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Abstract
Number theory aboundswith conjectures asserting that every natural number has some
arithmetic property.Anexample isGoldbach’sConjecture,which states that every even
number greater than 2 is the sum of two primes. Enumerative inductive evidence for
such conjectures usually consists of small cases. In the absence of supporting reasons,
mathematicians mistrust such evidence for arithmetical generalisations, more so than
most other forms of non-deductive evidence. Some philosophers have also expressed
scepticism about the value of enumerative inductive evidence in arithmetic. But why?
Perhaps the best argument is that known instances of an arithmetical conjecture are
almost always small: they appear at the start of the natural number sequence. Evidence
of this kind consequently suffers from size bias. My essay shows that this sort of
scepticism comes in many different flavours, raises some challenges for them all, and
explores their respective responses.

Keywords Mathematics · Arithmetic · Induction · Enumerative induction ·
Non-deductive methods in mathematics · Inductive scepticism · Mathematical
justification · Goldbach’s conjecture · Size bias · Frege · Mill

1 Introduction

By enumerative induction, I mean an inference from particular instances to a general-
isation.1 So from ‘A1 is F’, ‘A2 is F’, …, to ‘All As are F’. As an opening exercise,
I invite you to think about a few enumerative inductions in mathematics, in which
the generalisation is respectively about: N (the natural numbers); the semi-closed,

1 Enumerative induction is a species of non-deductive reasoning. Norton (2010) is a survey of induction.
For the avoidance of doubt, with a minor exception in the penultimate section ‘induction’ in this paper is
always used in its epistemological sense rather than in the sense of ‘the principle ofmathematical induction’.
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semi-open real interval [0, 2π); and C (the complex numbers). In each case, assume
no more about the relevant mathematics than is required to understand the statement
in question—try not to import any background knowledge. Consider the evidential
scenarios below and, before reading on, pause to think. Your task in each case is to
gauge roughly how strong the evidence is for the statement in question.

1. The statement before you is the binary Goldbach Conjecture, viz. that every even
number from 4 onwards is the sum of two primes. Imagine you know nothing about
this conjecture other than it has been checked for every number up to 4 × 1018.2

2. You are presented with the (to you) novel claim that sin2(θ) + cos2(θ) = 1 for all
θ in [0, 2π). (We may imagine that you know very little trigonometry beyond the
definitions of sine and cosine, and that you can’t deduce the identity from them
because you don’t know Pythagoras’ Theorem.) Your evidence this time consists
of 4 × 1018 values of θ drawn randomly from [0, 2π). Each of these instances
corroborates the identity.

3. Consider the Riemann Hypothesis (RH). It states that the nontrivial zeros of the
zeta function ζ(s) all lie on the line with real part 1

2 .
3 A truncated version of RH

states that all nontrivial zeros of ζ(s)with modulus less than or equal to 1 all lie on
the line with real part 1

2 . Let’s suppose that, in this third case, your only evidence
(or relevant knowledge) for truncated-RH consists of 4 × 1018 randomly chosen
values of s drawn from the set of complex numbers of modulus less than or equal
to 1. Once more, all these instances corroborate the hypothesis.

Remember not to assume any background knowledge in any of these cases. How strong
do you think your evidence is in each case? Strong? Weak? No evidence at all?

If you’re at all like me, your reaction was as follows. The evidence in scenario
1—for Goldbach’s Conjecture—is weaker than the evidence in scenarios 2 or 3, for
the trigonometric identity and truncated-RH respectively. In scenarios 2 and 3, the
evidence is spread fairly uniformly across the relevant range of values.4 They are
dotted all over the respective interval or region. Not so in scenario 1, in which the
verified instances make up an initial segment of the natural numbers.

I think most mathematically minded people are like me (and perhaps you). They
would regard the evidence in scenario 1 as weaker than that in scenario 2 or in scenario
3. And it’s easy to put one’s finger on why. In scenario 1, the evidence is potentially
biased, as it consists only of the first 4 × 1018 natural numbers. Since the size of
a natural number significantly affects its properties, the evidence in scenario 1 is
biased with respect to size. Not so in scenarios 2 and 3, where the sample points—the
evidence—don’t seem biased in any obvious way, as they are drawn randomly from
the entire set.

To put this in a broader context, let’s compare this form of inductive scepticism to
some others. The most general and strongest form takes inductive generalisations, in

2 As has been done by Tomás Oliveira e Silva: see www.sweet.ua.pt/tos/goldbach.html. The induction here
is over N if we think of GC as the statement ‘for all natural numbers n, if n is even and greater than 2 then
it’s the sum of two primes’.
3 The so-called critical line. The Riemann zeta function ζ(s) is the analytic continuation of

∑∞
n=1

1
ns to

C\{1}. Its trivial zeros are 2, 4, 6, · · · . See Borwein et al. (2008) and Franklin (1987) for some of the further
non-deductive evidence behind RH.
4 Obviously, I’m using the term ‘uniformly’ in a non-technical sense here.
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mathematics or elsewhere, to have no justificatory force. A narrower but still fairly
broad form of scepticism takes the same line but restricts it to mathematics. According
to it, verifying instances in mathematics may be heuristically useful but lacks justi-
ficatory force—belief in the conjecture is no more justified after the instances have
been verified than before. My topic in this essay is a still narrower form of inductive
scepticism, prima facie more plausible than either of these stronger ones. This is the
scepticism illustrated by the difference in our reactions to scenario 1 on the one hand
and scenarios 2 and 3 on the other. The scepticism at work here might be called ‘size-
scepticism’. It is based on the worry that any initial segment of the natural numbers
is a biased sample of the whole set, because it consists of ‘small’ numbers (in some
appropriate sense).5

A closely related form of scepticism applies to enumerative induction over a domain
that may naturally be given the structure of the natural numbers.6 An instance of great
philosophical interest is induction over a domain of proofs, e.g. proofs in an axiomatic
system such as first-order ZFC. No ZFC-proof in the system’s history has issued in
a contradiction, a fact which some take as good grounds for ZFC’s consistency. As
above, one might complain that all the ZFC proofs we have come across are small—
they can be written, sketched or outputted by a human or computer. So, the complaint
goes, they are a potentially biased sample of the domain of all ZFC proofs.

My aim in this essay is to explore size-scepticism. I shall point out that it applies
only in limited contexts (§3), separate out its different versions (§4), and examine
how these versions respectively deal with some challenges I raise (§§5–6). I consider
size-scepticism about proofs more briskly in §7. We begin in §2 with a brief review
of some of the relevant philosophical literature.

2 Sceptics

In the early sections of The Foundations of Arithmetic, Frege argues against Mill’s
view that mathematics as a whole is founded on inductive evidence.7 Frege articulates
his scepticism about enumerative induction in mathematics in the following passage,
in which he unfavourably compares arithmetical inductions to scientific ones:

In ordinary inductions we often make good use of the proposition that every
position in space and every moment in time is as good in itself as every other.
Our results must hold good for any other place and any other time, provided only
that the conditions are the same. But in the case of the numbers this does not
apply, since they are not in space or time. Position in the number series is not a
matter of indifference like position in space (Frege 1884, §10).

