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Abstract

According to the Determinable Based Account (DBA) of metaphysical indeterminacy
(MI), there is MI when there is an indeterminate state of affairs, roughly a state of
affairs in which a constituent object x has a determinable property but fails to have a
unique determinate of that determinable. There are different ways in which x might
have a determinable but no unique determinate: x has no determinate—gappy M1, or x
has more than one determinate—glutty MI. Talk of determinables and determinates is
usually constructed as relative to levels of determination. In this paper I first (1) provide
a formal construction for determinables and determinates that pays crucial attention
to intermediate levels of determination, and then (2) explore the consequences for the
DBA of introducing such intermediate levels. In particular, I argue that intermediate
levels of determination highlight crucial differences between gappy and glutty cases
of MI, and allow one to introduce a third way of indeterminacy, glappy MI.

Keywords Metaphysical indeterminacy - Determinable and determinates -
Determinable based account of indeterminacy - Gappy metaphysical indeterminacy -
Glutty metaphysical indeterminacy - Glappy metephysical indeterminacy

1 Introduction

According to the Determinable Based Account (DBA) of metaphysical indeterminacy
(MI), there is MI when there is an indeterminate state of affairs, roughly a state of
affairs in which a constituent object x has a determinable property but fails to have
a unique determinate of that determinable. I will abuse terminology and say that x
is MI. There are different ways in which x might have a determinable but no unique

! The terminology is due to Wilson (2013). See Sects. 3 and 4 for discussion.
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determinate: x has no determinate—gappy MI, or x has more than one determinate—
glurty MI.! Talk of determinables and determinates is usually constructed as relative
to levels of determination—more on this later on. In this paper I first (i) provide a
formal construction for determinables and determinates that pays crucial attention
to intermediate levels of determination,? and then (ii) explore the consequences for
the DBA of introducing such intermediate levels. Let me be clear from the start. It
is not the aim of the paper to argue either in favor or against the DBA.? Rather, it
is to investigate and discuss some of its (alleged) consequences and commitments,
especially in the light of the existence of intermediate levels of determination.

2 Determinables, determinates, and determination

As a first pass,*

[D]eterminables and determinates are in the first instance type-level properties
that stand in a distinctive specification relation: the “determinable determinate”
relation (for short, “determination”). For example, color is a determinable having
red, blue, and other specific shades of color as determinates; shape is a deter-
minable having rectangular, oval, and other specific (including many irregular)
shapes as determinates; mass is a determinable having specific mass values as
determinates (Wilson 2017b: Introduction).

The determination relation is usually characterized by a list of principles.’> Wilson
(2017b) lists different such principles. Two of them will be central to our discussion.
Wilson calls them Requisite Determination, and Unique Determination. I adopt
and adapt her formulation:®

Requisite determination: If x has a determinable d; at time ¢, then, for every
level L of determination of d: x has some L-level determinate d5 of d; at ¢.”
Unique determination: If x has a determinable d; at time 7, then x has a unique
determinate d, at any given level of determination at 7.

Implicit in Wilson’s formulation is the thought that determinables admit of different
levels of determination, so that the characterization of a property as determinable and
determinate is relative to levels. Simons (2013) offers arguments in favor of the crucial
metaphysical role of intermediate levels of determination.®

2 For limitations of this construction see Sect. 2.

3 See Wilson (2013, 2017).

4 For an introduction see Wilson (2017b) and references therein.

5 There is no common agreed core list of principles, yet some are more central than others.
6 See Wilson (2017b: §2.1).

7 Some other formulations employ modal operators. I will not consider such a complication in the paper.
Also, I will omit talk of times.

8 Roughly, by an intermediate level of determination I mean a level that contains properties—such as
“red”— that are both determinables of a more specific property—such as “crimson”—and determinates of
a less specific one—such as “color”. To foreshadow some results of the formal construction I am about to
provide, these are the levels Lisuchthat LT < L' < L+, See Sect. 2.1.
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I will not consider any such argument here. I am interested in exploring the conse-
quences of introducing intermediate levels, especially when it comes to the DBA.

In what follows I am going to set forth a formal framework that serves two related,
yet distinct purposes: (i) First I show that the “the space of determinable and deter-
minate properties” of a given family—more on this later on—can be generated by
the determination relation alone (Sect. 2.1); (ii) Second, I provide a formal rendition
of different principles of determination (Sect. 2.2). Let me spend a few words on
(i) and (ii), starting from (i). The assumptions on the determination relation I use in
Sect. 2.1 do not involve any of the controversial principles of determination I discuss
in Sect. 2.2. Therefore, the construction in Sect. 2.1 should be of interest to anyone
that is interested in determinables, determinates, and their applications. It provides a
“proof of concept”, so to speak, that determination alone can be used to generate the
determinable space of a given family of properties. I take this to be a significant result
on its own. As for (ii), it is not my intention to provide a fully-fledged formal theory of
determination. I will use formal renditions rather opportunistically: they mainly serve
the purpose to highlight some consequences and commitments of the DBA—though
this might not be their only purpose. In light of this, I will be opportunistic in my
choices as well. I will unashamedly use set-theory and higher-order quantification.

