhibits mechanical complexity if
cpm (S) is high and emergent complexity if cps(S) is low.

I am not hereby suggesting that this kind of “pseudo-quantitative” measure is
directly useful in scientific practice. But I think that it provides a productive way
of thinking about biological complexity. Even though it may not get at the “essence”
of complexity and does not tell us anything about whether there is an underlying bio-

8 One might think that ¢ = ¢p/c) would be a more economical way of capturing the relationship. But
then one would obtain the counterintuitive result that all mechanically complex systems have ¢ ~ 1. An
additional, more technical, argument is that C should have the same unit (information content measured
e.g. in bits) as CM and CB.
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logical or physical property that unites all complex systems, it seems to capture our
intuitions well when we compare the complexity of different systems. In particular, it
is applicable to both mechanical and emergent complexity, and it is directly related to
the basic idea of effective complexity as whatever it is that makes our description of
the relevant features of an entity long. Thus, there is not necessarily one underlying
intrinsic feature that unifies all systems that we would like to call “complex”. Instead,
numerosity, internal variance, or interconnectedness, but also dynamic features such
as non-linearity and chaos can all contribute to the complexity of a system in this
sense. The concept also partially illuminates the relation between ontic and epistemic
complexity because it relates complexity to the degree to which we can compress the
description of an entity. Badii and Politi who aim at a comprehensive discussion of
the ways in which “complexity manifests itself in nature” (Badii and Politi 1999, p.
xi) are drawn to a very similar conclusion:

[T]he concept of complexity is closely related to that of understanding, in so
far as the latter is based upon the accuracy of model descriptions of the system
obtained using a condensed information about it. Hence, a “theory of complex-
ity” could be viewed as a theory of modeling, encompassing various reduction
schemes (elimination or aggregation of variables, separation of weak from strong
couplings, averaging over subsystems), evaluating their efficiency and, possibly,
suggesting novel representations of natural phenomena...[A] system is not com-
plex by some abstract criterion but because it is intrinsically hard to model,
no matter which mathematical means are used. (Badii and Politi 1999, p. 6,
emphasis added)

In line with this view, complexity can only be assessed with regard to our repre-
sentations of mechanism or behavior. A system is complex to the extent that it resists
‘condensing’ the amount of information that is needed for describing it. The last part
of the quote suggests that this conception, even though subject-dependent in an obvi-
ous sense, is not necessarily ‘subjective’ in the sense of depending on the contingent
capacities of a particular cognitive agent.

Consider again Warren Weaver’s distinction between ‘disorganized’ and ‘orga-
nized’ complexity. The former applies to systems in which the number of variables
is very large, but each variable individually shows “helter-skelter” behavior like the
molecules in a gas (Weaver 1948, p. 538). When dealing with such systems, one can
often apply statistical methods in order to find a compact description in terms of the
average behavior of the components. What Weaver is effectively suggesting, therefore,
is that disorganized complexity in many cases is just simplicity in disguise. Sometimes,
as in the case of statistics, the introduction of a new analytical method can reveal that
a system is not as complex as had previously been thought. A similar view can be
found in Herbert Simon’s reasoning about complexity. He argues that,

[h]ow complex or simple a structure is depends critically upon the way in which
we describe it. Most of the complex structures found in the world are enormously
redundant, and we can use this redundancy to simplify their description. But to
use it, to achieve the simplification, we must find the right representation. (Simon
1962, p. 481)
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This at first seems paradoxical: simplicity is found in complex structures. And in fact,
many features that are considered hallmarks of complexity, such as hierarchical orga-
nization or modularity, are actually regularities that allow for a simplified description
of a system. The idea of effective complexity makes sense of this paradox: if one has to
describe a particular entity, the description will be shorter if the entity contains some
regularities. By contrast, if one has to describe an ensemble of entities, the description
will be shorter if the entities do not share any regularities.

A second aspect of the paradoxical relationship between simplicity and complexity
is illuminated by the idea of emergent complexity. I have argued that complexity
is often associated with systems that exhibit complex behavior, even though the
underlying mechanism appears simple. The relationship between ontic and epistemic
complexity, however, is non-trivial because the scientific task of understanding does
not consist only in describing mechanism and behavior, but in relating the two descrip-
tions.