5 As relatively subtle differences between the terms ‘evidence’ and ‘justification’ won’t be relevant, I use
these terms interchangeably throughout.
6 Clearly, any countably infinite domain X may be given the well-ordering of the natural numbers: simply
use the bijection from ω to X to define an ω-order on X . The adverb ‘naturally’ (intended intuitively, not in
a mathematically precise sense) is inserted for wriggle room, to allow that perhaps not all countably infinite
domains may naturally be ordered in this fashion.
7 A representative quotation fromMill: ‘With regard to axioms, we found that, considered as experimental
truths, they rest on superabundant and obvious evidence.’ (Mill 1843/1973, Book II, Ch. VI, §1).
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Fregemoregenerally doubted that checking (finitelymany) instances of an arithmetical
generalisation could ever justify it. A contemporary author who, in his own words,
takes his cue from Frege is Alan Baker. He writes:

The one distinctive feature of the mathematical case which ought to make a
difference to the justification of enumerative induction (or so I shall argue) is
the importance of size. By this I mean that the instances falling under a given
mathematical hypothesis (at least in number theory) are intrinsically ordered,
and furthermore that position in this order can make a crucial difference to the
mathematical properties involved. (Baker 2007, p. 66)

Baker articulates this thought by means of a so-called non-uniformity principle:

...in the absence of proof, we should not expect numbers (in general) to share
any interesting properties.... Hence establishing that a property holds for some
particular number gives no reason to think that a second, arbitrarily chosen
number will also have that property. (Baker 2007, p. 66)

He goes on to spell out his thought as follows:

Definition: a positive integer, n, is minute just in case n is within the range of
numbers we can (given our actual physical and mental capabilities) write down
using ordinary decimal notation, including (non-iterated) exponentiation. Veri-
fied instances of GC to date are not just small, they are minute. And minuteness,
though admittedly rather vaguely defined, is known to make a difference. (Baker
2007, p. 67)

Baker’s scepticism is based not on the size of the confirmatory sample being small
(what Walsh (2014) calls setwise-smallness), but rather on each confirmatory instance
being small (what Walsh (2014) calls pointwise-smallness). To co-opt Walsh’s ter-
minology, scientific inductions over physical domains are frequently setwise-small,
as the number of instances is often small relative to the population. Usually, though,
they are not pointwise-small in any clear sense: observed ravens, for instance, are not
small compared to all the ravens at large. That’s why Baker thinks there is room for a
specifically arithmetical form of inductive scepticism.

Baker ends his discussion with both a normative and a descriptive conclusion:
mathematicians ought not and in general do not ‘give weight to enumerative induction
per se in the justification of mathematical claims’ (2007, p. 72).8 But following other
writers, he allows that circumstantial reasons can come to the rescue of an enumerative
induction, in arithmetic as well as elsewhere in mathematics. Other philosophers have
expressed distrust of inductive evidence of mathematics, and in particular enumerative
inductive evidence taken in isolation, in a way that suggests that they too are at least
sympathetic to this type of scepticism.9

8 His discussion is explicitly focussed on arithmetic, and he cautions that his conclusions may not apply to
other areas of mathematics (2007, p. 60). On p. 64, Baker also clarifies that he is perfectly happy to grant
the rationality of inductive inference in empirical cases.
9 Mark Steiner (1975, pp. 102–8, esp. p. 107) for example discusses Euler’s discovery that the value of the

series 1+ 1
4 + 1

9 + 1
16 + · · · agrees with π2

6 to several decimal places. The reason he believes ‘Euler had
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Baker’s scepticism has come under attack inWalsh (2014, section 2.2) andWaxman
(2017, section 3.4). Broadly speaking, the complaint is that physical samples in a
natural-scientific enumerative induction are biased in a similar way to the size bias of
verified instances in an arithmetical enumerative induction.After all, physical samples’
spatiotemporal distance to us is ‘small’. Yet empirical inductions regarding ‘nearby’
events are often justified, which suggests that it’s not enough simply to note that
samples in arithmetical cases are small. Some further argument is required to suppose
this involves problematic bias.

There is much to be said here, but since my focus will be different, let me state my
conviction rather dogmatically. Although sympathetic to this response, I don’t think
it’s dialectically very effective. Its effect is intended to throw the burden of proof back
on to the sceptic, i.e. Baker. But there are disanalogies as well as analogies between the
arithmetical and the empirical cases. It is open to Baker to reply that the analogies are
outweighed by the disanalogies, as reflected by mathematicians’ inherent wariness of
merely enumerative inductive evidence in arithmetic. For it is, I believe, indisputable
that they are wary of such evidence. They are certainly aware of conjectures whose
first counterexample is a very large number, perhaps the most famous such being
that Li(x) > π(x), where Li(x) is the logarithmic integral

∫ x
2

dt
ln(t) and π(x) the

number of primes up to x .10 The ratio between the two quantities has been proved
to be asymptotically 1, and the first had long been observed to be greater than the
second for all verified cases. Yet as Littlewood proved in the 1910s, this is true ‘only’
up to a number no greater than about 1.4× 10316.11 Size-sceptics go further than this
reasonable caution. They maintain that there are particular grounds to be sceptical in
the case of an arithmetical generalisation because any initial segment of the natural
numbers is biased with respect to size.

In short, size-scepticism has its source in mathematicians’ instinctive distrust of
enumeratively inductive evidence in arithmetic. Its philosophical defence by Baker
has been questioned in the literature, yet not decisively so. Instead of pursuing this
line of criticism, we shall examine others below. Most importantly, we shall show that
the criticisms’ effectiveness depends on which sort of size-scepticism is in question.
A more subtle understanding—and assessment—of size-scepticism must distinguish
these different sorts.

Footnote 9 continued
a right to be confident in his discovery beyond any doubt’ (1975, p. 106) was the presence of background
information. Steiner makes it clear that he thinks that without such background information, in particular
the analogy between (finite) polynomials and infinite-degree power series, Euler’s enumerative inductive
evidence would have been worth little, if anything.
10 For this to be an arithmetical generalisation in the strict sense, restrict x to integer values. Other well-
known examples include the Pólya Conjecture and the Mertens Conjecture. Obviously, we are considering
‘natural’ conjectures only; for any N , coming up with any old conjecture whose first counterexample is N
is child’s play.
11 Upper bounds on this first counterexample are known as Skewes’s numbers.
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3 Howmuch does it matter?

The toy scenarios encountered in §1 were rather artificial. Enumerative inductive evi-
dence is often coupled with other non-deductive evidence for a conjecture. Examples
are proofs of weaker versions, evidence from limiting behaviour, and the like. Let’s
look at a couple of examples in a schematic way. (Needless to say, we are not aiming
for an exhaustive treatment or classification.)

1. Consider the following situations a mathematician may find herself in. (The quan-
tifiers in each case range over the natural numbers.)12

(i) She wishes to know whether ∀nFn. She lacks any other relevant knowledge.
(ii) She wishes to know whether ∀nFn. This time, she also knows that for some

N , (∀n ≥ N )Fn. However, she has no idea which might be the least such N .
(iii) She wishes to know whether ∀nFn. She also knows that for some N , (∀n ≥

N )Fn. On top of that, she knows an N for which (∀n ≥ N )Fn is true, but
doesn’t know whether this particular N is the smallest such.

It’s pretty clear, I take it, that the enumerative inductive evidence lends more sup-
port to the conjecture in cases (ii) and (iii) than in case (i), in which the enumerative
inductive evidence is ‘bare’—unaccompanied by any other information. Since
cases of type (ii) and type (iii) regularly crop up, the relevance of size-scepticism
to day-to-day mathematics should not be exaggerated.
The ternary Goldbach Conjecture, that every odd number ≥ 7 is the sum of
three primes, illustrates the point. The Soviet mathematician Ivan Vinogradov
first unconditionally proved the eventual truth of the ternary Goldbach Conjecture
in the 1930s. One of the first upper bounds to emerge, much improved on over
the decades, was 33

15
, thereby putting mathematicians in situation (iii). Accord-

ing to some accounts, Vinogradov was in situation (ii) when he first came up
with his proof, since he knew of no upper bound. Finally, in 2013, the Peruvian
mathematician Harald Helfgott proved the conjecture outright.
I won’t venture to guess what percentage of cases are of type (ii) or (iii), if this is
even a well-posed question. Fairly obviously, though, there are plenty of them.