2.1 Getting the determinable structure out of determination

In this subsection I show how to construct the determinable space of a given family of
properties out of determination alone. Thus, I will take determination D to be my only
primitive. I assume that D is a strict order that holds between properties at different
levels of determination L!—as it will be clear shortly, the superscripts count the steps
from the top-level L. That is to say that D(d,’;, d)) — L' # L/ holds—in effect,
this last assumption is redundant in that it can be derived once the formal construction
is laid out. I am going to assume that there is a top level LT and a bottom level L.
Furthermore, I am going to assume that there is only one d T e LT, whereas there are
multiple a’iL € L+.° The unique d " € LT represents what in the literature is called
a maximally unspecific determinable, i.e. a determinable property that is not itself a
determinate of any other determinable. By contrast, the various dl.J- € L* represent
maximally specific determinates, i.e. determinate properties that are themselves not
the determinable of any other determinate. We say that d’, is a determinable of d;, iff
D(dy,, d'). Conversely, we say that d! is a determinate of d;, iff dj, is a determinable
of d!, thatis iff D(d!, d;,)."" Finally, I will assume that every determinate has a unique
determinable at each level of determination.

9 In effect, the existence of distinct determinates for every level L £ LT is sometimes required as a further
principle. Wilson (2017b) calls it Multiple Determinates. This can be straightforwardly translated in the
following: VLI # LT3di3d! (di # di ).

10 Note that this forces every chain of determination to be of finite length, and thus well-founded. As a
matter of fact every chain of determination that starts at level L will be of the same length. This may
be regarded as another limitation of the construction. A distance function that defines such a length is in
footnote 12.
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The construction I am about to provide works for discrete finite structures—that
is, structures that contain a finite number of levels of determination. By contrast, each
level might contain either a finite or an infinite amount of properties.'! Given that such
structures are enough to make the main points in the paper I will restrict my attention to
them. Let us focus on a single “family of properties P”. This expression is supposed to
refer to all of the determinables and determinates of the “the same kind”. To illustrate,
one paradigmatic family of properties, the color properties, will be referred to as:

P ={Color, Red, Blue, ..., Scarlet, Maroon, ...., Sapphire, Perwinkle, ....}

The structure of said properties is what I called—using an admittedly vague
expression—the determinable space of a given family of properties, in this case, color
properties. First define the notion of “Immediate Determination”, that is, define “d;,

is an immediate determinate of d,{,”—ID(d,’;, d,{,):
ID(d, d)) =45 D}, d})) A—3d(D(d’,d) A D(d, d}})) (1)

That is to say that d! is an immediate determinate of dy, iff it d! is a determinate of dj,
and there is nothing D-related between them, namely a d such that d is a determinable
of d! but a determinate of dj,. The target notion we want to define is “being n-steps
away from the top level”, S"T(dl”). First, define S'T “being 1 step away from the top
level”—e.g. Red, or (...), or Blue in the example above, the maximally unspecific
determinable being Color—see Fig. 2:

S'Tdly =ar 1D}, a") )

Definition (2) captures the fact that there are no properties betweend | and any property
that is 1 step away from the top level. Equivalently, a property that is 1 step away from
the top level is an immediate determinate of the top level. For simplicity I shall call
such properties S! properties—the same applies to every . We can then define the
target notion by induction:

§"Td) =4 34 AD@E], A7) A STT@ETY) 3)

Informally, a S property is an immediate determinate of an S"~! property, a prop-
erty that is n steps away from the top level LT.'> Look now at the construction in
(1)-(3). Upon inspection one sees that when I D holds, it holds between a property at
n — 1 steps from the top level and one at n steps away from the top level, in this order.
In general, given the transitivity of (/) D, if D holds between d " and d’ in this order,
d' is further away from the top level than d/.

1" Generalizations might not be entirely straightforward.

12 1 effect we could use the number of steps to define a distance function between properties. We could
define the distance between two properties d' and d” as |i — j|. We could then go on to define I D in terms

of this distance function as follows: D(df,, d,J,,) =df D(d,’;, d,J,,) A |i — j| = 1. The formalization then
proceeds as in the main text.
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Now we can define two relations, “being more steps away from the top level” >g
(or being further away from, or being more distant from) , and “being as many steps
away from the top level” =g (or being at the same distance from):

d>sd)=arSTAYANSTd)) AP > j )
di = sdfy =ar STAYASTT @) ni=j (5)

Informally, according to (4) a property d;. is further away from the top level than a

property dy, iff it takes more steps to get to d’ than to get to d;,. Similarly for (5).
Clearly =g is an equivalence relation. I will identify levels of determination L’ with its
equivalence classes. Intuitively, they are just sets that contains properties at the same
distance from the top level. Thus, L’ contains all and only the S’ properties. Note that
every property d’ is a certain number—namely i—of steps away from the top level,
so that every d’ belongs to only one level L. This ensures, importantly, that levels
L'-s are pairwise disjoint. It should be clear now that I used superscripts on properties
and levels so as to have: d' € L'. This choice is justified by the construction above.
Hence, I will simply omit the levels to which properties belong to simplify notation
in formal renditions.