5 Illustrating the framework

I would like to illustrate the framework developed in the previous sections with con-
crete examples from research in biology. In particular, I will discuss different attempts
to understand intracellular organization in terms of pathways and in terms of networks.
Atfirst glance these attempts seem to imply rather different ideas about biological com-
plexity. While the differences partly concern quantitative aspects of complexity, i.e.,
the degree of complexity of the system under study, other aspects may best be under-
stood as disagreements about the kind of complexity found in biological systems. But,
as highlighted in Sect. 3.2, I suggest that there is a spectrum of complexity between
the two extremes of what I have called mechanical and emergent complexity, and so
different views on intracellular organization can be located along this spectrum.

Given that I talk about different “perspectives” in the following, one may think
that this section mainly discusses epistemic aspects of complexity. However, these
perspectives refer to different ways in which scientists conceive of the ontic complexity
of biological systems. These different ideas of ontic complexity in turn affect the
epistemic complexity of their research problems.

5.1 The pathway perspective

Many biological processes at the molecular level are conceptualized in terms of path-
ways. Biochemistry studies metabolic pathways that connect a series of chemical
reactions and convert one or more reactants into a product. In molecular biology the
idea of a molecular pathway is closely linked to the metaphor of biological processes
as processes of information transfer or of signaling. The basic idea is that the cell
receives an external signal, typically in the form of a molecule binding to a receptor
expressed on the cell surface, which in turn transduces this signal via a cascade of
steps into the nucleus, where it initiates a specific cellular reaction by switching on or
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switching off a set of target genes. ° A major incentive for the study of such signaling
pathways comes from the field of oncology and is based on the idea that cancer can be
understood as “a disease of aberrant signal processing” (Weinberg 2014, p. 176). In
the context of a multicellular organism, cells divide only under special circumstances,
for instance during processes of growth or wound healing. Specific molecules, called
growth factors, can act as signals to promote cell survival or to induce growth or cell
division. Many traits of cancer appear similar to the responses of normal cells to growth
factor stimulation. Based on this observation, biologists hypothesized that cancer may
arise when some components of these growth factor pathways become permanently
activated. They found that many tumor cells express a mutated hyperactive form of a
particular protein, called Ras, and this finding provided the first step to uncover one
of these pathways. As the cancer biologist Steven Weinberg recalls,

[o]ver aperiod of adecade (the 1980s), these circuits were slowly pieced together,
much like a jigsaw puzzle. The clues came from many sources. The story started
with Ras and then moved up and down the signaling cascades until the links in
the signaling chains were finally connected. (Weinberg 2014, p. 181)

This strategy seems very common in episodes of mechanism discovery in the life
sciences. Discussing the discovery of the mechanism of protein synthesis, Lindley
Darden suggests that biologists often apply a strategy of “forward and backward
chaining”. That is, they start with known, or hypothesized, components of a mechanism
and then attempt to work forward or backward, taking advantage of constraints that
the components impose on the possible ways of filling in the gaps. This strategy is
well illustrated by the discovery of the Ras-Pathway, which suggests that the idea of a
sequential pathway acts as a powerful heuristic in biological research more generally.
It reduces epistemic complexity considerably because it is so intimately linked with
our general way of conceptualizing causal processes (cf. Bechtel 2011). At the same
time, the idea of signaling pathways implies an idea of biological organization as
modular in an important sense. Pathways can be studied in relative isolation from
each other, and accounts of the activity of different pathways can be integrated to
reach a higher level understanding of cellular behavior. The pathway perspective thus
also illustrates the applicability of the strategy of decomposition and localization, as
described by Bechtel and Richardson (2010). An implication of this perspective is
that intracellular organization is actually not as complex as one might expect given
the number of relevant components. If different signals are transmitted via specific
pathways that are largely isolated from each other, then many potential interactions
between components are excluded. And if each component of a pathway interacts with
one or at most a few up- and downstream signaling partners, this greatly reduces the
number of possible interactions that are expected to be relevant.

The pathway perspective thus suggests a picture of (relatively) low epistemic
complexity. Explanations in terms of sequential organization usually do not require
sophisticated models and can often be given in informal, qualitative terms. Further-
more, the strategy of functional decomposition allows biologists to black-box lower

9 It has recently been argued that the notion of “pathway”” should not simply be considered as a subspecies
of “mechanism”, and that the two notions play different explanatory roles (Ross 2021). Given my broad
understanding of “mechanism”, I will glance over these differences in the present context.
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level processes and to produce tractable explanations in terms of higher level compo-
nents, which corresponds to a further reduction in epistemic complexity.