2. In several cases, supplementary knowledge can turn the tables on the size-sceptic.
Goldbach’s Conjecture (GC) illustrates the point nicely. In the thought experiment
that opened this paper, I asked you to imagine you had no knowledge relevant toGC
other than all the cases up to 4×1018 in its favour. However, as Echeverría (1996)
points out, the enumerative inductive evidence suggests that the number of ways
in which a number can be written as the sum of two primes is broadly increasing,
with oscillation—that is, not strictly increasing but with a steady increasing trend.
This suggests that smaller numbers are more likely to be counterexamples than
larger ones.13

12 Not to complicate things, we may assume that in (ii) and (iii) the additional knowledge is deductive.
Clearly, there are lots of other cases, e.g. intermediate cases between (ii) and (iii).
13 Of course, this evidence for thinking that early cases are hard cases is itself based on enumerative
induction. Yet unless one is an out-and-out sceptic about enumerative induction, the circle here is virtuous.
Enumerative inductive evidence is deployed to show that, so far as GC is concerned, the size bias works in
favour of someone deploying enumerative inductive evidence to confirm it.
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Awell-known heuristic probabilistic argument suggests the same conclusion. The
Prime Number Theorem states that the number of primes up to N tends to N

lnN
asymptotically: π(N ) ∼ N

lnN .
14 Hence the number of distinct sums of primes no

greater than 2N tends to 1
2 · ( N

lnN )2 (dividing by two since each sum, with the
possible exception of N + N , appears twice). Thus the typical even integer ≤ 2N
can be written as the sum of two primes in about 1

2 · ( N
lnN )2/N = N

ln2N
ways,

a quantity that increases with N .15 This argument is admittedly very rough and
ready, and, to stress, heuristic rather than demonstrative. But it can be improved
upon to yield much better estimates that point to the same conclusion: the greater
N is, the greater G(N ) is likely to be. Such arguments remain heuristic—GC has
not been proved—but they make it very plausible that the first counterexample to
GC, if one exists, will be a ‘small’ number.
In the case of GC, there are therefore conjecture-specific reasons for thinking that
the earliest cases are the ‘hardest’. Anyone armedwith this background knowledge
will see the inductive evidence for GC as stronger than they would otherwise—but
not for any general reasons linking size and inductive evidence.16

GC is by no means unique in this respect. Another example is Legendre’s Con-
jecture, also currently unproved, which states that for every positive integer N
there is a prime between N 2 and (N + 1)2. As in the case of GC, the enumerative
inductive evidence suggests that not only is Legendre’s Conjecture true, but also
that the number of primes between N 2 and (N + 1)2 non-strictly increases as N
does. And there are heuristic arguments for this conclusion too: the Prime Number
Theorem implies that the number of primes between N 2 and (N + 1)2 is asymp-
totic to N

ln(N )
, a quantity which increases with N . So for Legendre’s Conjecture,

as for GC, it seems that smaller numbers are ‘hard’ cases.
In sum, given the details of a particular case and one’s background knowledge,
‘anti-size-scepticism’ may well be more justified than size-scepticism.

Many more cases could be added to the above. The moral is that size-scepticism may
not affect all that many instances of inductive reasoning in arithmetic.17 Of course,
there are conjectures for which we have specific reason to believe that early cases are
easy cases.18 Such conjectures are diametrically opposed to GC and Legendre’s Con-
jecture (in this respect). My point is only that in many cases, no such size-scepticism
is warranted.

14 Incidentally, coupled with the discussion in §2, this tells us that π(N ) ∼ N
lnN ∼ Li(N ).

15 The result seems to be mathematical folklore.
16 This example is also discussed by Baker (2007, pp. 69–70).
17 Whether enumerative inductive evidence, in combination with other types of non-deductive evidence,
suffices to generate knowledge of the conjecture depends on the details of the case, as I discuss in Paseau
(2015).
18 An example is the conjecture that all perfect numbers are even. (A natural number N is perfect iff its
factors sum to 2N .) Since Ochem and Rao (2012), we know that the smallest odd perfect number, if it
exists, must be greater than 101,500.
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4 Varieties of size-scepticism

So far, we have taken scepticism about pointwise-small samples (in Walsh’s termi-
nology) to be a monolithic position. It’s now time to distinguish several versions of
it.

Suppose first that what drives your scepticism is the idea that small natural numbers
are unlike larger ones with respect to the properties mathematicians are interested in.
These numbers’ small size affects how they behave mathematically. Thus any sample
consisting of small numbers is potentially biased. This position itself subdivides. One
variant has it that a sample set with smaller instances than another offers weaker
inductive evidence than the latter. This is a comparative form of size-scepticism. Let’s
call it c-scepticism (‘c’ for ‘comparative’). For the second variant, waive worries about
the vagueness of ‘small’ for a moment. Suppose that the small numbers consist of a
definite initial segment of the natural numbers, and that you believe small natural
numbers are unlike larger ones with respect to the properties mathematicians are
interested in. These numbers’ small size affects how they behavemathematically. Thus
any sample consisting of small numbers is potentially biased. Call this s-scepticism
(‘s’ for ‘small’).

Suppose alternatively that your scepticism is driven by the idea that any convincing
induction should consist of a representative sample. If a sample consists solely of small
numbers, it will not be representative. Thus any sample consisting of small numbers
is potentially biased with respect to the mathematical property of interest. Call this
u-scepticism (‘u’ for ‘unrepresentative’).

Size-scepticism can therefore be considered a genus comprising (at least) three
species:

The c-sceptic believes that an inference based on a sample is (in this respect)
weaker than an inference based on another sample that contains larger instances
than the first.
The s-sceptic believes that an inference based on a sample consisting only of
small instances is (in this respect) weak precisely because the instances are small.
The u-sceptic believes that an inference based on a sample consisting only of
small instances is (in this respect) weak because the instances are small and
therefore unrepresentative.

These three types of size-sceptic often draw the same conclusion about the inductive
strength of a sample set, even if they come to it in different ways. But not always:
their conclusions can diverge. To see this, suppose—for the sake of concreteness—that
a number is small iff it is smaller than 10100. Suppose further that the enumerative
inductive evidence consists of 1010 instances, each in the range 2×10100 to 3×10100.
Since no instance is small, the s-sceptic does not regard the sample as potentially
biased.19 In contrast, the u-sceptic sees the evidence as potentially biased because
it is all drawn from a particular range. Finally, the c-sceptic regards the sample as
being evidentially stronger than an equal-sized sample drawn from the range 10100 to

19 At least not on the basis of her s-scepticism—she may of course regard it as potentially biased for other
reasons. This sort of qualification is implicit throughout.
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2 × 10100, but weaker than an equal-sized sample drawn from the range 3 × 10100 to
4 × 10100.

To further illustrate these three types of scepticism, consider a vaccinological anal-
ogy.20 Imagine we are testing a new vaccine for its effectiveness in combatting a
certain kind of virus. We find that the vaccine is highly effective in trials, but that the
trial participants are all young children: they are aged between 0 and 9. You might
have qualms about inferring that the vaccine is generally effective in tackling the virus
on this basis. But you might do so for different reasons.

The c-sceptic is analogous to someone who would like see the vaccine trials
extended to older people. They would prefer to test the vaccine on, say, adults aged
30 to 39 than young children. In fact, they believe testing the vaccine on (an equal
number of) adults in the age range 40–49 would provide even better evidence than
testing it on thirty-somethings. More generally, the older the vaccine-trial participants
the better.

The s-sceptic is analogous to someone who believes that children under 10 have
different physiologies than those of older children and aduts, and in particular that
they react differently to vaccines.21 So no vaccine tested on young children can be
assumed to have the same effect on anyone older. It would be much better, on this
view, to test the vaccine on (an equal number of) adults aged between 30 and 39, as
their reactions to the vaccine are more likely to be representative of the population at
large. But there is no reason to suppose that forty-somethings would be better than
thirty-somethings; both those age ranges would in principle be equally good.