Next, we define a strict order among the levels, <. This strict order is supposed
to represent what in the literature is taken to be the relation of “being more specific”
holding between different levels:

L' < L) =4 VdINd}(d >5 dj) (6)

In plain English, (6) says that level L’ is more specific than level L/ iff the properties
in L' are further away from the top level. < is provably transitive and asymmetric.
Therefore, it is irreflexive. That is, it is a strict order, as desired.!? We can then use <
among levels to define its counterpart for single determinable/determinate properties:

d < dj =¢p AL'ALI (L < LV (7

That is just to say, unsurprisingly, that a property is more specific than another iff it
belongs to a more specific level. The orders induced by D and < are consistent, i.e.
(8) and (9) below hold:

D, dj)) — L' <L’ ®)
L' < L/ - =@d},3d. (D(dj},. d))) )

Taken together, (8) and (9) ensure that the determination relation always hold
between two properties such that the former is more specific than the latter. To see
that (8) holds, assume the antecedent, that is, assume D(d,",, dl). As we saw already,
by the construction in (1)-(3), if D(d’, d/) holds, then d' is further away from the

13 Tn fact, it is a total strict order.
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LT

i
L
LL

dif db df dtdf dt o dr d- dy o df

Fig.1 Determinables and determinates: general structure

top level than d’. Given (6), this entails that L! < L/ as desired. As for (9), assume
Li < LJ. Suppose, for reductio, that there is a d} and a dfl such that D(d},, d;;). Then,
by (8), L/ < L'. But clearly this violates the asymmetry of <.'4

This construction is also able to capture the following facts F{—F3:

F; The unique maximally unspecific determinable d " € LT is only a determinable.
It is not a determinate. This is because there is no d’ such that D(d',d!). 1
am going to assume that for every d # d' in the same family of properties P,
D(d,d") holds. That is, every property in a given family P is a determinate of
dT. This further simplifies the construction for we can always forget the conjunct
D(d,d"."3

F, The various maximally specific determinates df- € L™ are only determinates.
They are not determinables. This is because there are no d-s such that, for any
d*+ e LY, D(di,d"Y).

F3 Forany L! suchthat LT # L' # L+, and any d, € L', d!, is both a determinable
and a determinate, for there are d;} and d,’j such that D(d;, d,i,1), and D(d,in, d(]f ).16

Figures 1 and 2 show a general picture of the structure we just discussed, and one
paradigmatic example of it, Color.!”

14 we clearly also have that L <L/ - d}; < d,{, and D(d!, d,{,) — d}; < d,{l hold. It is a substantive
question whether one could take < as primitive and go on to define D. Another possibility is to take both
as primitives. In this case one should impose (8) and (9) as axioms.

15 Note that this will follow from Yd.3dy, (L} < LY A D}, d}).

16 1n effect, F1-F3 might be thought to capture what Wilson (2017b) calls Relative, Leveled Determina-
tion.

17 The figures are not meant to capture every relevant detail about the depicted structures.
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LT

L+ X
Scarlet Crimson Maroon Sapphire Ultramarine Periwinkle

Fig.2 Determinables and determinates: color

2.2 Principles of determination

Once the structure of determinables and determinates is constructed out of the deter-
mination relation we can ask about the very logic of such relation. This will give
us principles that govern the instantiation of determinables and determinates, not just
their relations. As I pointed out already, the principles of determination I want to focus
on are Requisite Determination and Unique Determination, for they play #he crucial
role in the DBA, as I am about to argue.'® I will give different formal renditions—the
reason will be clear in due course. In effect, several variants of those principles can
be given. However, I will target only two here: a completely unrestricted one, and one
that is restricted to particular Li-s—thatis, LT and LL. Before I move on, let me say
a few words about why I mentioned that there are more variants than the two I target.
The reason is that, while in the variants I will consider the antecedent expresses that an
object x has the maximally unspecific determinable d T € LT, one could substitute L
with an arbitrary level L! # L' in the antecedent instead. This would provide more
variants of the same principle indeed. There is a reason why I sticktod " € LT, and
I will get to it shortly. As of now, let me start with Requisite Determination—once
again restricting one’s attention to one relevant family of properties P, and letting
d(x) abbreviate “x has determinable-determinate property d”:'

RD dT(x) > (YL'(L' # LT)3d}(d}(x))) (10)
RD| d"(x) = 3d}F @} (x))) (11)

Clearly (10) entails (11) but the converse, in absence of any other principles, does
not hold. Now, there is a principle that underwrites the entailment from (11) to (10),
thus rendering the two materially equivalent. The principle is the one Wilson (2017b)
calls Determinable Inheritance:

Determinable Inheritance: If x has a determinate d; of a determinable d5, then
x has d>.