Going beyond the epistemic level, the pathway perspective appears as a rather clear
instance of mechanical complexity. The behavior of the cell as a whole is envisioned as
arising straightforwardly from the contributions of individual and largely independent
pathways. Thus, the complexity of the behavior at this level is expected to be of the
order of the sum of the complexities of individual pathways. The pathway perspective
also implies mechanical complexity if we go down one more level to the explanations
of individual pathway behavior. The molecular interactions that constitute a signaling
pathway are taken to be extremely specific, and even slight perturbations on individual
components of a pathway are expected to result in major problems, as shown in
pathologies like cancer. The precise configuration of steps is important and differs
from one pathway to another:

This signal transduction biochemistry is organized around a small number of
basic principles and a large number of idiosyncratic details. (Weinberg 2014, p.
220)

Thus, while the organization inside a cell may not be as tightly constrained as a
clockwork, the pathway perspective suggests that we need to take into account all the
idiosyncracic details to explain cellular responses in terms of the behaviors of pathways
and pathway behavior in terms of the activities of individual signaling components.

5.2 The network perspective

Many biologists argue that the pathway perspective is overly simplistic and that intra-
cellular organization should be conceptualized in terms of networks instead. In fact,
it is not even clear that the biologists involved in the study of signaling pathways
themselves subscribe to the idea of biological organization described in the previous
section. Weinberg himself admits, for example, that

our depiction of how signals are transmitted is likely to be fundamentally flawed:
a signaling input (...) may operate like the plucking of a fiber in one part of a
spider web, which results in small reverberations at distant sites throughout the
web. (Weinberg 2014, p. 224)

The advent of genomics, that is, of experimental methods that simultaneously measure
the abundance of thousands of cellular components, has recently enabled biologists to
investigate the structure and organization of molecular networks in detail. Making use
of the mathematical concepts of graph theory, such investigations have revealed con-
nection patterns among molecular components that put the picture of neatly separated
pathways into question (e.g. Strogatz 2001; Barabdsi and Oltvai 2004). In particular,
it has been shown that many biological networks exhibit so-called scale-free archi-
tecture, which means that most nodes have only very few links, while there are a
few nodes, called “hubs”, that are highly connected. Scale-free networks are typically
robust to a wide range of perturbations because these are likely to affect only the
lesser connected nodes, thereby leaving the overall network largely intact. Perturba-
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tions affecting hubs, however, are thought to have dramatic consequences for network
behavior. In line with this idea, Jgrgensen and Linding (2010) argue in a review article
called Simplistic pathways or complex networks? that cellular organization is based
on networks and that diseases such as cancer should not be understood in terms of
perturbed pathways, but rather in terms of “rewired” networks.

At first glance the network perspective seems to provide a very different take on
biological complexity. While the pathway perspective restricts the amount of relevant
molecular interactions to a manageable number and implies that it is possible to sep-
arate functionality within the system, the network perspective allows for widespread
interaction. For this reason the basic strategies of structural decomposition and func-
tional localization (Bechtel and Richardson 2010) are not easily applicable to such
networks (Green et al. 2018). To reduce epistemic complexity, alternative heuris-
tic strategies are required, such as the strategy of decomposing large networks into
smaller “network motifs” (e.g. Alon 2020).

At the level of ontic complexity, however, it is important to see that many varieties of
the network perspective mainly involve a quantitative, and not necessarily a qualitative
difference in complexity. In particular, many discussions of network organization are
framed in terms of the same metaphor of communication that underlies the pathway
perspective. Jgrgensen and Linding, for example, write:

Cellular signaling networks are information processing systems. They receive,
interpret, correct and transmit or propagate input cues to other control layers in
the cell, ultimately altering cell behavior or processes (...). Cellular signaling
is in many aspects identical to a general communication system (...) where a
message (signal) needs to be transferred to a recipient. (Jgrgensen and Linding
2010, p. 15)

This description suggests that biological networks share many properties with designed
electronic circuits. Each component plays a very specific role that contributes to the
overall performance of the signaling system. Non-sequential organization is thought
to arise a consequence of the fact that biological systems are exposed to noise because
“as error correction becomes important (...) a nonlinear, branched and more complex
network is required” (Jgrgensen and Linding 2010, p. 15). Thus, the resulting view of
complexity is still mechanical in the sense that it relies on the ordered interaction and
tight control of the system components. Disorder (“noise”) is not playing a constructive
role in this picture, but is rather an undesirable factor that the mechanism needs to be
protected from. The main difference to the pathway perspective lies in the fact that
the behavior of the cell is not conceptualized as easily decomposable into the sum
of the activities of isolated modules. Yet, in line with the pathway perspective, the
mechanism (in this case the network as a whole) is thought of as similar in complexity
as the cellular behavior to be explained.