The u-sceptic is analogous to someone who believes that people of every age react
differently to vaccines. This includes young children, but there is nothing special about
them in this regard. No vaccine tested on young children can be assumed to have the
same effect on anyone older, because their ages are from the same range. It would
have been no better, on this view, to test the vaccine on (an equal number of) adults
aged between 30 and 39.

The following table sums up the analogy between the three respective types of
sceptic.

Numbers Age of trial participants

c-sceptic Someone who believes it’s better to test an older person than a younger one
s-sceptic Someone who believes it’s better to test people older than young children
u-sceptic Someone who believes it’s better to test a diverse group of age ranges

You might well think that the analogue of c-scepticism is utterly implausible.
Wouldn’t it be daft, as the view clearly implies, to always prefer trialling vaccines
on the world’s oldest people—centenarians or (even better) supercentenarians? Prob-

20 Inspired by an epidemiological analogy used by Alan Baker in a personal communication (cited with
permission) to illustrate his size-scepticism. The point of my analogy is to illustrate the three varieties of
size-scepticism I have distinguished.
21 A related fact is well-known: many medicines that work on adults are not recommended for children,
and are even prohibited for paediatric use.
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ably; butwhat this shows is nomore than that the age-number analogy is, in this respect,
strained. People’s age is bounded, whereas the natural numbers are unbounded, which
makes the vaccinological analogue of c-scepticism implausible. However, imagine for
a second that people can live to any finite age and that time stretches infinitely back;
that (as now) finitely many people are born every year; and that (very roughly as now)
people’s physiologies change monotonically with age, so that the closer in age two
people are the more similar their physiologies, other things being equal. In such a sce-
nario, c-scepticism would no longer be such a daft proposition. A 45-year-old would
be more like anyone older than 40—an infinite amount of people—than a 35-year-old;
and that same 45-year-old would be less like those younger than 40—only a finite
amount of people—than the same 35-year-old. Generalising, it would make sense, in
that imaginary scenario, to test as old a person as possible. C-scepticism’s analogue
would be vindicated.22

The three variants of size-scepticism and their differences should now be tolerably
clear. In assessing size-scepticism’s plausibility, it will be crucial to have these differ-
ences firmly in mind, as we shall see. As an exegetical aside, Frege in Foundations
seems to have been a wholesale sceptic about any form of enumerative induction in
arithmetic, however (finitely) many and however varied the verified instances. In par-
ticular, Frege’s inductive scepticism was more general and stronger than any of the
size-scepticisms here described. It is less clear how to categorise Baker (2007), though
a case can be made that its author leaned towards u-scepticism.23 As my interests are
not exegetical, I shall not dwell on this and turn instead to two different challenges for
size-scepticism.

5 Frontloading of evidential value I

This section and the next present two ‘frontloading’ arguments. They appear to show
that enumerative inductive strength is concentrated ‘early on’ (in a sense that will
be made precise) in the natural-number series. The question is whether this affects
size-scepticism, and if so which variety.

Let E , a finite subset of N, consist of our enumerative inductive evidence for a
particular arithmetical conjecture. In other words, E is the set of known instances of a
generalisation over the natural numbers. Let the function v be our evidential function,
with domain all finite subsets of the natural numbers. In this section, we assume only
that v’s codomain is the closed unit interval [0, 1] with the usual order; the higher
v’s value in [0, 1], the stronger the evidence. Evidential values may be thought of as
measuring the subject’s rational degree of confidence in the generalisation in question,
though without commitment to the whole panoply of probabilistic ideas.

Consider next the following evidential principle:

22 Needless to say, whether c-scepticism itself is vindicated depends on the strength of the analogy between
the imaginary-scenario-vaccine-testing case and the numerical case.
23 A relevant remark appears on p. 68 of Baker (2007), in which Baker likens the enumerative inductive
evidence to an ‘unvaried’ range of instances.
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More is Better
If n /∈ E then v(E ∪ {n}) > v(E).

This principle, presumably uncontroversial, captures the idea that more evidence is
better than less.

Next, define l = limn→∞ In , where In = v({0, 1, · · · n}). By More is Better, if
m < n then Im < In ; and since 1 is an upper bound for the In , the limit l exists. The
real number l itself, of course, may be 1 or smaller than 1, but it has to be greater than
0 (byMore is Better). So we deduce that 0 < l ≤ 1.

Now by the definition of a limit, for any ε > 0, however small, there is an Nε such
that for any N∗ ≥ Nε ,

l − ε < INε ≤ IN∗ < l

It follows in particular that |IN∗ − INε | < ε. Here’s another way of putting it: if ε is
chosen to be much smaller than l − ε, almost all the evidential value stems from the
first Nε instances of the enumerative induction. The next N∗ − Nε instances add very
little evidential value, however large the difference between Nε and N∗ may be.

The evidential value of any finite amount of numerical instances is therefore con-
centrated almost entirely in a fixed initial segment. Whatever conjecture you wish to
test, the value of further instances beyond some finite bound will be vanishingly small.
This initial segment therefore provides the lion’s share of the confirmation. At first
sight, this appears in tension with the broad size-sceptical idea. But to avoid jumping
to conclusions, let’s consider how the result respectively affects our three varieties of
size-scepticism (as defined in §4).

The c-sceptic believes that the smaller the numbers in one’s (finite) evidence set,
the lesser the confirmation. The mathematical point just noted is incompatible with
her view. To take a concrete example, for some N , the evidential value of knowing the
first N instances of the Goldbach Conjecture is 1010

10
-fold greater than the additional

value of knowing the next 1010
N
cases.24 Yet N is minuscule compared to 1010

N
! So

the result seems to flatly contradict c-scepticism.
As for the s-sceptic, she believes that small numbers are those below some bound.

(Here and throughout, we set aside vagueness, for simplicity.) In that case, she can
accept the result but insist that, in the previous few paragraphs’ terminology, the rel-
evant Nε for any given arithmetical conjecture and small ε is (much) greater than
any small number. In other words, suppose quite a few—how many will depend on
the specific conjecture—non-small numbers make up part of the enumerative induc-
tive evidence. The s-sceptic can maintain that the evidence should then be almost as
convincing as any amount of (finite) enumerative inductive evidence could ever be.

The u-sceptic can respond in a very similar way. When it comes to inductive infer-
ence over the natural numbers, the u-sceptic does not have an eo ipso preference for
evidence sets with larger numbers. Her preference, rather, is for diverse evidence sets,
which are more representative. So the u-sceptic can similarly accept the result; but
she will insist that the relevant Nε for any given arithmetical conjecture and small ε

24 This remark easily follows from the above result.
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is (much) greater than any small number. For example, Nε must be greater than any
minute number on Baker’s view. As long as quite a few—how many will depend on
the specific conjecture—non-small numbers are included as part of the enumerative
inductive evidence, then this evidence should be almost as convincing as any amount
of (finite) enumerative inductive evidence could ever be.

In summary, a simple argument suggests that if evidential value is measured by a
real number in the interval [0, 1] then for any ε > 0 there is an Nε such that knowing
arbitrarily many finite instances beyond Nε adds no more than ε in evidential value.
In contrast, all the evidential value finite evidence can yield, bar ε, is owed to the
first Nε cases—and for sufficiently small ε, this is the lion’s share. I suggested this
mathematical point is inconsistent with one version of size-scepticism: c-scepticism,
which takes larger instances as providing more inductive confirmation than smaller
ones. In contrast, both s-scepticism and u-scepticism are consistent with it. Naturally,
onemight query the application of a probabilistic framework in this context, something
I’ll return to in the next section.