18 1t is not my intention to provide a formalization of traditional accounts of determination. Rather, it is to
focus on some specific principles and the role they play in the DBA—more on this in Sect. 4.

19 Formulas are taken to be universally closed.
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In the present context, Determinable Inheritance translates into the following:
DI di(x) > (VLY (L' < L))3d},(D(d., dj)) A (d(x))  (12)

Let me briefly sketch why, given DI, (11) entails (10).20 Assume (11). Then, any
x that has T has a maximally specific determinate of it. By DI for any less specific
level, x has a determinable of that maximally specific determinate, up to L. This
ensures that the consequent of (10) is satisfied. I will indeed assume DI, so that there
is no point in distinguishing between the unrestricted RD and the restricted RDI.
Yet, as I will argue, things are different from different principles: in some cases,
restricted and unrestricted versions are not materially equivalent. Before I turn to
Unique Determination, let me just note that, in the presence of DI, if x has any
property whatsoever, it will have its maximally unspecific determinable d™ e LT.
Therefore, any version of Requisite Determination that figures in the antecedent that
x has a determinable d’ € L with LT # L’ # L' will entail the formulations I gave
above. This is why I restricted my attention to those formulations.

Let me then move to Unique Determination. I will be focusing on the restricted
version of the principle. Its literal formalization is as follows:

UD]| dT(x) > Ad@dr @) AVdE@EE ) — db =aby  13)

This literally translates the uniqueness requirement. It is exactly this uniqueness
requirement that has been historically considered a feature of determination. There is
however a weaker requirement that one may want to impose. This is the requirement
that something has at most one determinate rather than a unique determinate. Let me
call this At Most One Determinate:

At Most One Determinate: If x has determinable d;, x has at most one determinate
d> of d; for each level of determination.

Here is a rendition of the principle, in both unrestricted and restricted versions:

AMOD  d'(x) — VL (VdiVd! (d'(x) Ad (x) > d' =d))  (14)
AMOD | d"(x) = VdIVdE(dF ) AdE(x) - dE =dy)  (15)

Principle (14) says that if x has the maximally unspecific determinable, it has at most
one determinate for every level of determination. By contrast (15) says that if x has
the maximally unspecific determinable, it has at most one of its maximally specific
determinates. Now, (14) entails (15), but without any further principle, (15) does not
entail (14). In the presence of (15) alone, nothing prevents some x to have a unique
maximally specific determinate, but many determinables of that determinate at some
level L' such that LT # L7 # L+.2!

20 A more rigorous proof is readily available.

21 Naturally the reason for the two inequalities are different. x cannot have more than one maximally
specific determinate because of (15), and cannot have more than one maximally unspecific determinable
because we just assumed there is only one.
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As of now, I just want to point out something about the restricted principles: (13)
entails (15) but the converse, in absence of any other principles, does not hold. The
reason behind this overall discussion will be clear in the following sections.

3 The determinable based account of metaphysical indeterminacy

The DBA was first proposed in Wilson (2013), and defended in Wilson (2017). It
has been applied to several cases:>? indeterminate boundaries (Wilson 2013, 2017),
the open future (Wilson 2017; Mariani and Torrengo 2020), fundamentality (Mariani
and Torrengo 2020), and quantum indeterminacy (Bokulich 2014; Wolff 2015; Lewis
2016, Calosi and Wilson (2018, Forthcoming), Wilson (2020), Calosi and Mariani
(Forthcoming a, b)). Wilson herself suggests two different characterization of the
DBA. She is explicit in that the second formulation is simplified (Wilson 2017: p.
118):

Determinable-based MI;: What it is for a state of affairs to be MI in a given
respect R at a time ¢ is for the state of affairs to constitutively involve an object
(more generally, entity) O such that (i) O has a determinable property P at ¢, and
(ii) for some level L of determination of P, O does not have a unique level-L
determinate of P at ¢ (Wilson 2013: p. 366).

Determinable-based MI,: What it is for a state of affairs to be MI in a given
respect R at a time ¢ is for the state of affairs to constitutively involve an object
(more generally, entity) O such that (i) O has a determinable property P at ¢,
and (ii) O does not have a unique determinate of P at t (Wilson 2017: p. 107).