This idea of “mechanical network complexity” goes along with a particular per-
spective on the evolution of biological networks, according to which the details of
their organization have to a large degree been determined by natural selection. This
perspective is well illustrated by the strategy of network motifs, which consists in the
quantitative comparison of the structure of an actual biological network to a class of
similar but randomly connected networks in order to discover biologically meaningful
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patterns (Alon 2020). The underlying assumption of this approach is that among the
myriad of possible network topologies that are consistent with the general chemical
composition of a cell, the real biological networks are found in a vanishingly small
subset. In other words, real networks are topologically special and the ensemble that
characterizes their relevant features is relatively small. As we have seen, this means that
they have high effective complexity, which is consistent with mechanical complexity
if we consider network topology as part of the explanans of cellular behavior.

In summary, while the network perspective suggests a considerable increase in the
degree of complexity when compared to the pathway picture, it does not necessarily
leave the familiar terrain of mechanical complexity.

5.3 The attractor perspective

A more radically different view of network complexity goes back to the early work
of Stuart Kauffman. The basic idea is that many aspects of cellular phenomena, such
as differentiation and plasticity, do not depend on the minute details of underlying
molecular processes, but can instead be explained in terms of “generic” properties of
large networks.

Originally, Kauffman, who began working on these ideas in the 1960s, thought that
this was the only expedient strategy for gaining an understanding of certain biological
processes given the knowledge available at the time. His key idea was to tentatively
interpret the dynamics of living systems as guided by what Weaver called “disorga-
nized complexity”. Just like theoretical physicists had been able to master the apparent
complexity of large disordered systems, one might be able to find conceptual tools to
reduce the apparent complexity of large biological systems. In line with this strategy,
Kauffman referred to his strategy as an “ensemble approach”, adopting this terminol-
ogy from statistical mechanics.

By studying simple network models, Kauffman found some of their properties
reminiscent of the behavior of biological cells. The networks he investigated were
randomly generated Boolean networks with nodes representing genes that have only
two different states: “on” and “off”. The dynamics of these networks unfold as the
states of all genes are updated in successive discrete time steps. The state of a gene at
a given time point is determined by the states of a set of “input genes” at the preceding
time point, which can be interpreted as a set of transcription factors regulating the
activity of a common target gene. Since a system defined in this way is deterministic
and has a finite number of possible states, it will unavoidably return to a state that it has
already previously passed and from then on repeat the same sequence, or cycle. In most
networks Kauffman found a surprisingly small number of cycles compared to what
would have been combinatorially possible. Moreover, the cycles tended to be relatively
short. He interpreted them as corresponding to the different “cell types” that can be
exhibited by genetically identical cells. Extrapolating from the relationship between
the size of the network and the number of cycles obtained from his simulations, he was
able to derive reasonable estimates for the number of different cell types in various
species of multicellular organisms (Kauffman 1969).
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More recently, Kauffman’s ideas have inspired a research program in systems
biology (e.g. Huang et al. 2005). Here cellular networks are interpreted as large dynam-
ical systems with attractor states that correspond to stable cell types. Generalizing
Kauffman’s cycles, attractors are understood as generic features of a certain class of
dynamical systems. Cellular phenomena such as plasticity, differentiation, or repro-
gramming are thought to be explainable without the need to invoke the minute details
of network structure. In particular, cancer is not explained in terms of a “rewiring” of
the network, but as a transition of cells into so-called “cancer attractors” (Huang et al.
2009).