6 Frontloading of evidential value II

In §5 we assumed no more than that the valuation function v is the closed real interval
[0, 1] with its standard order. In this section, we turn to a treatment closer to orthodox
Bayesianism, though still distinct from it, so merely ‘Bayesian-like’. According to
orthodox Bayesianism, logical truths must be believed to degree 1. As a consequence,
a subject who is certain of the axioms of arithmetic must be equally certain of their
consequences. Orthodox Bayesianism, however, cannot make sense of the eviden-
tial situation mathematicians find themselves in. For mathematicians are disposed to
believe the Peano Axioms with credence 1 or close to 1, but have no opinion about
whether some decidable instances of GC, such as 1010

100
say, is true or not. One could

argue that mathematicians are simply not living up to the ideals of rationality through
their inability to follow their beliefs’ logical consequences. Another reaction is to
suppose that there is a less idealised sense of rationality in which mathematicians are
not guilty of irrationality simply by believing axioms without believing all their con-
sequences. For the rest of this section, let’s assume this latter, more realistic, sense of
rationality. Since orthodox Bayesianism is clearly incapable of modelling it, we shall
have to go against some of its tenets, while holding on to other parts of the framework.

6.1 C-scepticism

We start with c-scepticism. Let pi be the probability that number i has property F ,25

probabilities being understood as credences. Suppose further that the subject’s cre-
dences in the instances of the arithmetical generalisation ∀nFn are independent. This
is a fairly plausible assumption for anyone with no relevant knowledge of the conjec-
ture; and, as we shall explain below, it is in any case superfluous. In a probabilistic
setting, in which we assume no credential dependence between instances, it follows

25 We blur the difference between predicates and the properties they denote.
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that:

Pr(∀xFx) = ∞
�
i=0

pi

The obvious way to define the infinite product �∞
i=0 pi is as lim

N→∞ �N
i=0 pi . Since

the sequence (�N
i=0 pi )N∈ω—that is, (�0

i=0 pi ), (�1
i=0 pi ), (�2

i=0 pi ), · · ·—consists
of non-increasing real numbers bounded below by 0, it must have a limit, and this

last is what we define
∞
�
i=0

pi as. (As a preview of §7, we mention that the product is

unchanged however we permute the pi .)
One way of modelling c-scepticism is to suppose that pi > p j iff i < j—the

smaller i is, the larger pi is. This embodies the idea that the smaller the number, the
greater the subject’s degree of belief that it is a true instance of the generalisation; so
to test the conjecture, the larger numerical instance the better. But in that case, the
subject’s credence in the universal statement must be 0, since

Pr(∀xFx) = ∞
�
i=0

pi < pk1

for any non-negative (integer) k, so that the left-hand product is 0. No amount of finite
evidence, wherever in the number line it may fall, could then lift this credence from 0 to
a positive amount. This way of cashing out c-scepticism therefore has the unacceptable
implication that no universal generalisation can be supported to any positive degree
by any enumerative inductive evidence.

The same moral applies to c-scepticism modelled in the following way: pi ≥ p j

iff i ≤ j , and pk > pk+1 for some k.26 If the prior credence in ∀xFx is to be non-
zero, our discussion in fact points to something like the opposite of c-scepticism. For
example, under the assumptions just stated, we may prove:27

Observation

Suppose Pr(∀xFx) = ∞
�
i=0

pi �= 0. Then for any 0 < pi < 1, eventually all

p j > pi . (‘Eventually all’ means ‘all but finitely many’.)

Clearly, Observation tell against c-scepticism. Prior to investigation, no pi is equal to
1.28 It follows that any instance of the conjecture is more dubious than all but finitely
many of the instances that follow it. Observation thus supports an opposite moral to
the c-sceptic’s.

To illustrate the point numerically,wemodel a formof inverse c-scepticism inwhich
pi strictly increases as i increases. Suppose that, for a given arithmetical generalisation,

pi = ( 12 )
3−(i+1)

, so that p0 = ( 12 )
1
3 , p1 = ( 12 )

1
9 , etc. Clearly, pi is an increasing

function of i , meaning that pi < p j iff i < j . This means that, before the evidence

26 Since
∞
�

i=k+1
pi < (pk )

n for all n, and the right-hand side tends to 0 as n tends to ∞.

27 By an easy argument left to the reader.
28 Or perhaps pi is 1 for a few small i , when the result is obvious, e.g. for very small cases of GC.
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comes in, smaller numbers are perceived as more likely to be counterexamples to the
conjecture than smaller ones. A little algebra shows that

Pr(∀xFx) = ∞
�
i=0

pi = ∞
�
i=0

( 12 )
3−(i+1) = ( 12 )

1
2 ≈ 0.7071

Suppose a subject has verified the generalisation’s first 1010 cases. Her updated cre-
dence in the generalisation should then be:

Pr(∀xFx | ∀x ≤ 1010Fx) = ∞
�

i=1010+1
( 12 )

3−(i+1)
,

a number extremely close to 1. Before considering how these results affect the s-sceptic
and the u-sceptic, let’s consider a potential response. For the c-sceptic faced with these
results is liable to complain about the probabilistic framework the results assume.

6.2 Questioning the framework

We know that the standard Bayesian framework cannot be applied wholesale to math-
ematics, since for example it forces logical truths to have probability 1.29 A certain
sort of philosopher might complain that because we lack a good mathematical model
for them (in particular, Bayesians have so far found mathematics a hard nut to crack),
we shouldn’t trust judgments of this type. However, this would be to put the cart before
the horse. It would be to suppose that however systematic, reliable, and informally
understood some phenomena might be, in the absence of an undergirding theory they
are not to be trusted. Compare the situation before the emergence of probability in early
modern mathematics and long before its twentieth-century axiomatisation. Would it
have been unreasonable to think some claims more credible than others, to believe
evidence can confirm a hypothesis, etc., in the absence of a mathematical model? Is it
unreasonable now for anyone who has not taken a course in formal epistemology?

Clearly, the answer is no. But to this point, one might respond: fine, we have
no satisfactory formal model for non-deductive reasoning in mathematics. Yet our
discussion in §6.1 did assume a model: not a Bayesian model per se, but a Bayesian-
like one. And what reason is there to think that it correctly models the phenomena in
question? C-scepticism’s critics are likely to make two points in response.

To begin with, it seems hard to deny that degrees of confidence in these types of
mathematical cases may be measured by real numbers in the interval [0, 1]. Degrees
of confidence are strongly, even if not constitutively, linked to betting behaviour. And
clearly prior to investigation one can bet on whether the number 1010 is the sum of
two primes. Or whether all the first M numbers are. If the subject regards each case as
independent, then according to themore descriptive notion of rationality here targeted,
the subject’s overall credence in the generalisation should be calculated as above. And
if the cases are not independent, we may take the probability pi to be that of the i th

number’s conforming to the conjecture given that all previous ones do, in which case

29 Though we call it ‘Bayesian’, the version of Bayes’s Theorem used in §6.1, in which the events are
independent, is extremely simple. We use the label ‘Bayesianism’ because the probabilities here are all
construed as credences, and because we make more sophisticated use of Bayes’s Theorem when the events
are not independent in a couple of places in §6.
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the overall probability is once more the product of the relevant probabilities. This is a
natural picture, and the burden is on the c-sceptic to fault it. She cannot rest content
with pointing out that it conflicts with the for-us unattainable requirement of logical
omniscience.

The second point is that there is no shortage ofmodels trying to improve upon ortho-
dox Bayesianism. Classic attempts include Hacking (1967) and Garber (1983). In the
latter, for example, sentences such ‘A entails B’, where A and B may be arithmetical
sentences, are treated as atoms, to avoid the assumption of logical omniscience. With-
out a high credence in ‘A entails B’, a subject may then rationally have high credence
in A but low credence in B, even if A entails B. More recently, formal epistemologists
have started to developmore sophisticated Bayesian-likemodels accounting for agents
with limited cognitive resources. One such is that of Gaifman (2004) and another that
of Skipper and Bjerring (2020). The latter for instance avoids the assumption that if A
entails B then one’s credence in B should be no lower than one’s credence in A, yet in
other ways preserves as much of the Bayesian framework as possible. Very roughly,
Skipper and Bjerring’s idea is to use a step-based model of bounded logical reasoning,
in which the number of inference steps an agent is able to perform is modelled by a
natural number n so that any consequences of principles more than n steps away are
not transparent to the agent.