I take it that Wilson’s claim about the second characterization being simplified boils
down to the fact that there is no mention of different levels of determination. I think
that Wilson has put her finger onto something interesting here. This dovetails nicely
with both (i) my focus on intermediate levels of determination, and (ii) my discussion
of unrestricted and restricted principles of determination in the previous section. In
effect, noticing the different levels of determination, and simplifying a little, one may
distinguish (at least) three interesting versions of Determinable MI:

Unrestricted MI: x is a case of Unrestricted MI iff x has a determinable d, € L'
and, for all levels L/ such that L/ < L', x lacks a unique determinate dl e L.
Restricted to the Bottom MI: x is a case of Restricted to the Bottom MI iff x has
a determinable d’, € L' and x lacks a unique determinate d;> € L.

Restricted MI: x is a case of of Restricted MI iff x has a determinable dfl e L,
and there is one level L/, with L/ < L, such that x lacks a unique determinate
dl eri?

22 The following is a non-exhaustive list.

23 One should note that if some x has a determinable d,j,, € LJ butno determinate d,’; el , with immediate
levels L' < L/—or, as I will say in Sect. 5, x is gappy at L', then it is gappy at every level L' <L As
I will say at multiple places in the paper, gappyness trickles all the way down to L. That is to say that
Restricted MI requires there is at least a level L such that x qualifies as MI at that level. But it does not
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The different versions are given in order of decreasing logical strength: every “down-
stream” entailment holds, whereas no “upstream” entailment does. In light of this, it
should already be clear that cases of Unrestricted, Restricted, and Restricted to the
Bottom MI violate different versions of the principles in Sect. 2.2. For instance, in
absence of any other principle, a case of Restricted MI might not violate AMODI.
There could be some x that has a unique maximally determinate d-- that does not have,
for some level L', a unique d’. € L'. This would still violate AMOD.

One should note that I am only claiming that this is a logical possibility, in a broad
sense. That is, this case is compatible with the logic of determination, as constructed
in Sect. 2.2. The substantive question is now whether one can find examples that are
metaphysically significant. This goes beyond the scope of the paper. But it is within
the scope of the paper to explore the broadly logical consequences of the possibility
of such cases. Note that they will have to be cases of glutty MI: cases in which some x
has the determinable d " and for some level L’ such that LT # L’ # L', it has more
than one determinate d', d, € L'.** This is because there could not be similar cases
of gappy M1, i.e. cases in which some x has the maximally unspecific determinable
d', a unique determinate d- € L* but, for some L', no determinate d’ € L'. In the
presence of DI, there simply cannot be any such case. Let me defer a more detailed
discussion to the next section.

4 Gappy, glutty and principles of determination

As we saw in the introduction, there are different ways an object x can have a deter-
minable and yet fail to have a unique determinate of that determinable, as per gappy
and glutty ML. In this section I will present a discussion of somewhat neglected details
of gappy and glutty MI. I will also highlight crucial differences between the cases that
rest on some results of the previous sections.

Let’s start from gappy. Recall that cases of gappy MI are cases in which an object
x has a determinable but no determinate of that determinable. In light of the discus-
sion of Sect. 3 one could distinguish Unrestricted, Restricted to the Bottom, and
Restricted gappy cases of MI: just replace “x lacks a unique determinate” with “x
has no determinate”. All of the cases violate both RD and RDI, given that they are
materially equivalent. One may worry that Restricted gappy cases can violate RD
without violating RDI. That would be a case in which some x has a determinate at
L but no determinate dfl for some L'. But, once again, DI rules out such a possibility.

Do gappy cases violate Unique Determination? Here is an informal argument. In
(restricted) gappy cases, some object x has no determinate dl.L € L*. A fortiori it does
not have a unique determinate diJ- € L. And this simply constitutes a violation of
(restricted) Unique Determination. In effect, the formal renditions in Sect. 2 provide
a formal counterpart to such an argument: UDI entails RDI. And, as we saw already,
gappy cases do violate RDI.

guarantee that L is the only level at which x is ML In effect, if x is gappy at Li #* L+, it follows that x
qualifies as MI at more than one level.

24 Note that I am overlooking here whether instantiation of determinates at one level should be somewhat
mediated instantiation. Bear with me. I will return to this later.
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But, recall, I introduced yet another principle in Sect. 2.2, namely At Most One
Determination. The question is then whether gappy cases of MI violate that. The
restricted version of the principle is enough to make my point so I will focus on it. The
crucial thing to note is that AMODI will not be violated by cases of gappy MI: if an
object x has no determinate diJ- e Lt AMODI is trivially satisfied. Once again, the
formal rendition shows this immediately: as we saw, UDI entails R?I. By contrast,
AMODI does not entail RDI Naturally enough UDI and AMOD | are materially
equivalent in the presence of RDI. But cases of gappy MI violate RDI.