Differently from the other two views presented in this section, the attractor picture
may best be understood as an illustration of emergent complexity. It resembles the
explanation of the behavior of a flock of birds in several respects. At the level of the
explanandum we have a coherent higher level pattern (e.g. the differentiation trajectory
of a cell towards its eventual fate) that is maintained even in the face of perturbations.
However, this behavior is not explained in terms of tightly controlled and highly
specific processes at the lower level, but is thought to follow from relatively unspecific
assumptions about the activities and interactions of lower level entities.

In stark contrast with the network motif approach, the attractor perspective relies
on the assumption that by investigating typical members of a random collection of
networks, one can get an understanding of the particular instances found in nature. This
in turn presupposes that, during the process of their evolution, these networks have
retained, or acquired, an essentially random structure at the large scale.'” Seemingly
complex behaviors of biological systems might thus find an explanation that does not
require uncovering all of the underlying molecular details:

There is a fundamental ontological assumption underlying [the ensemble]
approach, and it is not known if that assumption is true or false. Is it the case
that the genetic network in an organism, or a species, or family of species, after
3.8 billion years of natural selection and evolution, is a highly crafted, “one off™
design, brilliantly tuned by selection to achieve its functions? Or might it be the
case that real genetic regulatory networks are more or less “typical” members
of some class, or ensemble, of networks which selection has modified to some
degree? In the latter case, we may be able to gain very considerable insight into
the structure, logic, and dynamics of gene regulatory networks by examining the
typical, or generic properties, of ensemble members. (Kauffman 2004, p. 582)

Thus, in Kauffman’s perspective we see a clear deviation from the idea of mechan-
ical complexity. Complexity of behavior does not depend on the specific details of the
underlying mechanism but partly “emerges” from underlying disorganized complex-
ity and thus from a network that is actually relatively simple when compared to the
effective complexity presumed in other approaches.

Of course I do not argue that all biologists thinking in terms of pathways are
committed to mechanical complexity, and that all proponents of an attractor perspective
are committed to emergent complexity. My aim in this section was to present a set of

10 Fora thorough criticism of Kauffman’s view on the evolution of gene regulatory networks, see Sansom
(2011).
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examples that are particularly clear. In practice, however, many cases are expected to
lie somewhere on the spectrum between mechanical and emergent complexity (e.g.
Bhalla and Iyengar 1999).

6 Conclusion

In this paper I have attempted to clarify the meaning of biological complexity. A
better understanding is often precluded by the failure to take into account a number
of conceptual distinctions. In particular, I have argued that one needs to distinguish
between ontic and epistemic complexity and between the complexity of mechanisms
and of phenomena. I have further argued that there are two different versions of ontic
complexity, mechanical and emergent complexity, that are relevant in the context
of biology and that can be understood as two ways of relating the complexity of
mechanism and behavior. Drawing on the concept of “effective complexity” introduced
by Gell-Mann and Lloyd, I have proposed a unifying framework that appears to work
well in the context of biology and that captures the conflicting intuitions underlying
mechanical and emergent complexity.

This framework can be used to understand the differences between alternative per-
spectives on biological organization. As has been shown, intracellular processes are
conceptualized in terms of mechanical complexity by some biologists and in terms
of emergent complexity by others. These two perspectives of biological complexity
can be directly related to the kinds of ensembles on which explanatory accounts are
implicitly based. In Kauffman’s perspective the relevant ensemble is large and contains
many apparently random networks. By contrast, in the more “conventional” network
approaches, notably in the strategy of network motifs, the relevant ensemble is small in
comparison, which is evident from the strategy of explicitly contrasting biologically
meaningful networks with random networks. Thus, it turns out that some network
approaches share an idea of mechanical complexity with the traditional picture of
organization in terms of pathways.

Given that I have used the swarm behavior of flocks of birds and Kauffman’s idea of
cellular attractor’s as paradigmatic examples, one might wonder whether spontaneous
self-organization is a necessary element of emergent complexity. It seems that this
would exclude cases in which there is some kind of “systemic regulation”, i.e. cases
where the system as a whole imposes constraints on the parts that shape its overall
behavior.!! Such cases of systemic control, however, are not excluded by my account
of emergent complexity which invokes only the relationship between the effective
complexity of the mechanism and the effective complexity of the behavior without
requiring any specific organizational features. Thus, the issue is not so much about
the presence or absence of control, but rather about how fine-grained the control is, if
it is present. Yet, to say anything more determinate on this issue would likely require
further clarification of the relevant notions of “control” and ““self-organization” in this
context.'?