As this is not the place for an in-depth review of any of these models, we note
simply that the name of the game in this particular subfield of formal epistemology is
to reach a theoretical understanding of reasoning by bounded creatures whilst holding
on to as much of the traditional framework as possible. Though all such models are
controversial,30 the best candidates vindicate something like the ‘Bayesian-like’model
assumed. In particular, a subject may have credence 1 in the Peano Axioms but low
credence in some of their consequences, and may well be agnostic about an instance
of the Goldbach Conjecture even if it follows from axioms they have full confidence
in. Indeed, any proposed model of partial belief in mathematics that aims to be more
realistic than orthodox Bayesianism will be judged by how well it accords with these
and similar aspects of mathematical reasoning.

The c-scepticmight bemoved by the two responses so far, and accept that Bayesian-
like models that reject logical omniscience can correctly capture some forms of non-
deductive reasoning inmathematics. But shemight deny that Bayesian-likemodels can
be applied to infinite cases. For she might urge that any form of Bayesianism, orthodox
or heterodox, is ill-equipped to deal with these. It’s widely appreciated that assigning
probabilities to all subsets of an infinite event space can be tricky or impossible. For
instance, what should one’s credence be that ticket i will win in a fair infinite lottery
with ticket numbers 0, 1, 2, …? All tickets must be assigned the same probability,
by assumption. This probability cannot be positive, since by countable additivity the
probability of some ticket being the winning one will then be infinite rather than 1. Nor
can it be 0, however, since the probability of some ticket or other being the winning
one will then be 0.

But there is, in turn, a response to the c-sceptic. Notice that there are all sorts of con-
sistent probability assignments under which the overall probability of an arithmetical

30 As noted in for example in Easwaran (2011, p. 324) or Skipper and Bjerring (2020).
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generalisation is non-zero. As we saw, none of these vindicates c-scepticism. In fact,
quite the opposite: all such assignments support a sort of inverse c-scepticism.

For an analogy, suppose someonemakes a claimaboutwhat probability assignments
in (countably) infinite lottery cases look like. For example, she might contend that all
such assignments must have non-decreasing probabilities, i.e. that any rational agent
should believe that ticket i will win to degree no greater than ticket j will whenever
i < j . By means of a simple mathematical argument,31 we point out to her that in a
Bayesian framework there are no such consistent assignments. However, there are all
sorts of probability assignments consistentwithBayesianism inwhich the probabilities
are decreasing.32 The response to this argument cannot be that because a Bayesian
approach cannot model infinite fair lotteries, the original claim about non-decreasing
probabilities stands. Clearly, the original claim is impugned by the fact that it conflicts
with all cases in which probabilities can be assigned consistently.

Now the parallel here is certainly not strict, because the c-sceptic’s original claim
was not about probabilities. But it does suggest that c-scepticism is impugned by the
fact that it conflicts with all cases in which probabilities can be consistently assigned.

In sum, the epistemological model employed in the present section is undeniably
simple. But if the c-sceptic is to challenge its conclusions, she must explain what
exactly is wrong with it—other than that it goes against orthodox Bayesianism.

6.3 S-scepticism and u-scepticism

Let’s now examine how the discussion in §6.1 affects s-scepticism and u-scepticism.
Although the notion of ‘small’ these scepticisms invoke may be vague, we can for the
sake of argument pretend it’s precise. So wemay take small numbers to be all and only
the first S numbers, from 0 to S − 1 inclusive. Cast in our probabilistic framework,
both s-scepticism and u-scepticism can then be expressed as:

Pr(∀xFx) � Pr(∀xFx | (∀x ≤ S − 1)Fx)

In words: the probability that ∀xFx is true is approximately the same as, and only a
little less than, the probability that ∀xFx is true given that its first S instances hold.
Consequently, learning that the first S instances conform to the hypothesis renders the
generalisation more probable, but only by a very small amount.

Consider now the natural numbers broken up into consecutive blocks. Let’s say
that the first block consists of the first S numbers, and that all other blocks consist of
S numbers as well.33 Thus the first block is made up of the numbers 0 to S − 1, the
second block of the numbers S to 2S − 1, and so on. Therefore instead of the blocks
being individual numbers, like so:

31 To wit: one of the probabilities must be non-zero if their sum is to be 1. But if the probabilities are
non-decreasing, all subsequent probabilities must be at least as large as this positive probability, so that the
sum of all probabilities is infinite. Contradiction.
32 For example, let the probability that ticket i will win be 2−(i+1).
33 The argument still goes through even if subsequent blocks after the first are of different (non-empty)
size.
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0 1 2 · · · n · · ·

each block comprises S-many numbers, like so:

0, 1, 2, · · · , S − 1 S, S + 1, · · · , 2S − 1 · · · nS, nS + 1, · · · , (n+ 1)S − 1 · · ·

Now take the probability pi to represent a subject’s prior credence that all the
instances of an arithmetical conjecture in the i th block of S numbers are confirmatory.
Observation, in §6.1, still holds, this time with the pi interpreted as the subject’s
credence that all the elements in the i th S-block conform to the conjecture. Now the
probability p0 in almost all relevant cases is less than 1, since we have not checked all
small instances of the conjecture. So we can deduce from Observation that verifying
the first S instances—all the small ones—provides more evidence for the hypothesis
than verifying any later block of S numbers does, bar finitely many such blocks.

As a numerical illustration, suppose

0.7 = Pr(∀xFx) � Pr(∀xFx | (∀x ≤ S − 1)Fx) = 0.701

Thus p0, the prior probability that the first S-block conforms to the generalisation,
equals 0.7

0.701 (about 0.9986). Only finitely many pi can be smaller than p0, the max-
imum number being the greatest k such that ( 0.7

0.701 )
(k+1) > 0.7. Since the maximum

such k equals 248, at most 248 other S-blocks can have lower prior probability than
the first. To put it another way, verifying the first S cases provides more evidence for
the generalisation than verifying any other S-block in the partition, with the possible
exception of no more than 248 of them.

How does this affect s-scepticism? According to the s-sceptic, inferences based on
pointwise-small samples are potentially biased. In probabilistic terms, this means that
p0—not equal to 1, since verifying the first S cases provides some evidence—should
be fairly high. Yet, as we have seen, only finitely many pi can be smaller than p0. If
there are k of these, then all but k of the pi are in fact higher than p0. This means that
if we had to rank S-blocks in terms of how likely they are to provide counterexamples
to the conjecture, the first S-block would be among the k + 1 most likely ones. It is
hard to square this with s-scepticism, which maintains that small instances (i.e. those
drawn from the first S-block) are potentially biased. For if the first block is biased then
all but (k + 1) of the infinitely many ones are, and in fact any block can play the role
of the first one in this argument. So the right conclusion to draw seems to be that the
size of a numerical instance is not in itself an indicator of potential bias.

Let’s turn finally to u-scepticism. According to the u-sceptic, inferences based on
pointwise-small samples are potentially biased because they are unrepresentative. In
probabilistic terms, this means that p0 (< 1, as explained) should be fairly high. The
fact that only finitely many pi can be smaller than p0 is compatible with u-scepticism.
For the u-sceptic canmaintain that any S-block is unrepresentative, so all the pi should
be very close to 1. It is only when the members of several of these blocks have been
verified that the conjecture as a whole is confirmed. And a virtue of u-scepticism,
compared to c-scepticism and s-scepticism, is that it does not distinguish one S-block
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from any other. This accurately reflects the inherent symmetry, since for instance a
result such as Observation still holds however the S-blocks are permuted.