The conclusion to draw is the following. Those who endorse gappy MI are com-
mitted to violations of UDI but not to violations of AMODI. One can probably
argue that the “at most one requirement” is close enough in spirit to the “uniqueness
requirement”. If so, I simply offer At Most One Determination as the one principle
of determination that is close enough in spirit to Unique Determination and is not
violated by cases of gappy MIL.??

I anticipate the following objection: AMODI was never part and parcel of the logic
of determination. Thus, it is unclear why we should really care about it, unless we are
given independent philosophical motivations in its favor. This is a fair point, but there
is areply. As I pointed out, in the presence of RD |, UDI and AMODI are materially
equivalent. So there is little interest in distinguishing them. But, where there is no
RDI there is no equivalence. It is exactly violations of RD!, as we have in gappy
cases, that provide motivations for distinguishing between UDI and AMODI. Look
at it this way. Once this distinction is recognized, there are cases, namely cases in
which RDI is violated, in which the distinction becomes relevant. In those cases, the
“at most one” requirement can do most of the job the “uniqueness requirement” was
supposed to do. In the end, it does capture the idea that if something has a determinate,
then it has only one.

Let’s move to glutty MI. Recall that glutty cases of MI are cases in which some
x has a determinable and more than one determinate of that determinable. Let me be
crystal clear. Advocates of glutty MI?® are adamant that in glutty cases of MI, the
relevant indeterminate objects instantiate different determinates only mediately so to
speak, that is, either relative to a given perspective p, or to a certain degree §, with
0 < § < 1.1 will omit this specification from now on for the sake of readability, but
the reader is urged to keep this in mind.

25 still AMODI falls short of “rescuing” the intuitive picture of a one-to-one correspondence between
determinables and determinates. That is the picture according to which every object has (i) for any deter-
minable, exactly one determinate of that determinable (at every level), and (ii) for every determinate, exactly
one determinable of that determinate (at every level). Determinable-based indeterminacy rules out (i). It
does not however rule out (ii). This might raise the question as to why this happens exactly. The most com-
pelling reason, to my mind, is roughly the following. Determinables and determinates are type-properties
such that the latter specifies the former, in that the latter is a way to have the former. One cannot have the
more specific property P without thereby having the less specific one P*, exactly because being P is a way
of being P*. But the converse might not hold: being P* is not a way of being P. An example might help:
being red is a way of being colored, but being colored is not a way of being red. Thanks to an anonymous
referee here.

26 See among others Wilson (2013, 2017), Calosi and Wilson (2018, Forthcoming), Mariani and Torrengo
(2020)
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Clearly, the same move I made for gappy cases is available for glutty cases as well.
That is, one can distinguish Unrestricted, Restricted to the Bottom, and Restricted
glutty cases of MI: just replace “x lacks a unique determinate” with “x has more than
one determinate” in the characterization of MI in Sect. 3. The glutty case is more
interesting, insofar as Unique Determination and the two versions of At Most one
Determinate are not materially equivalent. It is a substantive question which cases of
glutty MI violate which version of which principle.?’

Let’s start with Unrestricted cases of glutty MI. These are cases in which x, for
any level L' # LT, has more than one determinate d,’; € L'. These cases violate all
principles, UD#, AMOD, and AMODI. Next, Restricted to the Bottom cases of
glutty MI. These are cases in which x has more than one maximally specific determi-
nate d- € L+. These cases violate all principles as well. Finally, cases of Restricted
glutty MI. These are cases in which x has more than one determinate d,’; e L, for
some L' # LT. Note however that nothing prevents that L! % L. This opens the
following possibility: x has a unique maximally specific determinate but more than
one d! € L' with L # L*. These cases—that we did briefly encounter already in the
previous section—will violate the unrestricted version AMOD. But they need violate
neither AMODi nor UD%.

In the light of the above one could give the following “gloss”: one might think of
cases of determinable MI as cases in which Unique Determination is violated. This
can happen in two ways: when no determinate is instantiated (gappy) and when more
than one determinate is instantiated—albeit in a mediated way (glutty). Alternatively,
one can see cases of determinable MI as cases in which either Requisite Determina-
tion is violated (gappy), or At Most One Determinate is violated (glutty).