11 thank an anonymous reviewer for raising this point.

12 On the notion of “control” in biology, see e.g. Stegmann (2014).
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Mechanical and emergent complexity seem to be two very different ideas of com-
plexity in biology, but I have argued that they should be understood as two extremes of
a spectrum. In particular, any real system is most likely situated somewhere between
these two extremes. “Perfect” mechanical complexity would entail that the mechanism
under study is actually the only member of its relevant ensemble. In order to provide
a satisfactory explanation, one would have to describe it down to the smallest level
of detail. But it is clear that even the most “mechanical” explanation in molecular
biology must involve a lot of coarse-graining and treat many details of the underlying
processes as irrelevant. At the other end of the spectrum, there does not seem to be
any interesting emergent complexity if there is pure disorder and no regularities at all
at the level of the mechanism.

My aimis not to take sides and argue that one of these versions of complexity is more
relevant in biology than the other. Instead, I simply want to suggest that it is productive
to think about biological complexity in terms of the more unifying framework I have
proposed. This would also help us to overcome certain simplistic dichotomies, such
as the idea that organisms can either be conceptualized as machines or as something
completely different (cf. Nicholson 2013). My framework may also provide a helpful
way of thinking about the relationship between mechanistic and so-called topologi-
cal explanations, which has received considerable attention recently (e.g. Huneman
2010; Silberstein and Chemero 2013; Kosti¢ 2018). The basic idea is that topological
explanations explain by referring to structural properties at the level of the system
(typically represented as a network) and “abstract away from the details of particu-
lar causal interactions” (Kosti¢ 2018, p. 3). Similarly, Silberstein and Chemero argue
that many explanations in neuroscience are based on “topological features (network
architecture) of the network that are partially insensitive to and decoupled from and
have a one-to-many relationship with respect to lower-level neurochemical and wiring
details” (Silberstein and Chemero 2013, p. 963). But in my view this can be under-
stood simply as a different way of saying that the relevant ensemble corresponding
to the mechanism in question is large and contains many systems that greatly vary
in their structural details. The larger the ensemble, the more it will seem that the rel-
evant regularities are “abstract” and in some sense ‘“non-mechanistic”’. At the same
time, as outlined before, in such scenarios there will often be an important role for
mathematical tools in order to link the description of the system to the explanandum
behavior. But this shouldn’t lead us to believe that we are suddenly dealing with an
entirely different kind of explanation. In fact, as Huneman himself concedes: “one
could also say that there is a continuum between two poles, one that consists in unrav-
eling mechanisms without regard for any topological properties and one that is purely
topological” (Huneman 2010, p. 225). The meaning of “topological properties” in
this debate is often not very clear and varies between authors, but it seems plausible
that in a broad sense they might be understood as precisely those properties that are
used to describe the “large” ensembles figuring in explanations of systems that exhibit
emergent complexity.

My framework also suggests an explication of the concept of “emergence” in bio-
logical explanations: emergence is present if the effective complexity of the behavior
is high in comparison with the effective complexity of the underlying mechanism. It
thus provides a clear way of interpreting the idea that “the system is more than the
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sum of its parts”. I do not pretend, of course, to have thereby addressed all the vexing
issues that the concept of emergence raises in philosophy more generally.

As mentioned in the beginning of this article, philosophers and biologists often
invoke complexity in arguments for pluralism (Mitchell 2003; Kellert et al. 2006).
Based on my framework, I suggest that the soundness of such arguments will strongly
depend on the version of complexity at play. Emergent complexity is related to (rela-
tively) low complexity of mechanism and to descriptions that are so general that they
may apply to very different kinds of systems. In fact this kind of “universality” is
precisely one of the appeals of the idea of complexity science:

A vision shared by most researchers in complex systems is that certain intrinsic,
perhaps even universal, features capture fundamental aspects of complexity in a
manner that transcends specific domains” (Carlson and Doyle 2002, p. 2538).

This suggests that mechanical and emergent complexity actually pull in different
directions as far as the question of pluralism is concerned. Philosophers invoking
complexity must therefore be very clear about the kind of complexity they are referring
to in their arguments.

In this article, I have mainly focused on molecular and cell biology at the expense
of other important areas in which complexity plays a key role, such as developmental
biology, or ecology. However, I hope that this discussion may illuminate or contribute
to discussions around complexity in these other domains as well.
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