(There remains the question, of course, of the potential arbitrariness of the number
S. Both the s-sceptic and the u-sceptic must justify their particular choice. But that is
not the challenge we are considering here.)

Observe in passing that we have assumed the probabilistic independence of
instances. But this is inessential: identical results can be established if we don’t assume
independence, and instead (in §6.1 terms) let pN represent the probability of N being
F given that the numbers 0 to N − 1 are all F .34 If instances are verified in increasing
order, an analogue of Observation follows, in its original §6.1 version or in its block
version in this section.

In sum, the simple probabilistic model is incompatible with c-scepticism and sits
uncomfortably with s-scepticism. But, so far as I can tell, it is consistent with u-
scepticism. If this is along the right lines, the size-sceptic would be well advised to be
a u-sceptic.

7 Other orders

In this section, we consider what happens when we vary the order on the natural
numbers. The principal motivation for doing so was mentioned in §1. In philosophy
of mathematics circles, one often hears the following argument casually expressed,
approvingly or disapprovingly: ‘we haven’t found an inconsistency in ZFC in the past
100-plus years, so there isn’t one’. You might play down this enumerative inductive
evidence on account of the fact that all the ZFC-proofs we have come up with are in
some sense small.

Despite its often being aired, I have found no extended discussions of the argument
in the literature, merely scattered remarks. Hartry Field believes we can have inductive
knowledge of the consistency of axiomatic theories (Field 1989) and adds, specifically
about ZF, that ‘if it weren’t consistent someone would probably have discovered an
inconsistency in it by now’ (Field 1989, p. 232). In a discussion of Field’s argument,
Dummett voiced scepticism about the value of such evidence though, interestingly,
not on size-sceptical grounds.35 Crispin Wright (1994, sec. 4) similarly expressed
dissent. More recently, and in a slightly more extended discussion than most, Dan
Waxman (2017, p. 95) takes the enumerative inductive case for consistency to provide
‘fairly weak’ justification. John Burgess sees set theory’s consistency as ‘a reasonable
assumption ... partly because by now we have long experience of working with the
axiom system in daring ways without falling into contradiction’ (2015, p. 116).36

Something like Burgess’s claim might also be read into a remark of Gödel’s (1947, p.
519). JohnMayberry takes the fact that set theorists have tried to find an inconsistency
in systems much stronger than standard set theory to ‘carry considerable weight as
evidence’ (1977, p. 164). Yet he takes it to be, in a somewhat opaque turn of phrase,

34 Here we appeal to Bayes’s Theorem.
35 See Dummett (1991, p. 313), and Waxman (2017, p. 92) for decisive criticism of Dummett.
36 ‘Daring ways’ of course points to something more than bare enumerative inductive inference.
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‘entirely of a practical nature’ (1977, p. 164).37 I too have expressed some sympathy
with this sort of evidence for consistency (Paseau 2011). But no one to date has really
examined the argument in any detail. Although our discussion cannot but remain
preliminary, I shall bring one aspect of the question into more critical focus, namely,
the value of the evidence that no hitherto-instantiated proof in set theory has yet
resulted in a contradiction.

In earlier sections, we assumed that the natural numbers are ordered in the standard
way. In this section, we’ll consider other orders. These arise from different orderings
on countably infinite sets other than the natural numbers. Our leading example is the
set of all past or present instantiated proofs of a given formal theory, including proof
sketches.38 These may be ordered in many different ways, of which we’ll consider
three, concentrating on the third.39 We extract some philosophical morals at the end of
the section. We will not need to distinguish between c-, s- and u-scepticism, so speak
of size-scepticism in an undifferentiated sense.

The first way of assigning numbers to proofs is by giving them Gödel numbers.
For how to do so, open your favourite textbook on Gödel’s Incompleteness Theorems
and adapt the numbering given there to the theory of interest. The resulting numbers
may then be ordered in the usual way. The size of a proof will then vary according to
the choice of Gödel numbering, so that proof P1 is assigned a number smaller than P2
according to one Gödel numbering but a larger number according to another. Not all
Gödel numbers of proofs we have come across need be small; for example, they need
not be minute in Baker’s technical sense (§2), since there is nothing stopping us from,
say, assigning a symbol in a proof the non-minute Gödel number 1010

10
. But Gödel

numbers of instantiated proofs will all be small in a sense that can be made precise
for the particular Gödel numbering used.

A second way of ordering proofs is by the number of steps they contain. Now this
measure will depend to some extent on the presentation of the theory, in particular on
the proof system. A proof in a natural-deduction system, for example, will typically
contain a different number of steps from a similar one for the same conclusion and
from the same axioms in a Hilbert-style system. Moreover, each type of system has
many variants, depending for example on exactly which propositional connectives are
used. Yet once a proof system has been chosen, the length of a proof can stand in for
its numerical size, and the previous discussion carries over to proofs thus numbered.40

Given a standard choice of system, it is safe to say that all proofs we will ever come
across or produce are small in a sense that can bemade precise, and certainly all minute
in Baker’s technical sense.

The third way is to order proofs according to which types of axioms they use.
Suppose for example you find ZFC’s Axiom Scheme of Replacement dubious for
some reason but have no beef against the system’s other axioms. We may divide ZFC-

37 Italics in the original. Mayberry contrasts practical reasons with mathematical ones.
38 The class of concretely instantiated full-dress formal proofs, say on a blackboard, in a printed text or on
a screen, is small compared to the much ampler class of proof sketches.
39 This is not an exhaustive list. Another way, for example, might be to order proofs by their proof-theoretic
complexity.
40 The ordering on proofs will not be linear, since antisymmetry fails, as different proofs will be of the
same length.
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proofs into two categories, depending on whether they use instances of Replacement
or not. Next, stipulate that Replacement-using proofs come later in the ordering than
those that do not make essential use of Replacement, and employ some standard Gödel
numbering within each category to order the proofs. If no proofs of the same category
are given the same Gödel number, the resulting order would then be of type ω + ω.
As we said, the philosophical justification for an order of this kind would be that the
Replacement scheme is suspect in some way, so that proofs that avoid it—the first ω
ones—are simpler or more credible. They therefore appear earlier in the ordering than
any proofs that make essential use of Replacement. For another example, consider a
systemof second-order arithmetic. Here one could stipulate infinitelymany categories,
a proof of category n being one that uses a �n-induction axiom but no �m-induction
axiom for any m > n. We may further stipulate that any proof of category i comes
before any proof in category j in the ordering iff i < j , and number the proofs within
each category using some standard Gödel numbering. The resulting order on proofs
would be of type ω + ω + · · · + ω + · · · , i.e. ω2.

We might wonder how in this type of case we should go about working out the
probability of the universal generalisation ∀nF(n) in terms of the probability of each
of its instances. The instances may be indexed by elements of set I , with an order �
on it, pi representing the probability that the i th instance conforms to the hypothesis.
So the question is: what is �

i∈I pi? (Assuming that the index set I is countably infinite

and each pi is in [0, 1].) There is in fact a natural way to define this product, which at
first sight seems to depend on an arbitrary choice but upon inspection turns out not to
do so.

The natural definition of �
i∈I pi is as follows. Since I is countably infinite, there

exists a bijection b from I to the set of natural numbers. We may define �
i∈I pi as∞

�
j=0

p(b−1( j)) with the infinite product defined as the limit of its finite approximations,

as usual, i.e.
∞
�
j=0

p(b−1( j)) = lim
N→∞

N
�
j=0

p(b−1( j)). This is well-defined because each pi

is in [0, 1]. The definition is natural because the choice of bijection does not matter: the
product is identical whatever bijection b we choose.41 To put it informally, ordering
the probabilities in any way we like does not affect their product.