It is instructive to sum up the results of this section—if only by considering the
simple cases of Restricted to the Bottom MI, and consequently only the restricted
versions of different principles of determination. Table 1 sums up such results—v
indicates which principles of determination can be retained:

The discussion so far suggests several differences between gappy and glutty cases—
beside the obvious one to the point that they present counter-examples to different
principles of determination, as indicated in Table 1. The first difference is that gappy
cases violate both restricted and unrestricted versions of the determination principles
they are a counterexample to, for the versions of those principles are materially equiv-
alent. This is not the case for glutty cases. In effect, as we saw there could be a case
in wich x has a unique determinate at L* but more than one determinate at L’ with
L+ < L. In Sect. 3 I pointed out there cannot be any gappy counterpart, that is, no
case in which x has a unique determinate at L but no determinate for some L? with

27 Cases of glutty MI do not violate Requisite Determination.

@ Springer



Synthese (2021) 199:11305-11321 11317

L with L+ < L’. Suppose this is the case. Then, by DI, x would have, for any level
L' < Lt at least a determinate at L!, which clearly contradicts our hypothesis. This
highlights yet another difference between gappy and glutty cases. If x is such that,
at level L' it has no determinate d’ € L', then, for every level L/ than it is more

specific than L, x does not have any determinate d;, J € LJ either. This is not the case
for glutty. In other words: gappyness trickles all the way down to the bottom level,
whereas gluttiness can be confined. This is an interersting feature in and on itself, and
it is about to play a role in the next section.

5 Glappy, the third way of metaphysical indeterminacy

One of the most interesting and significant consequences of focusing on intermediate
levels of determination is that it opens the possibility of a third way for something
to be MI, in between gappy and glutty so to speak—or, to put it differently, a combi-
nation of gappy and glutty. Consider the following passage from Calosi and Mariani
(Forthcoming, b):

[1]t is clear that there are two ways in which an object can fail to instantiate a
unique determinate of a determinable:

Gappy Metaphysical Indeterminacy. No Determinate of the determinable is
instantiated (...)

Glutty Metaphysical Indeterminacy. More than one determinate of the deter-
minable is instantiated (Calosi and Mariani, Forthcoming: 3-4, italics added).

There is a sense in which the claim is indeed true. If we restrict our attention to one
level of determination L’ there are indeed only two ways in which an object can fail to
have a unique determinate. One should not infer however that gappy and glutty cases
are mutually exclusive in general, in that if some object x constitutes a case of gappy
MI, x cannot constitute a case of glutty MI. This, I want to suggest, is false. At least in
its full generality. One can have cases of an object x such that x qualifies both as gappy
and glurty if only one pays crucial attention to different levels of determination. I shall
call these mixed cases glappy. In what follows, I first introduce such cases (Sect. 5.1),
and then go on to provide (some) potential applications (Sect. 5.2).

5.1 Introducing glappy Mi

Here is a first characterization of glappy MI:

Glappy ML x is a case of glappy MI when x has a determinable d,’; e L', and for
some levels L/, L*, such that L* < L/ < L', x has more than one determinate
d/,dy € L'—with d/ # dj, and x has no determinate d¥ € L.

Here is another way of phrasing things. Let me introduce:
Glutty MI at L/: x is a case of glutty MI at level L/ when x has a determinable

d' € L' and more than one determinate d/ | dl e L/—withd] # dland L/ < L.
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Note that if x is glutty at only one level L', it will be a case of Restricted Glutty MI.
It will be a case of Restricted to the Bottom Glutty MI iff L' = L+. And it will
be a case of Unrestricted Glutty MI iff there are only two levels of specification,
namely L and L+—note that in this case x will qualify as a case of Restricted to
the Bottom Glutty MI as well. Similarly:

Gappy MI at L/: x is a case of gappy MI at level L/ when x has a determinable
d' € L' and no determinate d; € L/—with L/ < L'.

What I said for glutty goes for gappy as well. I will not repeat it. Now we can provide
an equivalent, perhaps more perspicuous characterization of Glappy MI:

Glappy MI_ x is a case of glappy MI when x is glutty at L/ and gappy at L, with
L' <LJ.

Perhaps the most interesting thing to note is that in both characterizations of Glappy
MLI, it is explicit that the level at which some x is glutty is less specific than the level
at which x is gappy. In effect, given the formal background I set forth, this clause is
redundant. The argument is straightforward. Nothing can be both glutty and gappy at
the same level of determination. And the case in which some x is glutty at L/ and
gappy at L’ with L/ < L’ is ruled out by DI. In the presence of DI, gappiness trickles
all the way down to the bottom, as I pointed out already in Sect. 4—from the first level
L' such that x is gappy at L'. We can now phrase the argument differently. Suppose
this not the case. That is, suppose there is an x such that x is gappy at L’ and yet x
has at least one determinate d,{ e L/ with L/ < L'. Then, by DI, x has d,’;1 such that
D(d:,, d;). Butd!, € L, which contradicts the hypothesis that x is gappy at L'.

I submit this might be interesting not only in and on itself. Recently, there have
been worries about whether gappy MI does any work in understanding quantum inde-
terminacy. For instance, Mariani and Torrengo write:

[W]e believe there are good reasons, coming from quantum mechanics, for pre-
ferring the “glutty” approach (Mariani and Torrengo 2020: footnote 13).

Now, quantum mechanics seems to provide the best examples of gappy MI. But,
if quantum indeterminacy is best understood in glutty terms, this might fuel some
skepticism about gappy cases.’® This is where glappy might lend gappy a helping
hand. One would need to explore whether some cases of quantum indeterminacy are
actually best understood in glappy terms. I consider such potential applications of
glappy MI next.

28 One might have other reservations for gappy quantum indeterminacy. For example, one may endorse the
so-called Sparse View in Glick (2017). According to the Sparse View when a quantum system does not have
a determinate value for an observable, it does not have the determinable associated with such observable
either. A comparison between the Sparse View and gappy MI goes beyond the scope of the paper, especially
because it is not my aim to defend the DBA here. I just want to note that I find the Sparse View problematic.
For example, one needs to argue that having position, that is, being in space, and having a determinate
position are not D-related. For, if they are, the Sparse View entails that quantum systems that do not have a
definite position are not in space—which I find problematic at best. Thanks to an anonymous referee here.
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5.2 Potential applications of glappy Mi

To conclude I want to suggest a potential application of glappy ML’ I should be
upfront and confess that at this stage, this is just a suggestion rather than a full-fledged
argument in favor of glappy ML. It has been recently argued that the DBA provides a
satisfactory account of quantum indeterminacy, that is, indeterminacy that arises as a
result of the failure of value definiteness for quantum observables.>? One alleged case
of quantum indeterminacy comes from quantum entanglement.>' To illustrate briefly,
consider an entangled system s12 composed by s; and s with corresponding Hilbert
space Hip = Hi ® Ha. Si» might be in an eigenstate |w) of O = O — O, that is
neither an eigenstate of 1 nor an eigenstate of O,—with O and O, defined on H
and on H, respectively. Under controversial, yet not implausible assumptions, both
s1 and s, will therefore lack a definite value for the corresponding observables. Let
me consider a simplified case in which two quantum systems s; and s, are entangled
in the position degree of freedom. That is, let me stipulate that 515 is in the following
state—forgetting normalization constants: |V) 12 = |r1)1]r2)2+172)1171)2—Where |r;)
is the state “being in region r;”, and r1 and r are disjoint. To each region of space r;
we can associate a projection operator 13,,. that represents the observable O; of “being
in region r”. In other words states |r;) are eigenstates of projectors 13 32 Suppose we
can divide a given region of space r into a subregions r; such that the r, s are pairwise
disjoint and their sum is 7.3*> One can then argue that each Pr is a determinate of P,.
For example one may notice that each P,,. specify P, by providing a way of being
in r. The unique maximally unspecific determinable would then be Py, where A is
just the maximal spatial region, i.e., space itself. Go back now to our system s in
[¥)12 = |r1)1lr2)2 + |r2)1r1)2. By construction, Pr1 and P,2 are determinates of PA
Calosi and Wilson (2018) provides an account of glutty MI, according to which sy is
both at 7 and r, albeit in either a relativized fashion—as e.g., per Everett’s original
relative state interpretation, or to a degree § < 1. But now suppose we could divide
both r; and r» in two dlS]Olnt subregions, r1; for “left” and ry, for “right”. Once again,
by construction, Pr1 , and Prlr are determinates of Pr1 The determinable structure is
depicted in Fig. 3.

Finally, suppose one can argue that sy is neither in region ry;, nor in region r,—for
example by arguing that r1; (and ry,-) is too small a region to contain a quantum system
such as s1.3% If so, 51 qualifies as glutty at L’ and gappy at L*. That is, s; qualifies as
an example of glappy MI. I will admit this example feels convoluted. But it offers a
prima facie reason to explore glappy MI further. Yet another example comes from the
double-slit experiment. Calosi and Wilson (Forthcoming) argues that the interference
pattern in the double-slit experiment can be explained in glutty terms by letting a single

29 This part is indebted to some suggestions from referees of this journal.

30" See Calosi and Wilson (2018).

31 For an introduction see Calosi and Mariani (Forthcoming, b).

32 I follow Calosi and Wilson (Forthcoming) in taking quantum observables to be represented by projectors.
33 In other words, the r; provide the counterpart of a set-theoretic partition.

34 For instance, these regions might be regions of (Lebesgue) spatial measure = 0, that are too small to be
locations of extended objects.
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Fig.3 Determinables and Determinates: “Being in a Region r”

electron having both ﬁxl and 13s2, where s1 and s, are the regions corresponding to the
two-slits. Suppose one goes further and—simplifying only slightly—one endorses the
view that the electron in question does not have a more precise location, represented
by e.g., ﬁsm 13“,, f’m, and 1352,, for a suitable partition of 51 and so—say because
quantum systems do not have definite trajectories. Then, an electron in a single run
of the double-slit experiment would qualify as a case of glappy MI as well. I admit
that a thorough exploration of glappy quantum indeterminacy deserves an independent
scrutiny. I hope I said enough to show that such a scrutiny is worth having.
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