The method just described of defining �
i∈I pi for I an arbitrary countably infinite set

(and each pi in [0, 1]) is entirely general and does not depend on I ’s ordering�. When

41 Proof: let b1 and b2 be two bijections from I toN and let li = lim
N→∞

N
�
j=0

p
(bi

−1( j)) for i = 1, 2. Clearly,

l1, l2 are in [0, 1] and for any N , l1 ≤ N
�
j=0

p
(bi

−1( j)) (i = 1, 2) as the probabilities pi are all in [0, 1]. Suppose

w.l.o.g. that l1 < l2, and that ε > 0 and Nε are such that ε < |l1 − l2| and
Nε
�
j=0

p
(b1−1( j)) < l1 + ε. Let

Mε = max{b2(b1−1( j)) : 1 ≤ j ≤ Nε}. The following inequalities hold:
Mε
�
j=0

p
(b2−1( j)) < l1 + ε < l2.

But by the definition of l2, we also have l2 ≤ Mε
�
j=0

p
(b2−1( j)). Contradiction. Hence l1 = l2 and the choice

of bijection does not matter.
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� happens to be a well-order, another natural definition of �
i∈I pi is available. The idea

is to exploit the well-ordering � by multiplying probabilities together at successor
ordinals and by taking limits at limit ordinals.42 A proof similar to the proof that the
choice of bijection in the general case doesn’t matter establishes that this definition
yields the same limit as in the general case.43

It should be clear that if� is not anω-order, there is in general no reason to suppose
that the evidence must be frontloaded in the sense of §5 or §6. Suppose for instance
that � has order-type ω + ω. In that case, the probability of a counterexample to
the generalisation in question appearing in the first ω-block may be close to 0, yet the
probability of its appearing in the secondω-blockmay bemuch higher. In this scenario,
a sort of size-scepticism would be justified, since any enumerative inductive evidence
from the firstω-block in favour of the generalisation would count for little. In the ZFC-
example mentioned earlier, such proofs would correspond to those which do not use
instances of Replacement, which in this example are regarded as more dubious. For
a very similar example, replace instances of Replacement with the Axiom of Infinity,
which a certain type of finitist might suspect of leading to contradiction. Proofs that
do not use Infinity would all be considered ‘small’, as they are all in the first ω-block
of the ω + ω ordering. The finitist in question would thus regard them as constituting

42 Suppose the well-ordering is of order-type γ for some ordinal ω ≤ γ < ω1, and that indices have been
relabelled to correspond to ordinals in the well-order. We define the product as follows (where λ is a limit
ordinal):

�
ξ<0

pξ = 1

�
ξ<β+ pξ = pβ · �

ξ<β
pξ

�
ξ<λ

pξ = lim
β→λ

�
ξ<β

pξ

In the third equation, which represents the limit case, the limit taken in the equation’s right-hand side is inR,
of course. Now �

ξ<β
pξ for ordinals β < γ is a weakly decreasing sequence of real numbers bounded below

by 0 , since 0 ≤ �
ξ<β

pξ ≤ �
ξ<α

pξ ≤ 1 if α < β. So all limits in the transfinite recursion are well-defined.

We may then simply define �
i∈I pi as �

ξ<γ
pξ .

43 It is crucial for these definitions that all the probabilities pi lie in [0, 1]. Things would be otherwise if
they were not. Consider for example the set { n+2

n+1 : n ∈ N} ∪ { n+1
n+2 : n ∈ N}. Arranged as the ω-sequence

2
1 · 1

2 · 3
2 · 2

3 · 4
3 · 3

4 · 5
4 · 4

5 · 6
5 · 5

6 · · · ,
these numbers’ infinitary product is 1 according to the definition of a product for a well-order. (Argument:
the product of the first 2n is 1, that of the first 2n+1 is n+2

n+1 , so the limit of the finite products is 1.) Whereas
arranged as the ω + ω-sequence

2
1 · 3

2 · 4
3 · 5

4 · 6
5 · · · 12 · 2

3 · 3
4 · 4

5 · 5
6 · · · ,

they do not define a product. (Argument: the product of the first n is n+1, so the limit of the initialω-product
does not exist.) Finally, arranged as the ω-sequence

1
2 · 2

3 · 3
4 · 4

5 · 5
6 · · · 21 · 3

2 · 4
3 · 5

4 · 6
5 · · · ,

their infinitary product is 0. (Argument: the product of the first n is 1
n+1 , so the product of the first ω is 0. It

then remains 0 thereafter.) Not so when all the numbers are in [0, 1]: in this case, the product is well-defined
whatever the order.
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little, if any, evidence for ZFC’s consistency. For a third example—perhaps not a very
realistic one but one that illustrates the point neatly—suppose� is of order-typeω+1,
with the last instance being the most controversial, more so than the first ω ones. In
this last case, any ‘small’ enumerative inductive evidence—drawn from the first ω

cases—would count for less than the single instance that is the final case.
None of this should be surprising, however. If initial credibility affects an instance’s

place in the order, then we are ‘baking in’ a certain kind of order bias. Putting more
dubious proofs later in the order forces early cases to be easy cases.

What’s the upshot? Once we move beyond the natural numbers and consider the
class of proofs in a formal system, the picture becomesmore complicated. In summary:

1. Suppose we order proofs in the first way, by assigning them Gödel numbers in the
customary fashion. You might think that size-scepticism about the enumerative
evidence for consistency would stand or fall with size-scepticism about arithmeti-
cal evidence. But this is moot. For suppose you agree with Frege that position
in the number series matters, unlike position in space (see §2). If you buy that
thought, you may well discern a potentially relevant difference betwen numbers
and proofs. The position of a proof in the sequence ordered by a Gödel number is
a matter of indifference, since the numbering is arbitrary along several dimensions
and extrinsic to the proof itself. But this is quite unlike the position of a number in
the number series. Size-scepticism about the evidential value of non-contradictory
proofs is correspondingly less attractive.

2. Suppose proofs are ordered by the number of steps they contain. The situation
is then very similar to the arithmetical case. And observe that a proof’s length is
a fairly natural number to associate with it, unlike any Gödel number we might
assign it. But it’s much less clear, to me at any rate, that ‘the length of a proof is not
a matter of indifference, like position in space’, to adapt Frege’s words. Perhaps
the length of a proof is more analogous to proximity in space than it is to numerical
size. In any event, the case for size-scepticism here remains to be made.

3. Suppose finally that we order proofs in the third way, according to the types of
axioms they use. Whether size-scepticism gets a foothold depends entirely on how
the proofs are ordered. We could ‘bake in’ size-scepticism, or avoid it, depending
on the ordering chosen.

A fuller discussion building on these preliminary remarks would have to consider
the value of the enumerative inductive evidence for different set theories, and how
it complements other non-deductive evidence. The non-deductive evidence for ZFC
includes for example the fact that no contradiction has ever been derived from its
axioms, as well as the fact that people have tested it in ‘daring ways’, as John Burgess
put it, together with the fact that ZFC has an intuitive model—the iterative universe of
sets. Non-iterative set theories or stronger iterative set theories such as ZFC + ‘there
exists a supercompact cardinal’ have rather different non-deductive support. We leave
these investigations for a further occasion.
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8 Conclusion

Many mathematicians and philosophers are sceptical about the value of enumera-
tive inductive evidence in arithmetic, especially in the absence of further supporting
evidence. ‘Size-scepticism’ of this sort is justified by the following thought: enumer-
ative inductive evidence for an arithmetical conjecture consists exclusively of ‘small’
instances—those that appear very early on, in some sense, in the natural number
sequence. This essay set out two sorts of cases in which size-scepticism does not
come into play (§3), distinguished three varieties of size-scepticism (§4), and raised
and assessed some challenges for all three (§§5-6). We saw that the strength of these
challenges depended sensitively on the variety of size-scepticism in question. Finally,
§7 contained some preliminary remarks about enumerative inductive evidence for the
consistency of set theory.44
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